diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index ba192da4ed..18911474c1 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -1,30 +1,30 @@
-/* -*- c++ -*- */
-
-/*
- Reprap firmware based on Sprinter and grbl.
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see .
- */
-
-/*
- This firmware is a mashup between Sprinter and grbl.
- (https://github.com/kliment/Sprinter)
- (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
+/**
+ * Marlin Firmware
+ *
+ * Based on Sprinter and grbl.
+ * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ * About Marlin
+ *
+ * This firmware is a mashup between Sprinter and grbl.
+ * - https://github.com/kliment/Sprinter
+ * - https://github.com/simen/grbl/tree
+ *
+ * It has preliminary support for Matthew Roberts advance algorithm
+ * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
@@ -73,13 +73,12 @@
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
*
* Help us document these G-codes online:
+ * - http://www.marlinfirmware.org/index.php/G-Code
* - http://reprap.org/wiki/G-code
- * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
- */
-
-/**
+ *
+ * -----------------
* Implemented Codes
- * -------------------
+ * -----------------
*
* "G" Codes
*
@@ -163,7 +162,7 @@
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
* M206 - Set additional homing offset
* M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
- * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
+ * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - Set hotend offset (in mm): T X Y
* M220 - Set speed factor override percentage: S
@@ -215,6 +214,11 @@
*
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
+ *
+ * "T" Codes
+ *
+ * T0-T3 - Select a tool by index (usually an extruder) [ F ]
+ *
*/
#ifdef SDSUPPORT
@@ -557,9 +561,9 @@ void servo_init() {
// Set position of Servo Endstops that are defined
#ifdef SERVO_ENDSTOPS
- for (int i = 0; i < 3; i++)
- if (servo_endstops[i] >= 0)
- servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
+ for (int i = 0; i < 3; i++)
+ if (servo_endstops[i] >= 0)
+ servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
#endif
#if SERVO_LEVELING
@@ -993,7 +997,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#endif //DUAL_X_CARRIAGE
-static void axis_is_at_home(int axis) {
+static void axis_is_at_home(AxisEnum axis) {
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS) {
@@ -1198,12 +1202,12 @@ static void setup_for_endstop_move() {
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
- // move down until you find the bed
+ // Move down until the probe (or endstop?) is triggered
float zPosition = -10;
line_to_z(zPosition);
st_synchronize();
- // we have to let the planner know where we are right now as it is not where we said to go.
+ // Tell the planner where we ended up - Get this from the stepper handler
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
@@ -1313,21 +1317,21 @@ static void setup_for_endstop_move() {
st_synchronize();
- #ifdef Z_PROBE_ENDSTOP
- bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
- if (z_probe_endstop)
- #else
- bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
- if (z_min_endstop)
- #endif
- {
- if (IsRunning()) {
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
- LCD_ALERTMESSAGEPGM("Err: ZPROBE");
+ #ifdef Z_PROBE_ENDSTOP
+ bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
+ if (z_probe_endstop)
+ #else
+ bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
+ if (z_min_endstop)
+ #endif
+ {
+ if (IsRunning()) {
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
+ LCD_ALERTMESSAGEPGM("Err: ZPROBE");
+ }
+ Stop();
}
- Stop();
- }
#endif // Z_PROBE_ALLEN_KEY
@@ -1390,23 +1394,23 @@ static void setup_for_endstop_move() {
st_synchronize();
- #ifdef Z_PROBE_ENDSTOP
- bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
- if (!z_probe_endstop)
- #else
- bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
- if (!z_min_endstop)
- #endif
- {
- if (IsRunning()) {
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
- LCD_ALERTMESSAGEPGM("Err: ZPROBE");
+ #ifdef Z_PROBE_ENDSTOP
+ bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
+ if (!z_probe_endstop)
+ #else
+ bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
+ if (!z_min_endstop)
+ #endif
+ {
+ if (IsRunning()) {
+ SERIAL_ERROR_START;
+ SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
+ LCD_ALERTMESSAGEPGM("Err: ZPROBE");
+ }
+ Stop();
}
- Stop();
- }
- #endif
+ #endif // Z_PROBE_ALLEN_KEY
}
@@ -1418,32 +1422,31 @@ static void setup_for_endstop_move() {
};
// Probe bed height at position (x,y), returns the measured z value
- static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
+ static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
- if (retract_action & ProbeDeploy) deploy_z_probe();
+ if (probe_action & ProbeDeploy) deploy_z_probe();
#endif
run_z_probe();
float measured_z = current_position[Z_AXIS];
#if Z_RAISE_BETWEEN_PROBINGS > 0
- if (retract_action == ProbeStay) {
+ if (probe_action == ProbeStay) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
st_synchronize();
}
#endif
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
- if (retract_action & ProbeStow) stow_z_probe();
