commit
8613a74443
@ -8,7 +8,7 @@
|
||||
//===========================================================================
|
||||
//============================= DELTA Printer ===============================
|
||||
//===========================================================================
|
||||
// For a Delta printer rplace the configuration files wilth the files in the
|
||||
// For a Delta printer replace the configuration files with the files in the
|
||||
// example_configurations/delta directory.
|
||||
//
|
||||
|
||||
@ -55,6 +55,7 @@
|
||||
// 68 = Azteeg X3 Pro
|
||||
// 7 = Ultimaker
|
||||
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
|
||||
// 72 = Ultimainboard 2.x (Uses TEMP_SENSOR 20)
|
||||
// 77 = 3Drag Controller
|
||||
// 8 = Teensylu
|
||||
// 80 = Rumba
|
||||
@ -67,7 +68,7 @@
|
||||
// 702= Minitronics v1.0
|
||||
// 90 = Alpha OMCA board
|
||||
// 91 = Final OMCA board
|
||||
// 301 = Rambo
|
||||
// 301= Rambo
|
||||
// 21 = Elefu Ra Board (v3)
|
||||
|
||||
#ifndef MOTHERBOARD
|
||||
@ -90,7 +91,7 @@
|
||||
|
||||
#define POWER_SUPPLY 1
|
||||
|
||||
// Define this to have the electronics keep the powersupply off on startup. If you don't know what this is leave it.
|
||||
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
|
||||
// #define PS_DEFAULT_OFF
|
||||
|
||||
//===========================================================================
|
||||
@ -105,7 +106,7 @@
|
||||
// 0 is not used
|
||||
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
|
||||
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
|
||||
// 3 is mendel-parts thermistor (4.7k pullup)
|
||||
// 3 is Mendel-parts thermistor (4.7k pullup)
|
||||
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
|
||||
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
|
||||
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
|
||||
@ -114,13 +115,19 @@
|
||||
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
|
||||
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
|
||||
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
|
||||
// 60 is 100k Maker's Tool Works Kapton Bed Thermister
|
||||
// 20 is the PT100 circuit found in the Ultimainboard V2.x
|
||||
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor
|
||||
//
|
||||
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
|
||||
// (but gives greater accuracy and more stable PID)
|
||||
// 51 is 100k thermistor - EPCOS (1k pullup)
|
||||
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
|
||||
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
|
||||
//
|
||||
// 1047 is Pt1000 with 4k7 pullup
|
||||
// 1010 is Pt1000 with 1k pullup (non standard)
|
||||
// 147 is Pt100 with 4k7 pullup
|
||||
// 110 is Pt100 with 1k pullup (non standard)
|
||||
|
||||
#define TEMP_SENSOR_0 -1
|
||||
#define TEMP_SENSOR_1 -1
|
||||
@ -175,13 +182,13 @@
|
||||
#define K1 0.95 //smoothing factor within the PID
|
||||
#define PID_dT ((OVERSAMPLENR * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
|
||||
|
||||
// If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it
|
||||
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
|
||||
// Ultimaker
|
||||
#define DEFAULT_Kp 22.2
|
||||
#define DEFAULT_Ki 1.08
|
||||
#define DEFAULT_Kd 114
|
||||
|
||||
// Makergear
|
||||
// MakerGear
|
||||
// #define DEFAULT_Kp 7.0
|
||||
// #define DEFAULT_Ki 0.1
|
||||
// #define DEFAULT_Kd 12
|
||||
@ -250,7 +257,7 @@
|
||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||
|
||||
#ifndef ENDSTOPPULLUPS
|
||||
// fine Enstop settings: Individual Pullups. will be ignored if ENDSTOPPULLUPS is defined
|
||||
// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
|
||||
// #define ENDSTOPPULLUP_XMAX
|
||||
// #define ENDSTOPPULLUP_YMAX
|
||||
// #define ENDSTOPPULLUP_ZMAX
|
||||
@ -328,13 +335,51 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
// these are the positions on the bed to do the probing
|
||||
// There are 2 different ways to pick the X and Y locations to probe:
|
||||
|
||||
// - "grid" mode
|
||||
// Probe every point in a rectangular grid
|
||||
// You must specify the rectangle, and the density of sample points
|
||||
// This mode is preferred because there are more measurements.
|
||||
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
|
||||
|
||||
// - "3-point" mode
|
||||
// Probe 3 arbitrary points on the bed (that aren't colinear)
|
||||
// You must specify the X & Y coordinates of all 3 points
|
||||
|
||||
#define AUTO_BED_LEVELING_GRID
|
||||
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
|
||||
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
|
||||
// and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
// set the rectangle in which to probe
|
||||
#define LEFT_PROBE_BED_POSITION 15
|
||||
#define RIGHT_PROBE_BED_POSITION 170
|
||||
#define BACK_PROBE_BED_POSITION 180
|
||||
#define FRONT_PROBE_BED_POSITION 20
|
||||
|
||||
// these are the offsets to the prob relative to the extruder tip (Hotend - Probe)
|
||||
// set the number of grid points per dimension
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
#define AUTO_BED_LEVELING_GRID_POINTS 2
|
||||
|
||||
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
// with no grid, just probe 3 arbitrary points. A simple cross-product
|
||||
// is used to esimate the plane of the print bed
|
||||
|
||||
#define ABL_PROBE_PT_1_X 15
|
||||
#define ABL_PROBE_PT_1_Y 180
|
||||
#define ABL_PROBE_PT_2_X 15
|
||||
#define ABL_PROBE_PT_2_Y 20
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
|
||||
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
|
||||
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
|
||||
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
|
||||
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
|
||||
@ -355,7 +400,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
|
||||
|
||||
|
||||
//If you have enabled the Bed Auto Levelling and are using the same Z Probe for Z Homing,
|
||||
//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
|
||||
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!
|
||||
|
||||
#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
|
||||
@ -372,16 +417,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
|
||||
#endif
|
||||
|
||||
// with accurate bed leveling, the bed is sampled in a ACCURATE_BED_LEVELING_POINTSxACCURATE_BED_LEVELING_POINTS grid and least squares solution is calculated
|
||||
// Note: this feature occupies 10'206 byte
|
||||
#define ACCURATE_BED_LEVELING
|
||||
|
||||
#ifdef ACCURATE_BED_LEVELING
|
||||
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
|
||||
#define ACCURATE_BED_LEVELING_POINTS 2
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
|
||||
// The position of the homing switches
|
||||
@ -389,7 +425,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
|
||||
|
||||
//Manual homing switch locations:
|
||||
// For deltabots this means top and center of the cartesian print volume.
|
||||
// For deltabots this means top and center of the Cartesian print volume.
|
||||
#define MANUAL_X_HOME_POS 0
|
||||
#define MANUAL_Y_HOME_POS 0
|
||||
#define MANUAL_Z_HOME_POS 0
|
||||
@ -403,7 +439,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
|
||||
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200.0*8/3,760*1.1} // default steps per unit for Ultimaker
|
||||
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 25} // (mm/sec)
|
||||
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
||||
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.
|
||||
|
||||
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
||||
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
|
||||
@ -424,11 +460,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
//===========================================================================
|
||||
|
||||
// EEPROM
|
||||
// the microcontroller can store settings in the EEPROM, e.g. max velocity...
|
||||
// M500 - stores paramters in EEPROM
|
||||
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
|
||||
// M500 - stores parameters in EEPROM
|
||||
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
|
||||
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
||||
//define this to enable eeprom support
|
||||
//define this to enable EEPROM support
|
||||
//#define EEPROM_SETTINGS
|
||||
//to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
|
||||
// please keep turned on if you can.
|
||||
@ -444,14 +480,14 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
|
||||
|
||||
//LCD and SD support
|
||||
//#define ULTRA_LCD //general lcd support, also 16x2
|
||||
//#define ULTRA_LCD //general LCD support, also 16x2
|
||||
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
|
||||
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
|
||||
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
|
||||
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
|
||||
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
|
||||
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
|
||||
//#define ULTIPANEL //the ultipanel as on thingiverse
|
||||
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
|
||||
//#define ULTIPANEL //the UltiPanel as on Thingiverse
|
||||
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
|
||||
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
|
||||
|
||||
@ -576,7 +612,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
|
||||
//#define SR_LCD
|
||||
#ifdef SR_LCD
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister
|
||||
#define SR_LCD_2W_NL // Non latching 2 wire shift register
|
||||
//#define NEWPANEL
|
||||
#endif
|
||||
|
||||
@ -592,7 +628,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
#define LCD_WIDTH 20
|
||||
#define LCD_HEIGHT 4
|
||||
#endif
|
||||
#else //no panel but just lcd
|
||||
#else //no panel but just LCD
|
||||
#ifdef ULTRA_LCD
|
||||
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
|
||||
#define LCD_WIDTH 20
|
||||
@ -614,8 +650,8 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
||||
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
|
||||
//#define FAST_PWM_FAN
|
||||
|
||||
// Temperature status leds that display the hotend and bet temperature.
