MSC Support for STM32 + SDIO boards -> SKR 2 (#22354)

This commit is contained in:
Victor Oliveira 2021-07-14 02:34:18 -03:00 committed by Scott Lahteine
parent 8cf15e8546
commit 8334e92b6f
6 changed files with 276 additions and 281 deletions

View File

@ -28,319 +28,296 @@
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#if NONE(STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx) // use local drivers
#error "ERROR - Only STM32F103xE, STM32F103xG, STM32F4xx or STM32F7xx CPUs supported" #if defined(STM32F103xE) || defined(STM32F103xG)
#include <stm32f1xx_hal_rcc_ex.h>
#include <stm32f1xx_hal_sd.h>
#elif defined(STM32F4xx)
#include <stm32f4xx_hal_rcc.h>
#include <stm32f4xx_hal_dma.h>
#include <stm32f4xx_hal_gpio.h>
#include <stm32f4xx_hal_sd.h>
#elif defined(STM32F7xx)
#include <stm32f7xx_hal_rcc.h>
#include <stm32f7xx_hal_dma.h>
#include <stm32f7xx_hal_gpio.h>
#include <stm32f7xx_hal_sd.h>
#else
#error "SDIO only supported with STM32F103xE, STM32F103xG, STM32F4xx, or STM32F7xx."
#endif #endif
#if HAS_SD_HOST_DRIVE // Fixed
#define SDIO_D0_PIN PC8
#define SDIO_D1_PIN PC9
#define SDIO_D2_PIN PC10
#define SDIO_D3_PIN PC11
#define SDIO_CK_PIN PC12
#define SDIO_CMD_PIN PD2
// use USB drivers SD_HandleTypeDef hsd; // create SDIO structure
// F4 supports one DMA for RX and another for TX, but Marlin will never
// do read and write at same time, so we use the same DMA for both.
DMA_HandleTypeDef hdma_sdio;
extern "C" { /*
int8_t SD_MSC_Read(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len); SDIO_INIT_CLK_DIV is 118
int8_t SD_MSC_Write(uint8_t lun, uint8_t *buf, uint32_t blk_addr, uint16_t blk_len); SDIO clock frequency is 48MHz / (TRANSFER_CLOCK_DIV + 2)
extern SD_HandleTypeDef hsd; SDIO init clock frequency should not exceed 400KHz = 48MHz / (118 + 2)
}
bool SDIO_Init() { Default TRANSFER_CLOCK_DIV is 2 (118 / 40)
return hsd.State == HAL_SD_STATE_READY; // return pass/fail status Default SDIO clock frequency is 48MHz / (2 + 2) = 12 MHz
} This might be too fast for stable SDIO operations
bool SDIO_ReadBlock(uint32_t block, uint8_t *src) { MKS Robin board seems to have stable SDIO with BusWide 1bit and ClockDiv 8 i.e. 4.8MHz SDIO clock frequency
int8_t status = SD_MSC_Read(0, (uint8_t*)src, block, 1); // read one 512 byte block Additional testing is required as there are clearly some 4bit initialization problems
return (bool) status; */
}
bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) { #ifndef USBD_OK
int8_t status = SD_MSC_Write(0, (uint8_t*)src, block, 1); // write one 512 byte block #define USBD_OK 0
return (bool) status; #endif
}
#else // !USBD_USE_CDC_COMPOSITE // Target Clock, configurable. Default is 18MHz, from STM32F1
#ifndef SDIO_CLOCK
#define SDIO_CLOCK 18000000 // 18 MHz
#endif
// use local drivers // SDIO retries, configurable. Default is 3, from STM32F1
#if defined(STM32F103xE) || defined(STM32F103xG) #ifndef SDIO_READ_RETRIES
#include <stm32f1xx_hal_rcc_ex.h> #define SDIO_READ_RETRIES 3
#include <stm32f1xx_hal_sd.h> #endif
#elif defined(STM32F4xx)
#include <stm32f4xx_hal_rcc.h> // SDIO Max Clock (naming from STM Manual, don't change)
#include <stm32f4xx_hal_dma.h> #define SDIOCLK 48000000
#include <stm32f4xx_hal_gpio.h>
#include <stm32f4xx_hal_sd.h> static uint32_t clock_to_divider(uint32_t clk) {
#elif defined(STM32F7xx) // limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals
#include <stm32f7xx_hal_rcc.h> // Also limited to no more than 48Mhz (SDIOCLK).
#include <stm32f7xx_hal_dma.h> const uint32_t pclk2 = HAL_RCC_GetPCLK2Freq();
#include <stm32f7xx_hal_gpio.h> clk = min(clk, (uint32_t)(pclk2 * 8 / 3));