+ if (probe_action & ProbeStow) stow_z_probe();
#endif
if (verbose_level > 2) {
- SERIAL_PROTOCOLPGM("Bed");
- SERIAL_PROTOCOLPGM(" X: ");
+ SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
@@ -1593,12 +1596,11 @@ static void homeaxis(AxisEnum axis) {
if (axis == Z_AXIS) {
if (axis_home_dir < 0) deploy_z_probe();
}
- else
#endif
#ifdef SERVO_ENDSTOPS
- {
+ if (axis != Z_AXIS) {
// Engage Servo endstop if enabled
if (servo_endstops[axis] > -1)
servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
@@ -2763,8 +2765,8 @@ inline void gcode_G28() {
z_tmp = current_position[Z_AXIS],
real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
- apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
- current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
+ apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
+ current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
sync_plan_position();
}
#endif // !DELTA
@@ -2792,8 +2794,7 @@ inline void gcode_G28() {
feedrate = homing_feedrate[Z_AXIS];
run_z_probe();
- SERIAL_PROTOCOLPGM("Bed");
- SERIAL_PROTOCOLPGM(" X: ");
+ SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
@@ -4624,7 +4625,7 @@ inline void gcode_M400() { st_synchronize(); }
stow_z_probe(false);
}
-#endif
+#endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
#ifdef FILAMENT_SENSOR
@@ -4819,7 +4820,7 @@ inline void gcode_M503() {
if (code_seen('Z')) {
value = code_value();
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
- zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
+ zprobe_zoffset = -value;
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
SERIAL_EOL;
@@ -5074,9 +5075,11 @@ inline void gcode_M999() {
/**
* T0-T3: Switch tool, usually switching extruders
+ *
+ * F[mm/min] Set the movement feedrate
*/
inline void gcode_T() {
- int tmp_extruder = code_value();
+ uint16_t tmp_extruder = code_value_short();
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_CHAR('T');
@@ -5589,14 +5592,14 @@ void process_next_command() {
gcode_M400();
break;
- #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
+ #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
case 401:
gcode_M401();
break;
case 402:
gcode_M402();
break;
- #endif
+ #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
#ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
@@ -6089,82 +6092,83 @@ void prepare_move() {
#endif // HAS_CONTROLLERFAN
#ifdef SCARA
-void calculate_SCARA_forward_Transform(float f_scara[3])
-{
- // Perform forward kinematics, and place results in delta[3]
- // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
-
- float x_sin, x_cos, y_sin, y_cos;
-
+
+ void calculate_SCARA_forward_Transform(float f_scara[3]) {
+ // Perform forward kinematics, and place results in delta[3]
+ // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
+
+ float x_sin, x_cos, y_sin, y_cos;
+
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
-
+
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
-
- // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
- // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
- // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
- // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
-
+
+ //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
+ //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
+ //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
+ //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
+
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
-}
+ }
-void calculate_delta(float cartesian[3]){
- //reverse kinematics.
- // Perform reversed kinematics, and place results in delta[3]
- // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
-
- float SCARA_pos[2];
- static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
-
- SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
- SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
-
- #if (Linkage_1 == Linkage_2)
- SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
- #else
- SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
- #endif
-
- SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
-
- SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
- SCARA_K2 = Linkage_2 * SCARA_S2;
-
- SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
- SCARA_psi = atan2(SCARA_S2,SCARA_C2);
-
- delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
- delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
- delta[Z_AXIS] = cartesian[Z_AXIS];
-
- /*
- SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
- SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
- SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
-
- SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
- SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
-
- SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
- SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
- SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
-
- SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
- SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
- SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
- SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
- SERIAL_ECHOLN(" ");*/
-}
+ void calculate_delta(float cartesian[3]){
+ //reverse kinematics.