|
||||
// If alle hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
|
||||
// Temperature status LEDs that display the hotend and bet temperature.
|
||||
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
|
||||
// Otherwise the RED led is on. There is 1C hysteresis.
|
||||
//#define TEMP_STAT_LEDS
|
||||
|
||||
|
@ -37,7 +37,11 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size)
|
||||
// the default values are used whenever there is a change to the data, to prevent
|
||||
// wrong data being written to the variables.
|
||||
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
|
||||
#ifdef DELTA
|
||||
#define EEPROM_VERSION "V11"
|
||||
#else
|
||||
#define EEPROM_VERSION "V10"
|
||||
#endif
|
||||
|
||||
#ifdef EEPROM_SETTINGS
|
||||
void Config_StoreSettings()
|
||||
@ -59,6 +63,9 @@ void Config_StoreSettings()
|
||||
EEPROM_WRITE_VAR(i,add_homeing);
|
||||
#ifdef DELTA
|
||||
EEPROM_WRITE_VAR(i,endstop_adj);
|
||||
EEPROM_WRITE_VAR(i,delta_radius);
|
||||
EEPROM_WRITE_VAR(i,delta_diagonal_rod);
|
||||
EEPROM_WRITE_VAR(i,delta_segments_per_second);
|
||||
#endif
|
||||
#ifndef ULTIPANEL
|
||||
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
|
||||
@ -157,6 +164,13 @@ void Config_PrintSettings()
|
||||
SERIAL_ECHOPAIR(" Y" ,endstop_adj[1] );
|
||||
SERIAL_ECHOPAIR(" Z" ,endstop_adj[2] );
|
||||
SERIAL_ECHOLN("");
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPAIR(" M665 L",delta_diagonal_rod );
|
||||
SERIAL_ECHOPAIR(" R" ,delta_radius );
|
||||
SERIAL_ECHOPAIR(" S" ,delta_segments_per_second );
|
||||
SERIAL_ECHOLN("");
|
||||
#endif
|
||||
#ifdef PIDTEMP
|
||||
SERIAL_ECHO_START;
|
||||
@ -200,6 +214,9 @@ void Config_RetrieveSettings()
|
||||
EEPROM_READ_VAR(i,add_homeing);
|
||||
#ifdef DELTA
|
||||
EEPROM_READ_VAR(i,endstop_adj);
|
||||
EEPROM_READ_VAR(i,delta_radius);
|
||||
EEPROM_READ_VAR(i,delta_diagonal_rod);
|
||||
EEPROM_READ_VAR(i,delta_segments_per_second);
|
||||
#endif
|
||||
#ifndef ULTIPANEL
|
||||
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed;
|
||||
@ -265,6 +282,10 @@ void Config_ResetDefault()
|
||||
add_homeing[0] = add_homeing[1] = add_homeing[2] = 0;
|
||||
#ifdef DELTA
|
||||
endstop_adj[0] = endstop_adj[1] = endstop_adj[2] = 0;
|
||||
delta_radius= DELTA_RADIUS;
|
||||
delta_diagonal_rod= DELTA_DIAGONAL_ROD;
|
||||
delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
#endif
|
||||
#ifdef ULTIPANEL
|
||||
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
|
||||
|
@ -11,7 +11,7 @@
|
||||
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
|
||||
|
||||
//// Heating sanity check:
|
||||
// This waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
||||
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature
|
||||
// If the temperature has not increased at the end of that period, the target temperature is set to zero.
|
||||
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature
|
||||
// differ by at least 2x WATCH_TEMP_INCREASE
|
||||
@ -19,11 +19,11 @@
|
||||
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
|
||||
|
||||
#ifdef PIDTEMP
|
||||
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
|
||||
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
|
||||
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
|
||||
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
|
||||
#define PID_ADD_EXTRUSION_RATE
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
#define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)
|
||||
#define DEFAULT_Kc (1) //heating power=Kc*(e_speed)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@ -34,7 +34,7 @@
|
||||
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
|
||||
// you exit the value by any M109 without F*
|
||||
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp.
|
||||
// on an ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
|
||||
// on an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
|
||||
#define AUTOTEMP
|
||||
#ifdef AUTOTEMP
|
||||
#define AUTOTEMP_OLDWEIGHT 0.98
|
||||
@ -239,6 +239,11 @@
|
||||
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // set the speeds for manual moves (mm/min)
|
||||
#endif
|
||||
|
||||
//Comment to disable setting feedrate multiplier via encoder
|
||||
#ifdef ULTIPANEL
|
||||
#define ULTIPANEL_FEEDMULTIPLY
|
||||
#endif
|
||||
|
||||
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
|
||||
#define DEFAULT_MINSEGMENTTIME 20000
|
||||
|
||||
@ -279,15 +284,18 @@
|
||||
//=============================Additional Features===========================
|
||||
//===========================================================================
|
||||
|
||||
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
|
||||
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
|
||||
|
||||
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
|
||||
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
|
||||
|
||||
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the filesystem block order.
|
||||
// if a file is deleted, it frees a block. hence, the order is not purely cronological. To still have auto0.g accessible, there is again the option to do that.
|
||||
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
|
||||
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
|
||||
// using:
|
||||
//#define MENU_ADDAUTOSTART
|
||||
|
||||
// The hardware watchdog should reset the Microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation.
|
||||
// The hardware watchdog should reset the microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation.
|
||||
//#define USE_WATCHDOG
|
||||
|
||||
#ifdef USE_WATCHDOG
|
||||
@ -301,7 +309,7 @@
|
||||
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||
|
||||
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
|
||||
// it can e.g. be used to change z-positions in the print startup phase in realtime
|
||||
// it can e.g. be used to change z-positions in the print startup phase in real-time
|
||||
// does not respect endstops!
|
||||
//#define BABYSTEPPING
|
||||
#ifdef BABYSTEPPING
|
||||
@ -324,8 +332,8 @@
|
||||
//
|
||||
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
|
||||
//
|
||||
// hooke's law says: force = k * distance
|
||||
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
|
||||
// Hooke's law says: force = k * distance
|
||||
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
|
||||
// so: v ^ 2 is proportional to number of steps we advance the extruder
|
||||
//#define ADVANCE
|
||||
|
||||
@ -379,7 +387,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
|
||||
//===========================================================================
|
||||
|
||||
// The number of linear motions that can be in the plan at any give time.
|
||||
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
|
||||
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
|
||||
#if defined SDSUPPORT
|
||||
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
||||
#else
|
||||
@ -387,20 +395,26 @@ const unsigned int dropsegments=5; //everything with less than this number of st
|
||||
#endif
|
||||
|
||||
|
||||
//The ASCII buffer for recieving from the serial:
|
||||
//The ASCII buffer for receiving from the serial:
|
||||
#define MAX_CMD_SIZE 96
|
||||
#define BUFSIZE 4
|
||||
|
||||
|
||||
// Firmware based and LCD controled retract
|
||||
// Firmware based and LCD controlled retract
|
||||
// M207 and M208 can be used to define parameters for the retraction.
|
||||
// The retraction can be called by the slicer using G10 and G11
|
||||
// until then, intended retractions can be detected by moves that only extrude and the direction.
|
||||
// the moves are than replaced by the firmware controlled ones.
|
||||
|
||||
// #define FWRETRACT //ONLY PARTIALLY TESTED
|
||||
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
|
||||
|
||||
#ifdef FWRETRACT
|
||||
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
|
||||
#define RETRACT_LENGTH 3 //default retract length (positive mm)
|
||||
#define RETRACT_FEEDRATE 80*60 //default feedrate for retracting
|
||||
#define RETRACT_ZLIFT 0 //default retract Z-lift
|
||||
#define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
|
||||
#define RETRACT_RECOVER_FEEDRATE 8*60 //default feedrate for recovering from retraction
|
||||
#endif
|
||||
|
||||
//adds support for experimental filament exchange support M600; requires display
|
||||
#ifdef ULTIPANEL
|
||||
|
Binary file not shown.