#include <stm32f7xx_hal_sd.h> clk = min(clk, (uint32_t)SDIOCLK);
#else // Round up divider, so we don't run the card over the speed supported,
#error "ERROR - Only STM32F103xE, STM32F103xG, STM32F4xx or STM32F7xx CPUs supported" // and subtract by 2, because STM32 will add 2, as written in the manual:
// SDIO_CK frequency = SDIOCLK / [CLKDIV + 2]
return pclk2 / clk + (pclk2 % clk != 0) - 2;
}
void go_to_transfer_speed() {
/* Default SDIO peripheral configuration for SD card initialization */
hsd.Init.ClockEdge = hsd.Init.ClockEdge;
hsd.Init.ClockBypass = hsd.Init.ClockBypass;
hsd.Init.ClockPowerSave = hsd.Init.ClockPowerSave;
hsd.Init.BusWide = hsd.Init.BusWide;
hsd.Init.HardwareFlowControl = hsd.Init.HardwareFlowControl;
hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK);
/* Initialize SDIO peripheral interface with default configuration */
SDIO_Init(hsd.Instance, hsd.Init);
}
void SD_LowLevel_Init(void) {
uint32_t tempreg;
__HAL_RCC_GPIOC_CLK_ENABLE(); //enable GPIO clocks
__HAL_RCC_GPIOD_CLK_ENABLE(); //enable GPIO clocks
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = 1; //GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
#if DISABLED(STM32F1xx)
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
#endif #endif
// Fixed GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_12; // D0 & SCK
#define SDIO_D0_PIN PC8 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
#define SDIO_D1_PIN PC9
#define SDIO_D2_PIN PC10
#define SDIO_D3_PIN PC11
#define SDIO_CK_PIN PC12
#define SDIO_CMD_PIN PD2
SD_HandleTypeDef hsd; // create SDIO structure #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus
// F4 supports one DMA for RX and another for TX, but Marlin will never GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11; // D1-D3
// do read and write at same time, so we use the same DMA for both.
DMA_HandleTypeDef hdma_sdio;
/*
SDIO_INIT_CLK_DIV is 118
SDIO clock frequency is 48MHz / (TRANSFER_CLOCK_DIV + 2)
SDIO init clock frequency should not exceed 400KHz = 48MHz / (118 + 2)
Default TRANSFER_CLOCK_DIV is 2 (118 / 40)
Default SDIO clock frequency is 48MHz / (2 + 2) = 12 MHz
This might be too fast for stable SDIO operations
MKS Robin board seems to have stable SDIO with BusWide 1bit and ClockDiv 8 i.e. 4.8MHz SDIO clock frequency
Additional testing is required as there are clearly some 4bit initialization problems
*/
#ifndef USBD_OK
#define USBD_OK 0
#endif
// Target Clock, configurable. Default is 18MHz, from STM32F1
#ifndef SDIO_CLOCK
#define SDIO_CLOCK 18000000 // 18 MHz
#endif
// SDIO retries, configurable. Default is 3, from STM32F1
#ifndef SDIO_READ_RETRIES
#define SDIO_READ_RETRIES 3
#endif
// SDIO Max Clock (naming from STM Manual, don't change)
#define SDIOCLK 48000000
static uint32_t clock_to_divider(uint32_t clk) {
// limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals
// Also limited to no more than 48Mhz (SDIOCLK).
const uint32_t pclk2 = HAL_RCC_GetPCLK2Freq();
clk = min(clk, (uint32_t)(pclk2 * 8 / 3));
clk = min(clk, (uint32_t)SDIOCLK);
// Round up divider, so we don't run the card over the speed supported,
// and subtract by 2, because STM32 will add 2, as written in the manual:
// SDIO_CK frequency = SDIOCLK / [CLKDIV + 2]
return pclk2 / clk + (pclk2 % clk != 0) - 2;
}
void go_to_transfer_speed() {
/* Default SDIO peripheral configuration for SD card initialization */
hsd.Init.ClockEdge = hsd.Init.ClockEdge;
hsd.Init.ClockBypass = hsd.Init.ClockBypass;
hsd.Init.ClockPowerSave = hsd.Init.ClockPowerSave;
hsd.Init.BusWide = hsd.Init.BusWide;
hsd.Init.HardwareFlowControl = hsd.Init.HardwareFlowControl;
hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK);
