From 82794fa5f7cf30518d34ea6019fdaa26c3e11b89 Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Mon, 30 Mar 2015 23:25:04 -0700 Subject: [PATCH] Add delta generic not renaming --- .../delta/generic/Configuration_adv.h | 508 ++++++++++++++++++ 1 file changed, 508 insertions(+) create mode 100644 Marlin/example_configurations/delta/generic/Configuration_adv.h diff --git a/Marlin/example_configurations/delta/generic/Configuration_adv.h b/Marlin/example_configurations/delta/generic/Configuration_adv.h new file mode 100644 index 0000000000..abecacec22 --- /dev/null +++ b/Marlin/example_configurations/delta/generic/Configuration_adv.h @@ -0,0 +1,508 @@ +#ifndef CONFIGURATION_ADV_H +#define CONFIGURATION_ADV_H + +#include "Conditionals.h" + +//=========================================================================== +//=============================Thermal Settings ============================ +//=========================================================================== + +#ifdef BED_LIMIT_SWITCHING + #define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS +#endif +#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control + +//// Heating sanity check: +// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature +// If the temperature has not increased at the end of that period, the target temperature is set to zero. +// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature +// differ by at least 2x WATCH_TEMP_INCREASE +//#define WATCH_TEMP_PERIOD 40000 //40 seconds +//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds + +#ifdef PIDTEMP + // this adds an experimental additional term to the heating power, proportional to the extrusion speed. + // if Kc is chosen well, the additional required power due to increased melting should be compensated. + #define PID_ADD_EXTRUSION_RATE + #ifdef PID_ADD_EXTRUSION_RATE + #define DEFAULT_Kc (1) //heating power=Kc*(e_speed) + #endif +#endif + + +//automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode. +//The maximum buffered steps/sec of the extruder motor are called "se". +//You enter the autotemp mode by a M109 S B F +// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp +// you exit the value by any M109 without F* +// Also, if the temperature is set to a value Z2 (yes, it is.. think about it) and the Z adjust would be positive. + // Play a little bit with small adjustments (0.5mm) and check the behaviour. + // The M119 (endstops report) will start reporting the Z2 Endstop as well. + + #define Z_DUAL_ENDSTOPS + + #ifdef Z_DUAL_ENDSTOPS + #define Z2_STEP_PIN E2_STEP_PIN // Stepper to be used to Z2 axis. + #define Z2_DIR_PIN E2_DIR_PIN + #define Z2_ENABLE_PIN E2_ENABLE_PIN + #define Z2_MAX_PIN 36 //Endstop used for Z2 axis. In this case I'm using XMAX in a Rumba Board (pin 36) + const bool Z2_MAX_ENDSTOP_INVERTING = false; + #define DISABLE_XMAX_ENDSTOP //Better to disable the XMAX to avoid conflict. Just rename "XMAX_ENDSTOP" by the endstop you are using for Z2 axis. + #endif + +#endif // Z_DUAL_STEPPER_DRIVERS + +// Same again but for Y Axis. +//#define Y_DUAL_STEPPER_DRIVERS + +// Define if the two Y drives need to rotate in opposite directions +#define INVERT_Y2_VS_Y_DIR true + +// Enable this for dual x-carriage printers. +// A dual x-carriage design has the advantage that the inactive extruder can be parked which +// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage +// allowing faster printing speeds. +//#define DUAL_X_CARRIAGE +#ifdef DUAL_X_CARRIAGE + // Configuration for second X-carriage + // Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop; + // the second x-carriage always homes to the maximum endstop. + #define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage + #define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed + #define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position + #define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position + // However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software + // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops + // without modifying the firmware (through the "M218 T1 X???" command). + // Remember: you should set the second extruder x-offset to 0 in your slicer. + + // Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h) + #define X2_ENABLE_PIN 29 + #define X2_STEP_PIN 25 + #define X2_DIR_PIN 23 + + // There are a few selectable movement modes for dual x-carriages using M605 S + // Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results + // as long as it supports dual x-carriages. (M605 S0) + // Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so + // that additional slicer support is not required. (M605 S1) + // Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all + // actions of the first x-carriage. This allows the printer to print 2 arbitrary items at + // once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm]) + + // This is the default power-up mode which can be later using M605. + #define DEFAULT_DUAL_X_CARRIAGE_MODE 0 + + // Default settings in "Auto-park Mode" + #define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder + #define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder + + // Default x offset in duplication mode (typically set to half print bed width) + #define DEFAULT_DUPLICATION_X_OFFSET 100 + +#endif //DUAL_X_CARRIAGE + +//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again: +#define X_HOME_RETRACT_MM 5 +#define Y_HOME_RETRACT_MM 5 +#define Z_HOME_RETRACT_MM 5 // deltas need the same for all three axis +#define HOMING_BUMP_DIVISOR {10, 10, 20} // Re-Bump Speed Divisor (Divides the Homing Feedrate) +//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially. + +#define AXIS_RELATIVE_MODES {false, false, false, false} + +//By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step. +#define INVERT_X_STEP_PIN false +#define INVERT_Y_STEP_PIN false +#define INVERT_Z_STEP_PIN false +#define INVERT_E_STEP_PIN false + +// Default stepper release if idle. Set to 0 to deactivate. +#define DEFAULT_STEPPER_DEACTIVE_TIME 60 + +#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate +#define DEFAULT_MINTRAVELFEEDRATE 0.0 + +#ifdef ULTIPANEL + #define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel + #define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder +#endif + +// minimum time in microseconds that a movement needs to take if the buffer is emptied. +#define DEFAULT_MINSEGMENTTIME 20000 + +// If defined the movements slow down when the look ahead buffer is only half full +// (don't use SLOWDOWN with DELTA because DELTA generates hundreds of segments per second) +//#define SLOWDOWN + +// Frequency limit +// See nophead's blog for more info +// Not working O +//#define XY_FREQUENCY_LIMIT 15 + +// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end +// of the buffer and all stops. This should not be much greater than zero and should only be changed +// if unwanted behavior is observed on a user's machine when running at very slow speeds. +#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec) + +// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU. +#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16] + +// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards) +#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A) + +// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro +//#define DIGIPOT_I2C +// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8 +#define DIGIPOT_I2C_NUM_CHANNELS 8 +// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS +#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} + +//=========================================================================== +//=============================Additional Features=========================== +//=========================================================================== + +#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly +#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value +#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value +//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value + +//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/ +#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again + +#ifdef SDSUPPORT + + // If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted + // You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT + // in the pins.h file. When using a push button pulling the pin to ground this will need inverted. This setting should + // be commented out otherwise + #define SDCARDDETECTINVERTED + + #define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers? + #define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place. + + #define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order. + // if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that. + // using: + //#define MENU_ADDAUTOSTART + + // Show a progress bar on HD44780 LCDs for SD printing + //#define LCD_PROGRESS_BAR + + #ifdef LCD_PROGRESS_BAR + // Amount of time (ms) to show the bar + #define PROGRESS_BAR_BAR_TIME 2000 + // Amount of time (ms) to show the status message + #define PROGRESS_BAR_MSG_TIME 3000 + // Amount of time (ms) to retain the status message (0=forever) + #define PROGRESS_MSG_EXPIRE 0 + // Enable this to show messages for MSG_TIME then hide them + //#define PROGRESS_MSG_ONCE + #endif + +#endif // SDSUPPORT + +// The hardware watchdog should reset the microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation. +//#define USE_WATCHDOG + +#ifdef USE_WATCHDOG +// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on. +// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset. +// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled. +//#define WATCHDOG_RESET_MANUAL +#endif + +// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled. +//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED + +// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process +// it can e.g. be used to change z-positions in the print startup phase in real-time +// does not respect endstops! +//#define BABYSTEPPING +#ifdef BABYSTEPPING + #define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions + #define BABYSTEP_INVERT_Z false //true for inverse movements in Z + #define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements +#endif + +// extruder advance constant (s2/mm3) +// +// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2 +// +// Hooke's law says: force = k * distance +// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant +// so: v ^ 2 is proportional to number of steps we advance the extruder +//#define ADVANCE + +#ifdef ADVANCE + #define EXTRUDER_ADVANCE_K .0 + #define D_FILAMENT 2.85 + #define STEPS_MM_E 836 +#endif + +// Arc interpretation settings: +#define MM_PER_ARC_SEGMENT 1 +#define N_ARC_CORRECTION 25 + +const unsigned int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement + +// Control heater 0 and heater 1 in parallel. +//#define HEATERS_PARALLEL + +//=========================================================================== +//=============================Buffers ============================ +//=========================================================================== + +// The number of