@ -11,7 +11,7 @@
|
||||
#include "WProgram.h"
|
||||
#endif
|
||||
|
||||
// it is a russian alphabet translation
|
||||
// it is a Russian alphabet translation
|
||||
// except 0401 --> 0xa2 = ╗, 0451 --> 0xb5
|
||||
const PROGMEM uint8_t utf_recode[] =
|
||||
{ 0x41,0xa0,0x42,0xa1,0xe0,0x45,0xa3,0xa4,0xa5,0xa6,0x4b,0xa7,0x4d,0x48,0x4f,
|
||||
@ -115,7 +115,7 @@ void LiquidCrystalRus::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) {
|
||||
|
||||
// SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION!
|
||||
// according to datasheet, we need at least 40ms after power rises above 2.7V
|
||||
// before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50
|
||||
// before sending commands. Arduino can turn on way before 4.5V so we'll wait 50
|
||||
delayMicroseconds(50000);
|
||||
// Now we pull both RS and R/W low to begin commands
|
||||
digitalWrite(_rs_pin, LOW);
|
||||
@ -126,7 +126,7 @@ void LiquidCrystalRus::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) {
|
||||
|
||||
//put the LCD into 4 bit or 8 bit mode
|
||||
if (! (_displayfunction & LCD_8BITMODE)) {
|
||||
// this is according to the hitachi HD44780 datasheet
|
||||
// this is according to the Hitachi HD44780 datasheet
|
||||
// figure 24, pg 46
|
||||
|
||||
// we start in 8bit mode, try to set 4 bit mode
|
||||
@ -144,7 +144,7 @@ void LiquidCrystalRus::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) {
|
||||
// finally, set to 8-bit interface
|
||||
writeNbits(0x02,4);
|
||||
} else {
|
||||
// this is according to the hitachi HD44780 datasheet
|
||||
// this is according to the Hitachi HD44780 datasheet
|
||||
// page 45 figure 23
|
||||
|
||||
// Send function set command sequence
|
||||
@ -308,7 +308,7 @@ inline void LiquidCrystalRus::command(uint8_t value) {
|
||||
}
|
||||
} else send(out_char, HIGH);
|
||||
#if defined(ARDUINO) && ARDUINO >= 100
|
||||
return 1; // assume sucess
|
||||
return 1; // assume success
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -236,7 +236,7 @@ VPATH += $(HARDWARE_DIR)/libraries/Wire
|
||||
VPATH += $(HARDWARE_DIR)/libraries/Wire/utility
|
||||
VPATH += $(HARDWARE_DIR)/libraries/LiquidTWI2
|
||||
endif
|
||||
ifeq ($(WIRE, 1)
|
||||
ifeq ($(WIRE), 1)
|
||||
VPATH += $(HARDWARE_DIR)/libraries/Wire
|
||||
VPATH += $(HARDWARE_DIR)/libraries/Wire/utility
|
||||
endif
|
||||
@ -260,7 +260,8 @@ CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp \
|
||||
MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp \
|
||||
SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp \
|
||||
stepper.cpp temperature.cpp cardreader.cpp ConfigurationStore.cpp \
|
||||
watchdog.cpp SPI.cpp Servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp
|
||||
watchdog.cpp SPI.cpp Servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \
|
||||
vector_3.cpp qr_solve.cpp
|
||||
ifeq ($(LIQUID_TWI2), 0)
|
||||
CXXSRC += LiquidCrystal.cpp
|
||||
else
|
||||
|
@ -1,5 +1,5 @@
|
||||
// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
|
||||
// Licence: GPL
|
||||
// License: GPL
|
||||
|
||||
#ifndef MARLIN_H
|
||||
#define MARLIN_H
|
||||
@ -30,7 +30,7 @@
|
||||
# include "Arduino.h"
|
||||
#else
|
||||
# include "WProgram.h"
|
||||
//Arduino < 1.0.0 does not define this, so we need to do it ourselfs
|
||||
//Arduino < 1.0.0 does not define this, so we need to do it ourselves
|
||||
# define analogInputToDigitalPin(p) ((p) + A0)
|
||||
#endif
|
||||
|
||||
@ -87,7 +87,7 @@ void serial_echopair_P(const char *s_P, double v);
|
||||
void serial_echopair_P(const char *s_P, unsigned long v);
|
||||
|
||||
|
||||
//things to write to serial from Programmemory. saves 400 to 2k of RAM.
|
||||
//Things to write to serial from Program memory. Saves 400 to 2k of RAM.
|
||||
FORCE_INLINE void serialprintPGM(const char *str)
|
||||
{
|
||||
char ch=pgm_read_byte(str);
|
||||
@ -184,11 +184,13 @@ void Stop();
|
||||
|
||||
bool IsStopped();
|
||||
|
||||
void enquecommand(const char *cmd); //put an ascii command at the end of the current buffer.
|
||||
void enquecommand_P(const char *cmd); //put an ascii command at the end of the current buffer, read from flash
|
||||
void enquecommand(const char *cmd); //put an ASCII command at the end of the current buffer.
|
||||
void enquecommand_P(const char *cmd); //put an ASCII command at the end of the current buffer, read from flash
|
||||
void prepare_arc_move(char isclockwise);
|
||||
void clamp_to_software_endstops(float target[3]);
|
||||
|
||||
void refresh_cmd_timeout(void);
|
||||
|
||||
#ifdef FAST_PWM_FAN
|
||||
void setPwmFrequency(uint8_t pin, int val);
|
||||
#endif
|
||||
@ -207,6 +209,10 @@ extern float current_position[NUM_AXIS] ;
|
||||
extern float add_homeing[3];
|
||||
#ifdef DELTA
|
||||
extern float endstop_adj[3];
|
||||
extern float delta_radius;
|
||||
extern float delta_diagonal_rod;
|
||||
extern float delta_segments_per_second;
|
||||
void recalc_delta_settings(float radius, float diagonal_rod);
|
||||
#endif
|
||||
extern float min_pos[3];
|
||||
extern float max_pos[3];
|
||||
|
@ -25,7 +25,7 @@
|
||||
|
||||
#ifndef AT90USB
|
||||
// this next line disables the entire HardwareSerial.cpp,
|
||||
// this is so I can support Attiny series and any other chip without a uart
|
||||
// this is so I can support Attiny series and any other chip without a UART
|
||||
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
|
||||
|
||||
#if UART_PRESENT(SERIAL_PORT)
|
||||
@ -73,7 +73,7 @@ void MarlinSerial::begin(long baud)
|
||||
bool useU2X = true;
|
||||
|
||||
#if F_CPU == 16000000UL && SERIAL_PORT == 0
|
||||
// hardcoded exception for compatibility with the bootloader shipped
|
||||
// hard coded exception for compatibility with the bootloader shipped
|
||||
// with the Duemilanove and previous boards and the firmware on the 8U2
|
||||
// on the Uno and Mega 2560.
|
||||
if (baud == 57600) {
|
||||
|
@ -31,7 +31,7 @@
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
#include "vector_3.h"
|
||||
#ifdef ACCURATE_BED_LEVELING
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
#include "qr_solve.h"
|
||||
#endif
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
@ -63,7 +63,7 @@
|
||||
|
||||
#define VERSION_STRING "1.0.0"
|
||||
|
||||
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
|
||||
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
|
||||
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
||||
|
||||
//Implemented Codes
|
||||
@ -76,11 +76,11 @@
|
||||
// G10 - retract filament according to settings of M207
|
||||
// G11 - retract recover filament according to settings of M208
|
||||
// G28 - Home all Axis
|
||||
// G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
|
||||
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
||||
// G30 - Single Z Probe, probes bed at current XY location.
|
||||
// G90 - Use Absolute Coordinates
|
||||
// G91 - Use Relative Coordinates
|
||||
// G92 - Set current position to cordinates given
|
||||
// G92 - Set current position to coordinates given
|
||||
|
||||
// M Codes
|
||||
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
||||
@ -101,7 +101,7 @@
|
||||
// M31 - Output time since last M109 or SD card start to serial
|
||||
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
|
||||
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
|
||||
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
|
||||
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
||||
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
||||
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
||||
// M80 - Turn on Power Supply
|
||||
@ -127,17 +127,17 @@
|
||||
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
||||
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
||||
// M140 - Set bed target temp
|
||||
// M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
||||
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
||||
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
||||
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
||||
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
||||
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||||
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
||||
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
||||
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
|
||||
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
||||
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
||||
// M206 - set additional homeing offset
|
||||
// M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
|
||||
// M206 - set additional homing offset
|
||||
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
||||
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
|
||||
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
||||
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
||||
@ -147,7 +147,7 @@
|
||||
// M240 - Trigger a camera to take a photograph
|
||||
// M250 - Set LCD contrast C<contrast value> (value 0..63)
|
||||
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
||||
// M300 - Play beepsound S<frequency Hz> P<duration ms>
|
||||
// M300 - Play beep sound S<frequency Hz> P<duration ms>
|
||||
// M301 - Set PID parameters P I and D
|
||||
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
||||
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
||||
@ -155,13 +155,14 @@
|
||||
// M400 - Finish all moves
|
||||
// M401 - Lower z-probe if present
|
||||
// M402 - Raise z-probe if present
|
||||
// M500 - stores paramters in EEPROM
|
||||
// M500 - stores parameters in EEPROM
|
||||
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
|
||||
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
||||
// M503 - print the current settings (from memory not from eeprom)
|
||||
// M503 - print the current settings (from memory not from EEPROM)
|
||||
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
||||
// M666 - set delta endstop adjustemnt
|
||||
// M665 - set delta configurations
|
||||
// M666 - set delta endstop adjustment
|
||||
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
|
||||
// M907 - Set digital trimpot motor current using axis codes.
|
||||
// M908 - Control digital trimpot directly.