/* Initialize SDIO peripheral interface with default configuration */
SDIO_Init(hsd.Instance, hsd.Init);
}
void SD_LowLevel_Init(void) {
uint32_t tempreg;
__HAL_RCC_GPIOC_CLK_ENABLE(); //enable GPIO clocks
__HAL_RCC_GPIOD_CLK_ENABLE(); //enable GPIO clocks
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = 1; //GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
#if DISABLED(STM32F1xx)
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
#endif
GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_12; // D0 & SCK
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
#endif
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus // Configure PD.02 CMD line
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11; // D1-D3 GPIO_InitStruct.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
#endif
// Configure PD.02 CMD line // Setup DMA
GPIO_InitStruct.Pin = GPIO_PIN_2; #if defined(STM32F1xx)
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); hdma_sdio.Init.Mode = DMA_NORMAL;
hdma_sdio.Instance = DMA2_Channel4;
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);
#elif defined(STM32F4xx)
hdma_sdio.Init.Mode = DMA_PFCTRL;
hdma_sdio.Instance = DMA2_Stream3;
hdma_sdio.Init.Channel = DMA_CHANNEL_4;
hdma_sdio.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sdio.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sdio.Init.MemBurst = DMA_MBURST_INC4;
hdma_sdio.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
#endif
HAL_NVIC_EnableIRQ(SDIO_IRQn);
hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
__HAL_LINKDMA(&hsd, hdmarx, hdma_sdio);
__HAL_LINKDMA(&hsd, hdmatx, hdma_sdio);
// Setup DMA #if defined(STM32F1xx)
#if defined(STM32F1xx) __HAL_RCC_SDIO_CLK_ENABLE();
hdma_sdio.Init.Mode = DMA_NORMAL; __HAL_RCC_DMA2_CLK_ENABLE();
hdma_sdio.Instance = DMA2_Channel4; #else
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn); __HAL_RCC_SDIO_FORCE_RESET();
#elif defined(STM32F4xx) delay(2);
hdma_sdio.Init.Mode = DMA_PFCTRL; __HAL_RCC_SDIO_RELEASE_RESET();
hdma_sdio.Instance = DMA2_Stream3; delay(2);
hdma_sdio.Init.Channel = DMA_CHANNEL_4; __HAL_RCC_SDIO_CLK_ENABLE();
hdma_sdio.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sdio.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sdio.Init.MemBurst = DMA_MBURST_INC4;
hdma_sdio.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
#endif
HAL_NVIC_EnableIRQ(SDIO_IRQn);
hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
__HAL_LINKDMA(&hsd, hdmarx, hdma_sdio);
__HAL_LINKDMA(&hsd, hdmatx, hdma_sdio);
#if defined(STM32F1xx) __HAL_RCC_DMA2_FORCE_RESET();
__HAL_RCC_SDIO_CLK_ENABLE(); delay(2);
__HAL_RCC_DMA2_CLK_ENABLE(); __HAL_RCC_DMA2_RELEASE_RESET();
#else delay(2);
__HAL_RCC_SDIO_FORCE_RESET(); __HAL_RCC_DMA2_CLK_ENABLE();
delay(2); #endif
__HAL_RCC_SDIO_RELEASE_RESET();
delay(2);
__HAL_RCC_SDIO_CLK_ENABLE();
__HAL_RCC_DMA2_FORCE_RESET(); //Initialize the SDIO (with initial <400Khz Clock)
delay(2); tempreg = 0; //Reset value
__HAL_RCC_DMA2_RELEASE_RESET(); tempreg |= SDIO_CLKCR_CLKEN; // Clock enabled
delay(2); tempreg |= SDIO_INIT_CLK_DIV; // Clock Divider. Clock = 48000 / (118 + 2) = 400Khz
__HAL_RCC_DMA2_CLK_ENABLE(); // Keep the rest at 0 => HW_Flow Disabled, Rising Clock Edge, Disable CLK ByPass, Bus Width = 0, Power save Disable
#endif SDIO->CLKCR = tempreg;
//Initialize the SDIO (with initial <400Khz Clock) // Power up the SDIO
tempreg = 0; //Reset value SDIO_PowerState_ON(SDIO);
tempreg |= SDIO_CLKCR_CLKEN; // Clock enabled hsd.Instance = SDIO;
tempreg |= SDIO_INIT_CLK_DIV; // Clock Divider. Clock = 48000 / (118 + 2) = 400Khz }