linear motions that can be in the plan at any give time. +// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering. +#ifdef SDSUPPORT + #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller +#else + #define BLOCK_BUFFER_SIZE 16 // maximize block buffer +#endif + + +//The ASCII buffer for receiving from the serial: +#define MAX_CMD_SIZE 96 +#define BUFSIZE 4 + + +// Firmware based and LCD controlled retract +// M207 and M208 can be used to define parameters for the retraction. +// The retraction can be called by the slicer using G10 and G11 +// until then, intended retractions can be detected by moves that only extrude and the direction. +// the moves are than replaced by the firmware controlled ones. + +// #define FWRETRACT //ONLY PARTIALLY TESTED +#ifdef FWRETRACT + #define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt + #define RETRACT_LENGTH 3 //default retract length (positive mm) + #define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change + #define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s) + #define RETRACT_ZLIFT 0 //default retract Z-lift + #define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering) + #define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change) + #define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s) +#endif + +// Add support for experimental filament exchange support M600; requires display +#ifdef ULTIPANEL + //#define FILAMENTCHANGEENABLE + #ifdef FILAMENTCHANGEENABLE + #define FILAMENTCHANGE_XPOS 3 + #define FILAMENTCHANGE_YPOS 3 + #define FILAMENTCHANGE_ZADD 10 + #define FILAMENTCHANGE_FIRSTRETRACT -2 + #define FILAMENTCHANGE_FINALRETRACT -100 + #endif +#endif + +/******************************************************************************\ + * enable this section if you have TMC26X motor drivers. + * you need to import the TMC26XStepper library into the arduino IDE for this + ******************************************************************************/ + +//#define HAVE_TMCDRIVER +#ifdef HAVE_TMCDRIVER + +// #define X_IS_TMC + #define X_MAX_CURRENT 1000 //in mA + #define X_SENSE_RESISTOR 91 //in mOhms + #define X_MICROSTEPS 16 //number of microsteps + +// #define X2_IS_TMC + #define X2_MAX_CURRENT 1000 //in mA + #define X2_SENSE_RESISTOR 91 //in mOhms + #define X2_MICROSTEPS 16 //number of microsteps + +// #define Y_IS_TMC + #define Y_MAX_CURRENT 1000 //in mA + #define Y_SENSE_RESISTOR 91 //in mOhms + #define Y_MICROSTEPS 16 //number of microsteps + +// #define Y2_IS_TMC + #define Y2_MAX_CURRENT 1000 //in mA + #define Y2_SENSE_RESISTOR 91 //in mOhms + #define Y2_MICROSTEPS 16 //number of microsteps + +// #define Z_IS_TMC + #define Z_MAX_CURRENT 1000 //in mA + #define Z_SENSE_RESISTOR 91 //in mOhms + #define Z_MICROSTEPS 16 //number of microsteps + +// #define Z2_IS_TMC + #define Z2_MAX_CURRENT 1000 //in mA + #define Z2_SENSE_RESISTOR 91 //in mOhms + #define Z2_MICROSTEPS 16 //number of microsteps + +// #define E0_IS_TMC + #define E0_MAX_CURRENT 1000 //in mA + #define E0_SENSE_RESISTOR 91 //in mOhms + #define E0_MICROSTEPS 16 //number of microsteps + +// #define E1_IS_TMC + #define E1_MAX_CURRENT 1000 //in mA + #define E1_SENSE_RESISTOR 91 //in mOhms + #define E1_MICROSTEPS 16 //number of microsteps + +// #define E2_IS_TMC + #define E2_MAX_CURRENT 1000 //in mA + #define E2_SENSE_RESISTOR 91 //in mOhms + #define E2_MICROSTEPS 16 //number of microsteps + +// #define E3_IS_TMC + #define E3_MAX_CURRENT 1000 //in mA + #define E3_SENSE_RESISTOR 91 //in mOhms + #define E3_MICROSTEPS 16 //number of microsteps + +#endif + +/******************************************************************************\ + * enable this section if you have L6470 motor drivers. + * you need to import the L6470 library into the arduino IDE for this + ******************************************************************************/ + +//#define HAVE_L6470DRIVER +#ifdef HAVE_L6470DRIVER + +// #define X_IS_L6470 + #define X_MICROSTEPS 16 //number of microsteps + #define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define X2_IS_L6470 + #define X2_MICROSTEPS 16 //number of microsteps + #define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define Y_IS_L6470 + #define Y_MICROSTEPS 16 //number of microsteps + #define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define Y2_IS_L6470 + #define Y2_MICROSTEPS 16 //number of microsteps + #define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define Z_IS_L6470 + #define Z_MICROSTEPS 16 //number of microsteps + #define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define Z2_IS_L6470 + #define Z2_MICROSTEPS 16 //number of microsteps + #define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define E0_IS_L6470 + #define E0_MICROSTEPS 16 //number of microsteps + #define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define E1_IS_L6470 + #define E1_MICROSTEPS 16 //number of microsteps + #define E1_MICROSTEPS 16 //number of microsteps + #define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define E2_IS_L6470 + #define E2_MICROSTEPS 16 //number of microsteps + #define E2_MICROSTEPS 16 //number of microsteps + #define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +// #define E3_IS_L6470 + #define E3_MICROSTEPS 16 //number of microsteps + #define E3_MICROSTEPS 16 //number of microsteps + #define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high + #define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off + #define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall + +#endif + +#include "Conditionals.h" +#include "SanityCheck.h" + +#endif //CONFIGURATION_ADV_H