|
||||
@ -231,10 +232,13 @@ int EtoPPressure=0;
|
||||
#endif
|
||||
|
||||
#ifdef FWRETRACT
|
||||
bool autoretract_enabled=true;
|
||||
bool autoretract_enabled=false;
|
||||
bool retracted=false;
|
||||
float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
|
||||
float retract_recover_length=0, retract_recover_feedrate=8*60;
|
||||
float retract_length = RETRACT_LENGTH;
|
||||
float retract_feedrate = RETRACT_FEEDRATE;
|
||||
float retract_zlift = RETRACT_ZLIFT;
|
||||
float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
||||
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
||||
#endif
|
||||
|
||||
#ifdef ULTIPANEL
|
||||
@ -246,12 +250,24 @@ int EtoPPressure=0;
|
||||
#endif
|
||||
|
||||
#ifdef DELTA
|
||||
float delta[3] = {0.0, 0.0, 0.0};
|
||||
float delta[3] = {0.0, 0.0, 0.0};
|
||||
#define SIN_60 0.8660254037844386
|
||||
#define COS_60 0.5
|
||||
// these are the default values, can be overriden with M665
|
||||
float delta_radius= DELTA_RADIUS;
|
||||
float delta_tower1_x= -SIN_60*delta_radius; // front left tower
|
||||
float delta_tower1_y= -COS_60*delta_radius;
|
||||
float delta_tower2_x= SIN_60*delta_radius; // front right tower
|
||||
float delta_tower2_y= -COS_60*delta_radius;
|
||||
float delta_tower3_x= 0.0; // back middle tower
|
||||
float delta_tower3_y= delta_radius;
|
||||
float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
|
||||
float delta_diagonal_rod_2= sq(delta_diagonal_rod);
|
||||
float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
|
||||
#endif
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//=============================private variables=============================
|
||||
//=============================Private Variables=============================
|
||||
//===========================================================================
|
||||
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
||||
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
||||
@ -271,7 +287,7 @@ static int buflen = 0;
|
||||
static char serial_char;
|
||||
static int serial_count = 0;
|
||||
static boolean comment_mode = false;
|
||||
static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
|
||||
static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
|
||||
|
||||
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
|
||||
|
||||
@ -298,8 +314,14 @@ bool Stopped=false;
|
||||
bool CooldownNoWait = true;
|
||||
bool target_direction;
|
||||
|
||||
//Insert variables if CHDK is defined
|
||||
#ifdef CHDK
|
||||
unsigned long chdkHigh = 0;
|
||||
boolean chdkActive = false;
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//=============================ROUTINES=============================
|
||||
//=============================Routines======================================
|
||||
//===========================================================================
|
||||
|
||||
void get_arc_coordinates();
|
||||
@ -336,7 +358,7 @@ void enquecommand(const char *cmd)
|
||||
{
|
||||
if(buflen < BUFSIZE)
|
||||
{
|
||||
//this is dangerous if a mixing of serial and this happsens
|
||||
//this is dangerous if a mixing of serial and this happens
|
||||
strcpy(&(cmdbuffer[bufindw][0]),cmd);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM("enqueing \"");
|
||||
@ -351,7 +373,7 @@ void enquecommand_P(const char *cmd)
|
||||
{
|
||||
if(buflen < BUFSIZE)
|
||||
{
|
||||
//this is dangerous if a mixing of serial and this happsens
|
||||
//this is dangerous if a mixing of serial and this happens
|
||||
strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM("enqueing \"");
|
||||
@ -658,9 +680,9 @@ void get_command()
|
||||
return;
|
||||
}
|
||||
|
||||
//'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
|
||||
// if it occures, stop_buffering is triggered and the buffer is ran dry.
|
||||
// this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
|
||||
//'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
|
||||
// if it occurs, stop_buffering is triggered and the buffer is ran dry.
|
||||
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
|
||||
|
||||
static bool stop_buffering=false;
|
||||
if(buflen==0) stop_buffering=false;
|
||||
@ -819,7 +841,7 @@ static void axis_is_at_home(int axis) {
|
||||
}
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
#ifdef ACCURATE_BED_LEVELING
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
||||
{
|
||||
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
||||
@ -843,42 +865,36 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
}
|
||||
|
||||
#else
|
||||
static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
|
||||
#else // not AUTO_BED_LEVELING_GRID
|
||||
|
||||
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
||||
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
|
||||
vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
|
||||
vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
|
||||
vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
|
||||
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
||||
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
||||
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
||||
|
||||
vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
|
||||
vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
|
||||
vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
|
||||
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
|
||||
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
|
||||
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
||||
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
||||
|
||||
//planeNormal.debug("planeNormal");
|
||||
//yPositive.debug("yPositive");
|
||||
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
||||
//bedLevel.debug("bedLevel");
|
||||
|
||||
//plan_bed_level_matrix.debug("bed level before");
|
||||
//vector_3 uncorrected_position = plan_get_position_mm();
|
||||
//uncorrected_position.debug("position before");
|
||||
|
||||
// and set our bed level equation to do the right thing
|
||||
//plan_bed_level_matrix.debug("bed level after");
|
||||
|
||||
vector_3 corrected_position = plan_get_position();
|
||||
//corrected_position.debug("position after");
|
||||
current_position[X_AXIS] = corrected_position.x;
|
||||
current_position[Y_AXIS] = corrected_position.y;
|
||||
current_position[Z_AXIS] = corrected_position.z;
|
||||
|
||||
// but the bed at 0 so we don't go below it.
|
||||
// put the bed at 0 so we don't go below it.
|
||||
current_position[Z_AXIS] = zprobe_zoffset;
|
||||
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
}
|
||||
#endif // ACCURATE_BED_LEVELING
|
||||
|
||||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
static void run_z_probe() {
|
||||
plan_bed_level_matrix.set_to_identity();
|
||||
@ -978,6 +994,28 @@ static void retract_z_probe() {
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Probe bed height at position (x,y), returns the measured z value
|
||||
static float probe_pt(float x, float y, float z_before) {
|
||||
// move to right place
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
||||
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
||||
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
run_z_probe();
|
||||
float measured_z = current_position[Z_AXIS];
|
||||
retract_z_probe();
|
||||
|
||||
SERIAL_PROTOCOLPGM(MSG_BED);
|
||||
SERIAL_PROTOCOLPGM(" x: ");
|
||||
SERIAL_PROTOCOL(x);
|
||||
SERIAL_PROTOCOLPGM(" y: ");
|
||||
SERIAL_PROTOCOL(y);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(measured_z);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
return measured_z;
|
||||
}
|
||||
|
||||
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
static void homeaxis(int axis) {
|
||||
@ -1058,6 +1096,46 @@ static void homeaxis(int axis) {
|
||||
}
|
||||
}
|
||||
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
||||
void refresh_cmd_timeout(void)
|
||||
{
|
||||
previous_millis_cmd = millis();
|
||||
}
|
||||
|
||||
#ifdef FWRETRACT
|
||||
void retract(bool retracting) {
|
||||
if(retracting && !retracted) {
|
||||
destination[X_AXIS]=current_position[X_AXIS];
|
||||
destination[Y_AXIS]=current_position[Y_AXIS];
|
||||
destination[Z_AXIS]=current_position[Z_AXIS];
|
||||
destination[E_AXIS]=current_position[E_AXIS];
|
||||
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
float oldFeedrate = feedrate;
|
||||
feedrate=retract_feedrate;
|
||||
retracted=true;
|
||||
prepare_move();
|
||||
current_position[Z_AXIS]-=retract_zlift;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
prepare_move();
|
||||
feedrate = oldFeedrate;
|
||||
} else if(!retracting && retracted) {
|
||||
destination[X_AXIS]=current_position[X_AXIS];
|
||||
destination[Y_AXIS]=current_position[Y_AXIS];
|
||||
destination[Z_AXIS]=current_position[Z_AXIS];
|
||||
destination[E_AXIS]=current_position[E_AXIS];
|
||||
current_position[Z_AXIS]+=retract_zlift;
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
//prepare_move();
|
||||
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
|
||||
plan_set_e_position(current_position[E_AXIS]);
|
||||
float oldFeedrate = feedrate;
|
||||
feedrate=retract_recover_feedrate;
|
||||
retracted=false;
|
||||
prepare_move();
|
||||
feedrate = oldFeedrate;
|
||||
}
|
||||
} //retract
|
||||
#endif //FWRETRACT
|
||||
|
||||
void process_commands()
|
||||
{
|
||||
@ -1074,6 +1152,18 @@ void process_commands()
|
||||
case 1: // G1
|
||||
if(Stopped == false) {
|
||||
get_coordinates(); // For X Y Z E F
|
||||
#ifdef FWRETRACT
|
||||
if(autoretract_enabled)
|
||||
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
||||
float echange=destination[E_AXIS]-current_position[E_AXIS];
|