// Keep the rest at 0 => HW_Flow Disabled, Rising Clock Edge, Disable CLK ByPass, Bus Width = 0, Power save Disable
SDIO->CLKCR = tempreg;
// Power up the SDIO void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { // application specific init
SDIO_PowerState_ON(SDIO); UNUSED(hsd); // Prevent unused argument(s) compilation warning
hsd.Instance = SDIO; __HAL_RCC_SDIO_CLK_ENABLE(); // turn on SDIO clock
}
bool SDIO_Init() {
uint8_t retryCnt = SDIO_READ_RETRIES;
bool status;
hsd.Instance = SDIO;
hsd.State = HAL_SD_STATE_RESET;
SD_LowLevel_Init();
uint8_t retry_Cnt = retryCnt;
for (;;) {
TERN_(USE_WATCHDOG, HAL_watchdog_refresh());
status = (bool) HAL_SD_Init(&hsd);
if (!status) break;
if (!--retry_Cnt) return false; // return failing status if retries are exhausted
} }
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { // application specific init go_to_transfer_speed();
UNUSED(hsd); // Prevent unused argument(s) compilation warning
__HAL_RCC_SDIO_CLK_ENABLE(); // turn on SDIO clock
}
bool SDIO_Init() { #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // go to 4 bit wide mode if pins are defined
uint8_t retryCnt = SDIO_READ_RETRIES; retry_Cnt = retryCnt;
bool status;
hsd.Instance = SDIO;
hsd.State = HAL_SD_STATE_RESET;
SD_LowLevel_Init();
uint8_t retry_Cnt = retryCnt;
for (;;) { for (;;) {
TERN_(USE_WATCHDOG, HAL_watchdog_refresh()); TERN_(USE_WATCHDOG, HAL_watchdog_refresh());
status = (bool) HAL_SD_Init(&hsd); if (!HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B)) break; // some cards are only 1 bit wide so a pass here is not required
if (!status) break; if (!--retry_Cnt) break;
if (!--retry_Cnt) return false; // return failing status if retries are exhausted
} }
if (!retry_Cnt) { // wide bus failed, go back to one bit wide mode
go_to_transfer_speed(); hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET
SD_LowLevel_Init();
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // go to 4 bit wide mode if pins are defined
retry_Cnt = retryCnt; retry_Cnt = retryCnt;
for (;;) { for (;;) {
TERN_(USE_WATCHDOG, HAL_watchdog_refresh()); TERN_(USE_WATCHDOG, HAL_watchdog_refresh());
if (!HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B)) break; // some cards are only 1 bit wide so a pass here is not required status = (bool) HAL_SD_Init(&hsd);
if (!--retry_Cnt) break; if (!status) break;
if (!--retry_Cnt) return false; // return failing status if retries are exhausted
} }
if (!retry_Cnt) { // wide bus failed, go back to one bit wide mode go_to_transfer_speed();
hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET }
SD_LowLevel_Init(); #endif
retry_Cnt = retryCnt;
for (;;) {
TERN_(USE_WATCHDOG, HAL_watchdog_refresh());
status = (bool) HAL_SD_Init(&hsd);
if (!status) break;
if (!--retry_Cnt) return false; // return failing status if retries are exhausted
}
go_to_transfer_speed();
}
#endif
return true; return true;
}
static bool SDIO_ReadWriteBlock_DMA(uint32_t block, const uint8_t *src, uint8_t *dst) {
if (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) return false;
TERN_(USE_WATCHDOG, HAL_watchdog_refresh());
HAL_StatusTypeDef ret;
if (src) {
hdma_sdio.Init.Direction = DMA_MEMORY_TO_PERIPH;
HAL_DMA_Init(&hdma_sdio);
ret = HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t *)src, block, 1);
}
else {
hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY;
HAL_DMA_Init(&hdma_sdio);
ret = HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t *)dst, block, 1);
} }
static bool SDIO_ReadWriteBlock_DMA(uint32_t block, const uint8_t *src, uint8_t *dst) { if (ret != HAL_OK) {
if (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) return false; HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio);