+ // Perform reversed kinematics, and place results in delta[3]
+ // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
+
+ float SCARA_pos[2];
+ static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
+
+ SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
+ SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
+
+ #if (Linkage_1 == Linkage_2)
+ SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
+ #else
+ SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
+ #endif
+
+ SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
+
+ SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
+ SCARA_K2 = Linkage_2 * SCARA_S2;
+
+ SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
+ SCARA_psi = atan2(SCARA_S2,SCARA_C2);
+
+ delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
+ delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
+ delta[Z_AXIS] = cartesian[Z_AXIS];
+
+ /*
+ SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
+ SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
+ SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
+
+ SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
+ SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
+
+ SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
+ SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
+ SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
+
+ SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
+ SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
+ SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
+ SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
+ SERIAL_EOL;
+ */
+ }
-#endif
+#endif // SCARA
#ifdef TEMP_STAT_LEDS
@@ -6395,7 +6399,78 @@ void kill()
st_synchronize();
}
}
-#endif
+
+#endif // FILAMENT_RUNOUT_SENSOR
+
+#ifdef FAST_PWM_FAN
+
+ void setPwmFrequency(uint8_t pin, int val) {
+ val &= 0x07;
+ switch (digitalPinToTimer(pin)) {
+
+ #if defined(TCCR0A)
+ case TIMER0A:
+ case TIMER0B:
+ // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
+ // TCCR0B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR1A)
+ case TIMER1A:
+ case TIMER1B:
+ // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+ // TCCR1B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR2)
+ case TIMER2:
+ case TIMER2:
+ TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
+ TCCR2 |= val;
+ break;
+ #endif
+
+ #if defined(TCCR2A)
+ case TIMER2A:
+ case TIMER2B:
+ TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
+ TCCR2B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR3A)
+ case TIMER3A:
+ case TIMER3B:
+ case TIMER3C:
+ TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
+ TCCR3B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR4A)
+ case TIMER4A:
+ case TIMER4B:
+ case TIMER4C:
+ TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
+ TCCR4B |= val;
+ break;
+ #endif
+
+ #if defined(TCCR5A)
+ case TIMER5A:
+ case TIMER5B:
+ case TIMER5C:
+ TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
+ TCCR5B |= val;
+ break;
+ #endif
+
+ }
+ }
+
+#endif // FAST_PWM_FAN
void Stop() {
disable_all_heaters();
@@ -6408,76 +6483,6 @@ void Stop() {
}
}
-#ifdef FAST_PWM_FAN
-void setPwmFrequency(uint8_t pin, int val)
-{
- val &= 0x07;
- switch(digitalPinToTimer(pin))
- {
-
- #if defined(TCCR0A)
- case TIMER0A:
- case TIMER0B:
-// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
-// TCCR0B |= val;
- break;
- #endif
-
- #if defined(TCCR1A)
- case TIMER1A:
- case TIMER1B:
-// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
-// TCCR1B |= val;
- break;
- #endif
-
- #if defined(TCCR2)
- case TIMER2:
- case TIMER2:
- TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
- TCCR2 |= val;
- break;
- #endif
-
- #if defined(TCCR2A)
- case TIMER2A:
- case TIMER2B:
- TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
- TCCR2B |= val;
- break;
- #endif
-
- #if defined(TCCR3A)
- case TIMER3A:
- case TIMER3B:
- case TIMER3C:
- TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
- TCCR3B |= val;
- break;
- #endif
-
- #if defined(TCCR4A)
- case TIMER4A:
- case TIMER4B:
- case TIMER4C:
- TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
- TCCR4B |= val;
- break;
- #endif
-
- #if defined(TCCR5A)
- case TIMER5A:
- case TIMER5B:
- case TIMER5C:
- TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
- TCCR5B |= val;
- break;
- #endif
-
- }
-}
-#endif //FAST_PWM_FAN
-
bool setTargetedHotend(int code){
target_extruder = active_extruder;
if (code_seen('T')) {
diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp
index 29d77048c9..7b00da34ee 100644
--- a/Marlin/stepper.cpp
+++ b/Marlin/stepper.cpp
@@ -1,22 +1,23 @@
-/*
- stepper.c - stepper motor driver: executes motion plans using stepper motors
- Part of Grbl
-
- Copyright (c) 2009-2011 Simen Svale Skogsrud
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see .
-*/
+/**
+ * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
+ * Marlin Firmware
+ *
+ * Derived from Grbl
+ * Copyright (c) 2009-2011 Simen Svale Skogsrud
+ *
+ * Grbl is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * Grbl is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with Grbl. If not, see .
+ */
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
@@ -1109,9 +1110,8 @@ long st_get_position(uint8_t axis) {
#ifdef ENABLE_AUTO_BED_LEVELING
- float st_get_position_mm(uint8_t axis) {
- float steper_position_in_steps = st_get_position(axis);
- return steper_position_in_steps / axis_steps_per_unit[axis];
+ float st_get_position_mm(AxisEnum axis) {
+ return st_get_position(axis) / axis_steps_per_unit[axis];
}
#endif // ENABLE_AUTO_BED_LEVELING
diff --git a/Marlin/stepper.h b/Marlin/stepper.h
index d6c17d60f6..15d814332f 100644
--- a/Marlin/stepper.h
+++ b/Marlin/stepper.h
@@ -67,9 +67,9 @@ void st_set_e_position(const long &e);
long st_get_position(uint8_t axis);
#ifdef ENABLE_AUTO_BED_LEVELING
-// Get current position in mm
-float st_get_position_mm(uint8_t axis);
-#endif //ENABLE_AUTO_BED_LEVELING
+ // Get current position in mm
+ float st_get_position_mm(AxisEnum axis);
+#endif
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.