||||
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
|
||||
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
|
||||
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
|
||||
retract(!retracted);
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif //FWRETRACT
|
||||
prepare_move();
|
||||
//ClearToSend();
|
||||
return;
|
||||
@ -1108,31 +1198,10 @@ void process_commands()
|
||||
break;
|
||||
#ifdef FWRETRACT
|
||||
case 10: // G10 retract
|
||||
if(!retracted)
|
||||
{
|
||||
destination[X_AXIS]=current_position[X_AXIS];
|
||||
destination[Y_AXIS]=current_position[Y_AXIS];
|
||||
destination[Z_AXIS]=current_position[Z_AXIS];
|
||||
current_position[Z_AXIS]+=-retract_zlift;
|
||||
destination[E_AXIS]=current_position[E_AXIS]-retract_length;
|
||||
feedrate=retract_feedrate;
|
||||
retracted=true;
|
||||
prepare_move();
|
||||
}
|
||||
|
||||
retract(true);
|
||||
break;
|
||||
case 11: // G11 retract_recover
|
||||
if(retracted)
|
||||
{
|
||||
destination[X_AXIS]=current_position[X_AXIS];
|
||||
destination[Y_AXIS]=current_position[Y_AXIS];
|
||||
destination[Z_AXIS]=current_position[Z_AXIS];
|
||||
current_position[Z_AXIS]+=retract_zlift;
|
||||
destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
|
||||
feedrate=retract_recover_feedrate;
|
||||
retracted=false;
|
||||
prepare_move();
|
||||
}
|
||||
retract(false);
|
||||
break;
|
||||
#endif //FWRETRACT
|
||||
case 28: //G28 Home all Axis one at a time
|
||||
@ -1185,7 +1254,7 @@ void process_commands()
|
||||
|
||||
#else // NOT DELTA
|
||||
|
||||
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
||||
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
|
||||
|
||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||||
@ -1347,12 +1416,21 @@ void process_commands()
|
||||
break;
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
|
||||
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
||||
{
|
||||
#if Z_MIN_PIN == -1
|
||||
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
|
||||
#endif
|
||||
|
||||
// Prevent user from running a G29 without first homing in X and Y
|
||||
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
|
||||
{
|
||||
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
||||
break; // abort G29, since we don't know where we are
|
||||
}
|
||||
|
||||
st_synchronize();
|
||||
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
||||
//vector_3 corrected_position = plan_get_position_mm();
|
||||
@ -1367,10 +1445,11 @@ void process_commands()
|
||||
setup_for_endstop_move();
|
||||
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
#ifdef ACCURATE_BED_LEVELING
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
// probe at the points of a lattice grid
|
||||
|
||||
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
|
||||
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
|
||||
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
||||
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
|
||||
|
||||
|
||||
// solve the plane equation ax + by + d = z
|
||||
@ -1380,9 +1459,9 @@ void process_commands()
|
||||
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
||||
|
||||
// "A" matrix of the linear system of equations
|
||||
double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
|
||||
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
|
||||
// "B" vector of Z points
|
||||
double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
|
||||
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
|
||||
|
||||
|
||||
int probePointCounter = 0;
|
||||
@ -1405,37 +1484,26 @@ void process_commands()
|
||||
zig = true;
|
||||
}
|
||||
|
||||
for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
|
||||
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
|
||||
{
|
||||
float z_before;
|
||||
if (probePointCounter == 0)
|
||||
{
|
||||
// raise before probing
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
|
||||
z_before = Z_RAISE_BEFORE_PROBING;
|
||||
} else
|
||||
{
|
||||
// raise extruder
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
||||
}
|
||||
|
||||
float measured_z = probe_pt(xProbe, yProbe, z_before);
|
||||
|
||||
do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
||||
eqnBVector[probePointCounter] = measured_z;
|
||||
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
run_z_probe();
|
||||
eqnBVector[probePointCounter] = current_position[Z_AXIS];
|
||||
retract_z_probe();
|
||||
|
||||
SERIAL_PROTOCOLPGM("Bed x: ");
|
||||
SERIAL_PROTOCOL(xProbe);
|
||||
SERIAL_PROTOCOLPGM(" y: ");
|
||||
SERIAL_PROTOCOL(yProbe);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
|
||||
eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
|
||||
eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
|
||||
eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
|
||||
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
|
||||
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
|
||||
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
|
||||
probePointCounter++;
|
||||
xProbe += xInc;
|
||||
}
|
||||
@ -1443,7 +1511,7 @@ void process_commands()
|
||||
clean_up_after_endstop_move();
|
||||
|
||||
// solve lsq problem
|
||||
double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
|
||||
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
|
||||
|
||||
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
|
||||
@ -1457,67 +1525,24 @@ void process_commands()
|
||||
|
||||
free(plane_equation_coefficients);
|
||||
|
||||
#else // ACCURATE_BED_LEVELING not defined
|
||||
#else // AUTO_BED_LEVELING_GRID not defined
|
||||
|
||||
// Probe at 3 arbitrary points
|
||||
// probe 1
|
||||
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
|
||||
|
||||
// prob 1
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
|
||||
do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
||||
// probe 2
|
||||
float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
run_z_probe();
|
||||
float z_at_xLeft_yBack = current_position[Z_AXIS];
|
||||
retract_z_probe();
|
||||
|
||||
SERIAL_PROTOCOLPGM("Bed x: ");
|
||||
SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
|
||||
SERIAL_PROTOCOLPGM(" y: ");
|
||||
SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
|
||||
// prob 2
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||
do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
||||
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
run_z_probe();
|
||||
float z_at_xLeft_yFront = current_position[Z_AXIS];
|
||||
retract_z_probe();
|
||||
|
||||
SERIAL_PROTOCOLPGM("Bed x: ");
|
||||
SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
|
||||
SERIAL_PROTOCOLPGM(" y: ");
|
||||
SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
|
||||
// prob 3
|
||||
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||
// the current position will be updated by the blocking move so the head will not lower on this next call.
|
||||
do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
||||
|
||||
engage_z_probe(); // Engage Z Servo endstop if available
|
||||
run_z_probe();
|
||||
float z_at_xRight_yFront = current_position[Z_AXIS];
|
||||
retract_z_probe(); // Retract Z Servo endstop if available
|
||||
|
||||
SERIAL_PROTOCOLPGM("Bed x: ");
|
||||
SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
|
||||
SERIAL_PROTOCOLPGM(" y: ");
|
||||
SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("\n");
|
||||
// probe 3
|
||||
float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
||||
|
||||
clean_up_after_endstop_move();
|
||||
|
||||
set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
|
||||
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
||||
|
||||
|
||||
#endif // ACCURATE_BED_LEVELING
|
||||
#endif // AUTO_BED_LEVELING_GRID
|
||||
st_synchronize();
|
||||
|
||||
// The following code correct the Z height difference from z-probe position and hotend tip position.
|
||||
@ -1545,7 +1570,8 @@ void process_commands()
|
||||
feedrate = homing_feedrate[Z_AXIS];
|
||||
|
||||
run_z_probe();
|
||||
SERIAL_PROTOCOLPGM("Bed Position X: ");
|
||||
SERIAL_PROTOCOLPGM(MSG_BED);
|
||||
SERIAL_PROTOCOLPGM(" X: ");
|
||||
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Y: ");
|
||||
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
||||
@ -2085,7 +2111,7 @@ void process_commands()
|
||||
}
|
||||
else
|
||||
{
|
||||
bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
|
||||
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
||||
if(all_axis)
|
||||
{
|
||||
st_synchronize();
|
||||
@ -2147,18 +2173,18 @@ void process_commands()
|
||||
case 114: // M114
|
||||
SERIAL_PROTOCOLPGM("X:");
|
||||
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("Y:");
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("Z:");
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("E:");
|
||||
SERIAL_PROTOCOLPGM(" E:");
|
||||
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
||||
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
||||
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("Y:");
|
||||
SERIAL_PROTOCOLPGM(" Y:");
|
||||
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_PROTOCOLPGM("Z:");
|
||||
SERIAL_PROTOCOLPGM(" Z:");
|
||||
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
||||
|
||||
SERIAL_PROTOCOLLN("");
|
||||
@ -2286,6 +2312,19 @@ void process_commands()
|
||||
}
|
||||
break;
|
||||
#ifdef DELTA
|
||||
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
||||
if(code_seen('L')) {
|
||||
delta_diagonal_rod= code_value();
|
||||
}
|
||||
if(code_seen('R')) {
|
||||
delta_radius= code_value();
|
||||
}
|
||||
if(code_seen('S')) {
|
||||
delta_segments_per_second= code_value();
|
||||
}
|
||||