return false;
}
TERN_(USE_WATCHDOG, HAL_watchdog_refresh()); millis_t timeout = millis() + 500;
// Wait the transfer
HAL_StatusTypeDef ret; while (hsd.State != HAL_SD_STATE_READY) {
if (src) { if (ELAPSED(millis(), timeout)) {
hdma_sdio.Init.Direction = DMA_MEMORY_TO_PERIPH;
HAL_DMA_Init(&hdma_sdio);
ret = HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t *)src, block, 1);
}
else {
hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY;
HAL_DMA_Init(&hdma_sdio);
ret = HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t *)dst, block, 1);
}
if (ret != HAL_OK) {
HAL_DMA_Abort_IT(&hdma_sdio); HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio); HAL_DMA_DeInit(&hdma_sdio);
return false; return false;
} }
millis_t timeout = millis() + 500;
// Wait the transfer
while (hsd.State != HAL_SD_STATE_READY) {
if (ELAPSED(millis(), timeout)) {
HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio);
return false;
}
}
while (__HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TC_FLAG_INDEX(&hdma_sdio)) != 0
|| __HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TE_FLAG_INDEX(&hdma_sdio)) != 0) { /* nada */ }
HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio);
timeout = millis() + 500;
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) if (ELAPSED(millis(), timeout)) return false;
return true;
} }
bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) { while (__HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TC_FLAG_INDEX(&hdma_sdio)) != 0
uint8_t retries = SDIO_READ_RETRIES; || __HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TE_FLAG_INDEX(&hdma_sdio)) != 0) { /* nada */ }
while (retries--) if (SDIO_ReadWriteBlock_DMA(block, NULL, dst)) return true;
return false;
}
bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) { HAL_DMA_Abort_IT(&hdma_sdio);
uint8_t retries = SDIO_READ_RETRIES; HAL_DMA_DeInit(&hdma_sdio);
while (retries--) if (SDIO_ReadWriteBlock_DMA(block, src, NULL)) return true;
return false;
}
#if defined(STM32F1xx) timeout = millis() + 500;
#define DMA_IRQ_HANDLER DMA2_Channel4_5_IRQHandler while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) if (ELAPSED(millis(), timeout)) return false;
#elif defined(STM32F4xx)
#define DMA_IRQ_HANDLER DMA2_Stream3_IRQHandler
#else
#error "Unknown STM32 architecture."
#endif
extern "C" void SDIO_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); } return true;
extern "C" void DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&hdma_sdio); } }
bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) {
uint8_t retries = SDIO_READ_RETRIES;
while (retries--) if (SDIO_ReadWriteBlock_DMA(block, NULL, dst)) return true;
return false;
}
bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) {
uint8_t retries = SDIO_READ_RETRIES;
while (retries--) if (SDIO_ReadWriteBlock_DMA(block, src, NULL)) return true;
return false;
}
bool SDIO_IsReady() {
return hsd.State == HAL_SD_STATE_READY;
}
uint32_t SDIO_GetCardSize() {
return (uint32_t)(hsd.SdCard.BlockNbr) * (hsd.SdCard.BlockSize);
}
#if defined(STM32F1xx)
#define DMA_IRQ_HANDLER DMA2_Channel4_5_IRQHandler
#elif defined(STM32F4xx)
#define DMA_IRQ_HANDLER DMA2_Stream3_IRQHandler
#else
#error "Unknown STM32 architecture."
#endif
extern "C" void SDIO_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); }
extern "C" void DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&hdma_sdio); }
#endif // !USBD_USE_CDC_COMPOSITE
#endif // SDIO_SUPPORT #endif // SDIO_SUPPORT
#endif // ARDUINO_ARCH_STM32 && !STM32GENERIC && !MAPLE_STM32F1 #endif // ARDUINO_ARCH_STM32 && !STM32GENERIC && !MAPLE_STM32F1

View File

@ -19,10 +19,10 @@
#if HAS_SD_HOST_DRIVE #if HAS_SD_HOST_DRIVE
#include "../shared/Marduino.h"
#include "msc_sd.h" #include "msc_sd.h"
#include "usbd_core.h" #include "usbd_core.h"
#include "../shared/Marduino.h"
#include "../../sd/cardreader.h" #include "../../sd/cardreader.h"
#include <USB.h> #include <USB.h>

View File

@ -184,6 +184,10 @@ bool SDIO_WriteBlock(uint32_t blockAddress, const uint8_t *data) {
inline uint32_t SDIO_GetCardState() { return SDIO_CmdSendStatus(SdCard.RelCardAdd << 16U) ? (SDIO_GetResponse(SDIO_RESP1) >> 9U) & 0x0FU : SDIO_CARD_ERROR; } inline uint32_t SDIO_GetCardState() { return SDIO_CmdSendStatus(SdCard.RelCardAdd << 16U) ? (SDIO_GetResponse(SDIO_RESP1) >> 9U) & 0x0FU : SDIO_CARD_ERROR; }
// No F1 board with SDIO + MSC using Maple, that I aware of...
bool SDIO_IsReady() { return true; }
uint32_t SDIO_GetCardSize() { return 0; }
// ------------------------ // ------------------------
// SD Commands and Responses // SD Commands and Responses
// ------------------------ // ------------------------

View File

@ -594,9 +594,9 @@
#elif MB(BTT_E3_RRF) #elif MB(BTT_E3_RRF)
#include "stm32f4/pins_BTT_E3_RRF.h" // STM32F4 env:BIGTREE_E3_RRF #include "stm32f4/pins_BTT_E3_RRF.h" // STM32F4 env:BIGTREE_E3_RRF
#elif MB(BTT_SKR_V2_0_REV_A) #elif MB(BTT_SKR_V2_0_REV_A)
#include "stm32f4/pins_BTT_SKR_V2_0_REV_A.h" // STM32F4 env:BIGTREE_SKR_2 #include "stm32f4/pins_BTT_SKR_V2_0_REV_A.h" // STM32F4 env:BIGTREE_SKR_2 env:BIGTREE_SKR_2_USB
#elif MB(BTT_SKR_V2_0_REV_B) #elif MB(BTT_SKR_V2_0_REV_B)
#include "stm32f4/pins_BTT_SKR_V2_0_REV_B.h" // STM32F4 env:BIGTREE_SKR_2 #include "stm32f4/pins_BTT_SKR_V2_0_REV_B.h" // STM32F4 env:BIGTREE_SKR_2 env:BIGTREE_SKR_2_USB
#elif MB(BTT_OCTOPUS_V1_0) #elif MB(BTT_OCTOPUS_V1_0)
#include "stm32f4/pins_BTT_OCTOPUS_V1_0.h" // STM32F4 env:BIGTREE_OCTOPUS_V1 env:BIGTREE_OCTOPUS_V1_USB #include "stm32f4/pins_BTT_OCTOPUS_V1_0.h" // STM32F4 env:BIGTREE_OCTOPUS_V1 env:BIGTREE_OCTOPUS_V1_USB
#elif MB(BTT_OCTOPUS_V1_1) #elif MB(BTT_OCTOPUS_V1_1)