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
break;
|
||||
case 666: // M666 set delta endstop adjustemnt
|
||||
for(int8_t i=0; i < 3; i++)
|
||||
{
|
||||
@ -2555,6 +2594,15 @@ void process_commands()
|
||||
#endif //PIDTEMP
|
||||
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
||||
{
|
||||
#ifdef CHDK
|
||||
|
||||
SET_OUTPUT(CHDK);
|
||||
WRITE(CHDK, HIGH);
|
||||
chdkHigh = millis();
|
||||
chdkActive = true;
|
||||
|
||||
#else
|
||||
|
||||
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
|
||||
const uint8_t NUM_PULSES=16;
|
||||
const float PULSE_LENGTH=0.01524;
|
||||
@ -2572,6 +2620,7 @@ void process_commands()
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
}
|
||||
#endif
|
||||
#endif //chdk end if
|
||||
}
|
||||
break;
|
||||
#ifdef DOGLCD
|
||||
@ -3041,42 +3090,6 @@ void get_coordinates()
|
||||
next_feedrate = code_value();
|
||||
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
||||
}
|
||||
#ifdef FWRETRACT
|
||||
if(autoretract_enabled)
|
||||
if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
|
||||
{
|
||||
float echange=destination[E_AXIS]-current_position[E_AXIS];
|
||||
if(echange<-MIN_RETRACT) //retract
|
||||
{
|
||||
if(!retracted)
|
||||
{
|
||||
|
||||
destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
|
||||
//if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
|
||||
float correctede=-echange-retract_length;
|
||||
//to generate the additional steps, not the destination is changed, but inversely the current position
|
||||
current_position[E_AXIS]+=-correctede;
|
||||
feedrate=retract_feedrate;
|
||||
retracted=true;
|
||||
}
|
||||
|
||||
}
|
||||
else
|
||||
if(echange>MIN_RETRACT) //retract_recover
|
||||
{
|
||||
if(retracted)
|
||||
{
|
||||
//current_position[Z_AXIS]+=-retract_zlift;
|
||||
//if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
|
||||
float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
|
||||
current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
|
||||
feedrate=retract_recover_feedrate;
|
||||
retracted=false;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#endif //FWRETRACT
|
||||
}
|
||||
|
||||
void get_arc_coordinates()
|
||||
@ -3120,19 +3133,30 @@ void clamp_to_software_endstops(float target[3])
|
||||
}
|
||||
|
||||
#ifdef DELTA
|
||||
void recalc_delta_settings(float radius, float diagonal_rod)
|
||||
{
|
||||
delta_tower1_x= -SIN_60*radius; // front left tower
|
||||
delta_tower1_y= -COS_60*radius;
|
||||
delta_tower2_x= SIN_60*radius; // front right tower
|
||||
delta_tower2_y= -COS_60*radius;
|
||||
delta_tower3_x= 0.0; // back middle tower
|
||||
delta_tower3_y= radius;
|
||||
delta_diagonal_rod_2= sq(diagonal_rod);
|
||||
}
|
||||
|
||||
void calculate_delta(float cartesian[3])
|
||||
{
|
||||
delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
|
||||
- sq(DELTA_TOWER1_X-cartesian[X_AXIS])
|
||||
- sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
|
||||
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower1_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower1_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
|
||||
- sq(DELTA_TOWER2_X-cartesian[X_AXIS])
|
||||
- sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
|
||||
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower2_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower2_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
|
||||
- sq(DELTA_TOWER3_X-cartesian[X_AXIS])
|
||||
- sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
|
||||
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
|
||||
- sq(delta_tower3_x-cartesian[X_AXIS])
|
||||
- sq(delta_tower3_y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
/*
|
||||
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
||||
@ -3162,7 +3186,7 @@ void prepare_move()
|
||||
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
||||
if (cartesian_mm < 0.000001) { return; }
|
||||
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
||||
int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
|
||||
int steps = max(1, int(delta_segments_per_second * seconds));
|
||||
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
||||
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
||||
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
||||
@ -3345,6 +3369,16 @@ void manage_inactivity()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
|
||||
if (chdkActive)
|
||||
{
|
||||
chdkActive = false;
|
||||
if (millis()-chdkHigh < CHDK_DELAY) return;
|
||||
WRITE(CHDK, LOW);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(KILL_PIN) && KILL_PIN > -1
|
||||
if( 0 == READ(KILL_PIN) )
|
||||
kill();
|
||||
|
Binary file not shown.
@ -24,7 +24,7 @@
|
||||
|
||||
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
|
||||
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
|
||||
The sequence used to sieze timers is defined in timers.h
|
||||
The sequence used to seize timers is defined in timers.h
|
||||
|
||||
The methods are:
|
||||
|
||||
@ -50,7 +50,7 @@
|
||||
/*
|
||||
* Defines for 16 bit timers used with Servo library
|
||||
*
|
||||
* If _useTimerX is defined then TimerX is a 16 bit timer on the curent board
|
||||
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
|
||||
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
|
||||
* _Nbr_16timers indicates how many 16 bit timers are available.
|
||||
*
|
||||
@ -94,7 +94,7 @@ typedef enum { _Nbr_16timers } timer16_Sequence_t ;
|
||||
#define MIN_PULSE_WIDTH 544 // the shortest pulse sent to a servo
|
||||
#define MAX_PULSE_WIDTH 2400 // the longest pulse sent to a servo
|
||||
#define DEFAULT_PULSE_WIDTH 1500 // default pulse width when servo is attached
|
||||
#define REFRESH_INTERVAL 20000 // minumim time to refresh servos in microseconds
|
||||
#define REFRESH_INTERVAL 20000 // minimum time to refresh servos in microseconds
|
||||
|
||||
#define SERVOS_PER_TIMER 12 // the maximum number of servos controlled by one timer
|
||||
#define MAX_SERVOS (_Nbr_16timers * SERVOS_PER_TIMER)
|
||||
@ -118,13 +118,13 @@ public:
|
||||
uint8_t attach(int pin); // attach the given pin to the next free channel, sets pinMode, returns channel number or 0 if failure
|
||||
uint8_t attach(int pin, int min, int max); // as above but also sets min and max values for writes.
|
||||
void detach();
|
||||
void write(int value); // if value is < 200 its treated as an angle, otherwise as pulse width in microseconds
|
||||
void write(int value); // if value is < 200 it is treated as an angle, otherwise as pulse width in microseconds
|
||||
void writeMicroseconds(int value); // Write pulse width in microseconds
|
||||
int read(); // returns current pulse width as an angle between 0 and 180 degrees
|
||||
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
|
||||
bool attached(); // return true if this servo is attached, otherwise false
|
||||
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
||||
int pin; // store the hw pin of the servo
|
||||
int pin; // store the hardware pin of the servo
|
||||
#endif
|
||||
private:
|
||||
uint8_t servoIndex; // index into the channel data for this servo
|
||||
|
@ -22,7 +22,7 @@ CardReader::CardReader()
|
||||
file_subcall_ctr=0;
|
||||
memset(workDirParents, 0, sizeof(workDirParents));
|
||||
|
||||
autostart_stilltocheck=true; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.
|
||||
autostart_stilltocheck=true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software.
|
||||
lastnr=0;
|
||||
//power to SD reader
|
||||
#if SDPOWER > -1
|
||||
@ -245,7 +245,7 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
|
||||
{
|
||||
if(!cardOK)
|
||||
return;
|
||||
if(file.isOpen()) //replaceing current file by new file, or subfile call
|
||||
if(file.isOpen()) //replacing current file by new file, or subfile call
|
||||
{
|
||||
if(!replace_current)
|
||||
{
|
||||
@ -544,7 +544,7 @@ void CardReader::closefile(bool store_location)
|
||||
|
||||
if(store_location)
|
||||
{
|
||||
//future: store printer state, filename and position for continueing a stoped print
|
||||
//future: store printer state, filename and position for continuing a stopped print
|
||||
// so one can unplug the printer and continue printing the next day.
|
||||
|
||||
}
|
||||
|
@ -16,9 +16,9 @@ Usage: python createTemperatureLookup.py [options]
|
||||
Options:
|
||||
-h, --help show this help
|
||||
--rp=... pull-up resistor
|
||||
--t0=ttt:rrr low temperature temperature:resistance point (around 25C)
|
||||
--t1=ttt:rrr middle temperature temperature:resistance point (around 150C)
|
||||
--t2=ttt:rrr high temperature temperature:resistance point (around 250C)
|
||||
--t1=ttt:rrr low temperature temperature:resistance point (around 25C)
|
||||
--t2=ttt:rrr middle temperature temperature:resistance point (around 150C)
|
||||
--t3=ttt:rrr high temperature temperature:resistance point (around 250C)
|
||||
--num-temps=... the number of temperature points to calculate (default: 20)
|
||||
"""
|
||||
|
||||
@ -98,7 +98,8 @@ def main(argv):
|
||||
|
||||
try:
|
||||
opts, args = getopt.getopt(argv, "h", ["help", "rp=", "t1=", "t2=", "t3=", "num-temps="])
|
||||
except getopt.GetoptError:
|
||||
except getopt.GetoptError as err:
|
||||
print str(err)
|
||||
usage()
|
||||
sys.exit(2)
|
||||
|
||||
|
@ -51,6 +51,7 @@
|
||||
// 65 = Azteeg X1
|
||||
// 66 = Melzi with ATmega1284 (MaKr3d version)
|
||||
// 67 = Azteeg X3
|
||||
// 68 = Azteeg X3 Pro
|
||||
// 7 = Ultimaker
|
||||
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
|
||||
// 77 = 3Drag Controller
|
||||
@ -119,18 +120,6 @@
|
||||
// Effective horizontal distance bridged by diagonal push rods.