View File

@ -29,6 +29,8 @@
bool SDIO_Init(); bool SDIO_Init();
bool SDIO_ReadBlock(uint32_t block, uint8_t *dst); bool SDIO_ReadBlock(uint32_t block, uint8_t *dst);
bool SDIO_WriteBlock(uint32_t block, const uint8_t *src); bool SDIO_WriteBlock(uint32_t block, const uint8_t *src);
bool SDIO_IsReady();
uint32_t SDIO_GetCardSize();
class DiskIODriver_SDIO : public DiskIODriver { class DiskIODriver_SDIO : public DiskIODriver {
public: public:
@ -36,20 +38,22 @@ class DiskIODriver_SDIO : public DiskIODriver {
bool readCSD(csd_t *csd) override { return false; } bool readCSD(csd_t *csd) override { return false; }
bool readStart(const uint32_t block) override { return false; } bool readStart(const uint32_t block) override { curBlock = block; return true; }
bool readData(uint8_t *dst) override { return false; } bool readData(uint8_t *dst) override { return readBlock(curBlock++, dst); }
bool readStop() override { return false; } bool readStop() override { curBlock = -1; return true; }
bool writeStart(const uint32_t block, const uint32_t) override { return false; } bool writeStart(const uint32_t block, const uint32_t) override { curBlock = block; return true; }
bool writeData(const uint8_t *src) override { return false; } bool writeData(const uint8_t *src) override { return writeBlock(curBlock++, src); }
bool writeStop() override { return false; } bool writeStop() override { curBlock = -1; return true; }
bool readBlock(uint32_t block, uint8_t *dst) override { return SDIO_ReadBlock(block, dst); } bool readBlock(uint32_t block, uint8_t *dst) override { return SDIO_ReadBlock(block, dst); }
bool writeBlock(uint32_t block, const uint8_t *src) override { return SDIO_WriteBlock(block, src); } bool writeBlock(uint32_t block, const uint8_t *src) override { return SDIO_WriteBlock(block, src); }
uint32_t cardSize() override { return 0; } uint32_t cardSize() override { return SDIO_GetCardSize(); }
bool isReady() override { return true; } bool isReady() override { return SDIO_IsReady(); }
void idle() override {} void idle() override {}
private:
uint32_t curBlock;
}; };

View File

@ -243,6 +243,16 @@ build_flags = ${stm_flash_drive.build_flags}
-DUSE_USBHOST_HS -DUSE_USB_HS_IN_FS -DUSBD_IRQ_PRIO=5 -DUSBD_IRQ_SUBPRIO=6 -DUSE_USBHOST_HS -DUSE_USB_HS_IN_FS -DUSBD_IRQ_PRIO=5 -DUSBD_IRQ_SUBPRIO=6
-DHSE_VALUE=8000000U -DHAL_SD_MODULE_ENABLED -DHSE_VALUE=8000000U -DHAL_SD_MODULE_ENABLED
#
# BigTreeTech SKR V2.0 (STM32F407VGT6 ARM Cortex-M4) with USB Media Share Support
#
[env:BIGTREE_SKR_2_USB]
platform = ${common_stm32.platform}
extends = env:BIGTREE_SKR_2
platform_packages = ${stm_flash_drive.platform_packages}
build_unflags = -DUSBD_USE_CDC
build_flags = ${env:BIGTREE_SKR_2.build_flags} -DUSBD_USE_CDC_MSC
# #
# BigTreeTech Octopus V1.0/1.1 (STM32F446ZET6 ARM Cortex-M4) # BigTreeTech Octopus V1.0/1.1 (STM32F446ZET6 ARM Cortex-M4)
# #