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
|
||||
|
||||
#define DELTA_DIAGONAL_ROD_2 sq(DELTA_DIAGONAL_ROD)
|
||||
|
||||
// Effective X/Y positions of the three vertical towers.
|
||||
#define SIN_60 0.8660254037844386
|
||||
#define COS_60 0.5
|
||||
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
|
||||
#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
|
||||
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
|
||||
#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
|
||||
#define DELTA_TOWER3_X 0.0 // back middle tower
|
||||
#define DELTA_TOWER3_Y DELTA_RADIUS
|
||||
|
||||
//===========================================================================
|
||||
//=============================Thermal Settings ============================
|
||||
//===========================================================================
|
||||
|
@ -270,6 +270,12 @@
|
||||
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
|
||||
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
|
||||
|
||||
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
|
||||
//#define DIGIPOT_I2C
|
||||
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
|
||||
#define DIGIPOT_I2C_NUM_CHANNELS 8
|
||||
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
|
||||
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
|
||||
|
||||
//===========================================================================
|
||||
//=============================Additional Features===========================
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
This code contibuted by Triffid_Hunter and modified by Kliment
|
||||
This code contributed by Triffid_Hunter and modified by Kliment
|
||||
why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
|
||||
*/
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1381,7 +1381,7 @@
|
||||
#define SDSS 53
|
||||
#define LED_PIN 8
|
||||
#define FAN_PIN 7
|
||||
#define PS_ON_PIN 12
|
||||
#define PS_ON_PIN -1
|
||||
#define KILL_PIN -1
|
||||
#define SUICIDE_PIN -1 //PIN that has to be turned on right after start, to keep power flowing.
|
||||
#define SAFETY_TRIGGERED_PIN 28 //PIN to detect the safety circuit has triggered
|
||||
@ -1781,8 +1781,8 @@
|
||||
#define Z_DIR_PIN 28
|
||||
#define Z_STOP_PIN 30
|
||||
|
||||
#define E_STEP_PIN 17
|
||||
#define E_DIR_PIN 21
|
||||
#define E0_STEP_PIN 17
|
||||
#define E0_DIR_PIN 21
|
||||
|
||||
#define LED_PIN -1
|
||||
|
||||
@ -1793,15 +1793,16 @@
|
||||
|
||||
#define HEATER_0_PIN 12 // (extruder)
|
||||
|
||||
#define HEATER_1_PIN 16 // (bed)
|
||||
#define HEATER_BED_PIN 16 // (bed)
|
||||
#define X_ENABLE_PIN 19
|
||||
#define Y_ENABLE_PIN 24
|
||||
#define Z_ENABLE_PIN 29
|
||||
#define E_ENABLE_PIN 13
|
||||
#define E0_ENABLE_PIN 13
|
||||
|
||||
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder)
|
||||
#define TEMP_1_PIN 5 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed)
|
||||
#define TEMP_1_PIN -1
|
||||
#define TEMP_2_PIN -1
|
||||
#define TEMP_BED_PIN 5 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed)
|
||||
#define SDPOWER -1
|
||||
#define SDSS 4
|
||||
#define HEATER_2_PIN -1
|
||||
|
@ -1,11 +1,9 @@
|
||||
#include "qr_solve.h"
|
||||
|
||||
#ifdef ACCURATE_BED_LEVELING
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
|
||||
|
||||
//# include "r8lib.h"
|
||||
|
||||
@ -1173,7 +1171,7 @@ void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[],
|
||||
|
||||
Discussion:
|
||||
|
||||
DQRLSS must be preceeded by a call to DQRANK.
|
||||
DQRLSS must be preceded by a call to DQRANK.
|
||||
|
||||
The system is to be solved is
|
||||
A * X = B
|
||||
@ -1225,7 +1223,7 @@ void dqrlss ( double a[], int lda, int m, int n, int kr, double b[], double x[],
|
||||
linear system.
|
||||
|
||||
Output, double RSD[M], the residual, B - A*X. RSD may
|
||||
overwite B.
|
||||
overwrite B.
|
||||
|
||||
Input, int JPVT[N], the pivot information from DQRANK.
|
||||
Columns JPVT[0], ..., JPVT[KR-1] of the original matrix are linearly
|
||||
@ -1314,7 +1312,7 @@ int dqrsl ( double a[], int lda, int n, int k, double qraux[], double y[],
|
||||
can be replaced by dummy variables in the calling program.
|
||||
To save storage, the user may in some cases use the same
|
||||
array for different parameters in the calling sequence. A
|
||||
frequently occuring example is when one wishes to compute
|
||||
frequently occurring example is when one wishes to compute
|
||||
any of B, RSD, or AB and does not need Y or QTY. In this
|
||||
case one may identify Y, QTY, and one of B, RSD, or AB, while
|
||||
providing separate arrays for anything else that is to be
|
||||
|
@ -1,6 +1,6 @@
|
||||
#include "Configuration.h"
|
||||
|
||||
#ifdef ACCURATE_BED_LEVELING
|
||||
#ifdef AUTO_BED_LEVELING_GRID
|
||||
|
||||
void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy );
|
||||
double ddot ( int n, double dx[], int incx, double dy[], int incy );
|
||||
|
@ -71,8 +71,8 @@ float st_get_position_mm(uint8_t axis);
|
||||
void st_wake_up();
|
||||
|
||||
|
||||
void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
||||
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
|
||||
void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
||||
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
|
||||
|
||||
void enable_endstops(bool check); // Enable/disable endstop checking
|
||||
|
||||
|
@ -250,7 +250,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
|
||||
Kp = 0.6*Ku;
|
||||
Ki = 2*Kp/Tu;
|
||||
Kd = Kp*Tu/8;
|
||||
SERIAL_PROTOCOLLNPGM(" Clasic PID ");
|
||||
SERIAL_PROTOCOLLNPGM(" Classic PID ");
|
||||
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
||||
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
||||
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
|
||||
@ -306,7 +306,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
|
||||
return;
|
||||
}
|
||||
if(cycles > ncycles) {
|
||||
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the Kp, Ki and Kd constants into Configuration.h");
|
||||
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
|
||||
return;
|
||||
}
|
||||
lcd_update();
|
||||
@ -449,7 +449,8 @@ void manage_heater()
|
||||
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
||||
#endif //PID_OPENLOOP
|
||||
#ifdef PID_DEBUG
|
||||
SERIAL_ECHO_START(" PIDDEBUG ");
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(" PID_DEBUG ");
|
||||
SERIAL_ECHO(e);
|
||||
SERIAL_ECHO(": Input ");
|
||||
SERIAL_ECHO(pid_input);
|
||||
|
@ -28,7 +28,7 @@
|
||||
#endif
|
||||
|
||||
// public functions
|
||||
void tp_init(); //initialise the heating
|
||||
void tp_init(); //initialize the heating
|
||||
void manage_heater(); //it is critical that this is called periodically.
|
||||
|
||||
// low level conversion routines
|
||||
|
@ -857,6 +857,70 @@ const short temptable_60[][2] PROGMEM = {
|
||||
};
|
||||
#endif
|
||||
|
||||
// Pt1000 and Pt100 handling
|
||||
//
|
||||
// Rt=R0*(1+a*T+b*T*T) [for T>0]
|
||||
// a=3.9083E-3, b=-5.775E-7
|
||||
|
||||
#define PtA 3.9083E-3
|
||||
#define PtB -5.775E-7
|
||||
#define PtRt(T,R0) ((R0)*(1.0+(PtA)*(T)+(PtB)*(T)*(T)))
|
||||
#define PtAdVal(T,R0,Rup) (short)(1024/(Rup/PtRt(T,R0)+1))
|
||||
#define PtLine(T,R0,Rup) { PtAdVal(T,R0,Rup)*OVERSAMPLENR, T },
|
||||
|
||||
#if (THERMISTORHEATER_0 == 110) || (THERMISTORHEATER_1 == 110) || (THERMISTORHEATER_2 == 110) || (THERMISTORBED == 110) // Pt100 with 1k0 pullup
|
||||
const short temptable_110[][2] PROGMEM = {
|
||||
// only few values are needed as the curve is very flat
|
||||
PtLine(0,100,1000)
|
||||
PtLine(50,100,1000)
|
||||
PtLine(100,100,1000)
|
||||
PtLine(150,100,1000)
|
||||
PtLine(200,100,1000)
|
||||
PtLine(250,100,1000)
|
||||
PtLine(300,100,1000)
|
||||
};
|
||||
#endif
|
||||
#if (THERMISTORHEATER_0 == 147) || (THERMISTORHEATER_1 == 147) || (THERMISTORHEATER_2 == 147) || (THERMISTORBED == 147) // Pt100 with 4k7 pullup
|
||||
const short temptable_147[][2] PROGMEM = {
|
||||
// only few values are needed as the curve is very flat
|
||||
PtLine(0,100,4700)
|
||||
PtLine(50,100,4700)
|
||||
PtLine(100,100,4700)
|
||||
PtLine(150,100,4700)
|
||||
PtLine(200,100,4700)
|
||||
PtLine(250,100,4700)
|
||||
PtLine(300,100,4700)
|
||||
};
|
||||
#endif
|
||||
#if (THERMISTORHEATER_0 == 1010) || (THERMISTORHEATER_1 == 1010) || (THERMISTORHEATER_2 == 1010) || (THERMISTORBED == 1010) // Pt1000 with 1k0 pullup
|
||||
const short temptable_1010[][2] PROGMEM = {
|
||||
PtLine(0,1000,1000)
|
||||
PtLine(25,1000,1000)
|
||||
PtLine(50,1000,1000)
|
||||
PtLine(75,1000,1000)
|
||||
PtLine(100,1000,1000)
|
||||
PtLine(125,1000,1000)
|
||||
PtLine(150,1000,1000)
|
||||
PtLine(175,1000,1000)
|
||||
PtLine(200,1000,1000)
|
||||
PtLine(225,1000,1000)
|
||||
PtLine(250,1000,1000)
|
||||
PtLine(275,1000,1000)
|
||||
PtLine(300,1000,1000)
|
||||
};
|
||||
#endif
|
||||
#if (THERMISTORHEATER_0 == 1047) || (THERMISTORHEATER_1 == 1047) || (THERMISTORHEATER_2 == 1047) || (THERMISTORBED == 1047) // Pt1000 with 4k7 pullup
|
||||
const short temptable_1047[][2] PROGMEM = {
|
||||
// only few values are needed as the curve is very flat
|
||||
PtLine(0,1000,4700)
|
||||
PtLine(50,1000,4700)
|
||||
PtLine(100,1000,4700)
|
||||
PtLine(150,1000,4700)
|
||||
PtLine(200,1000,4700)
|
||||
PtLine(250,1000,4700)
|
||||
PtLine(300,1000,4700)
|
||||
};
|
||||
#endif
|
||||
|
||||
#define _TT_NAME(_N) temptable_ ## _N
|
||||
#define TT_NAME(_N) _TT_NAME(_N)
|
||||
|
@ -38,7 +38,7 @@ char lcd_status_message[LCD_WIDTH+1] = WELCOME_MSG;
|
||||
#include "ultralcd_implementation_hitachi_HD44780.h"
|
||||
#endif
|
||||
|
||||
/** forward declerations **/
|
||||
/** forward declarations **/
|
||||
|
||||
void copy_and_scalePID_i();
|
||||
void copy_and_scalePID_d();
|
||||
@ -62,9 +62,9 @@ static void lcd_set_contrast();
|
||||
static void lcd_control_retract_menu();
|
||||
static void lcd_sdcard_menu();
|
||||
|
||||
static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audiable feedback that something has happend
|
||||
static void lcd_quick_feedback();//Cause an LCD refresh, and give the user visual or audible feedback that something has happened
|
||||
|
||||
/* Different types of actions that can be used in menuitems. */
|
||||
/* Different types of actions that can be used in menu items. */
|
||||
static void menu_action_back(menuFunc_t data);
|
||||
static void menu_action_submenu(menuFunc_t data);
|
||||
static void menu_action_gcode(const char* pgcode);
|
||||
@ -145,7 +145,7 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
|
||||
#ifndef REPRAPWORLD_KEYPAD
|
||||
volatile uint8_t buttons;//Contains the bits of the currently pressed buttons.
|
||||
#else
|
||||
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shiftregister values
|
||||
volatile uint8_t buttons_reprapworld_keypad; // to store the reprapworld_keypad shift register values
|
||||
#endif
|
||||
#ifdef LCD_HAS_SLOW_BUTTONS
|
||||
volatile uint8_t slow_buttons;//Contains the bits of the currently pressed buttons.
|
||||
@ -162,7 +162,7 @@ bool lcd_oldcardstatus;
|
||||
menuFunc_t currentMenu = lcd_status_screen; /* function pointer to the currently active menu */
|
||||
uint32_t lcd_next_update_millis;
|
||||
uint8_t lcd_status_update_delay;
|
||||
uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets atleast 1 full redraw (first redraw is partial) */
|
||||
uint8_t lcdDrawUpdate = 2; /* Set to none-zero when the LCD needs to draw, decreased after every draw. Set to 2 in LCD routines so the LCD gets at least 1 full redraw (first redraw is partial) */
|
||||
|
||||
//prevMenu and prevEncoderPosition are used to store the previous menu location when editing settings.
|
||||
menuFunc_t prevMenu = NULL;
|
||||
@ -173,10 +173,10 @@ void* editValue;
|
||||
int32_t minEditValue, maxEditValue;
|
||||
menuFunc_t callbackFunc;
|
||||
|
||||
// placeholders for Ki and Kd edits
|
||||
// place-holders for Ki and Kd edits
|
||||
float raw_Ki, raw_Kd;
|
||||
|
||||
/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependend */
|
||||
/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */
|
||||
static void lcd_status_screen()
|
||||
{
|
||||
if (lcd_status_update_delay)
|
||||
@ -196,6 +196,7 @@ static void lcd_status_screen()
|
||||
lcd_quick_feedback();
|
||||
}
|
||||
|
||||
#ifdef ULTIPANEL_FEEDMULTIPLY
|
||||
// Dead zone at 100% feedrate
|
||||
if ((feedmultiply < 100 && (feedmultiply + int(encoderPosition)) > 100) ||
|
||||
(feedmultiply > 100 && (feedmultiply + int(encoderPosition)) < 100))
|
||||
@ -219,6 +220,7 @@ static void lcd_status_screen()
|
||||
feedmultiply += int(encoderPosition);
|
||||
encoderPosition = 0;
|
||||
}
|
||||
#endif//ULTIPANEL_FEEDMULTIPLY
|
||||
|
||||
if (feedmultiply < 10)
|
||||
feedmultiply = 10;
|
||||
@ -460,6 +462,7 @@ static void lcd_move_x()
|
||||
{
|
||||
if (encoderPosition != 0)
|
||||
{
|
||||
refresh_cmd_timeout();
|
||||
current_position[X_AXIS] += float((int)encoderPosition) * move_menu_scale;
|
||||
if (min_software_endstops && current_position[X_AXIS] < X_MIN_POS)
|
||||
current_position[X_AXIS] = X_MIN_POS;
|
||||
@ -489,6 +492,7 @@ static void lcd_move_y()
|
||||
{
|
||||
if (encoderPosition != 0)
|
||||
{
|
||||
refresh_cmd_timeout();
|
||||
current_position[Y_AXIS] += float((int)encoderPosition) * move_menu_scale;
|
||||
if (min_software_endstops && current_position[Y_AXIS] < Y_MIN_POS)
|
||||
current_position[Y_AXIS] = Y_MIN_POS;
|
||||
@ -518,6 +522,7 @@ static void lcd_move_z()
|
||||
{
|
||||
if (encoderPosition != 0)
|
||||
{
|
||||
refresh_cmd_timeout();
|
||||
current_position[Z_AXIS] += float((int)encoderPosition) * move_menu_scale;
|
||||
if (min_software_endstops && current_position[Z_AXIS] < Z_MIN_POS)
|
||||
current_position[Z_AXIS] = Z_MIN_POS;
|
||||
@ -706,7 +711,9 @@ static void lcd_control_motion_menu()
|
||||
{
|
||||
START_MENU();
|
||||
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, 0.5, 50);
|
||||
#endif
|
||||
MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 500, 99000);
|
||||
MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990);
|
||||
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &max_z_jerk, 0.1, 990);
|
||||
@ -1003,7 +1010,7 @@ void lcd_init()
|
||||
WRITE(SHIFT_LD,HIGH);
|
||||
#endif
|
||||
#else // Not NEWPANEL
|
||||
#ifdef SR_LCD_2W_NL // Non latching 2 wire shiftregister
|
||||
#ifdef SR_LCD_2W_NL // Non latching 2 wire shift register
|
||||
pinMode (SR_DATA_PIN, OUTPUT);
|
||||
pinMode (SR_CLK_PIN, OUTPUT);
|
||||
#elif defined(SHIFT_CLK)
|
||||
@ -1050,7 +1057,7 @@ void lcd_update()
|
||||
{
|
||||
lcdDrawUpdate = 2;
|
||||
lcd_oldcardstatus = IS_SD_INSERTED;
|
||||
lcd_implementation_init(); // to maybe revive the lcd if static electricty killed it.
|
||||
lcd_implementation_init(); // to maybe revive the LCD if static electricity killed it.
|
||||
|
||||
if(lcd_oldcardstatus)
|
||||
{
|
||||
@ -1465,7 +1472,7 @@ char *ftostr52(const float &x)
|
||||
}
|
||||
|
||||
// Callback for after editing PID i value
|
||||
// grab the pid i value out of the temp variable; scale it; then update the PID driver
|
||||
// grab the PID i value out of the temp variable; scale it; then update the PID driver
|
||||
void copy_and_scalePID_i()
|
||||
{
|
||||
#ifdef PIDTEMP
|
||||
@ -1475,7 +1482,7 @@ void copy_and_scalePID_i()
|
||||
}
|
||||
|
||||
// Callback for after editing PID d value
|
||||
// grab the pid d value out of the temp variable; scale it; then update the PID driver
|
||||
// grab the PID d value out of the temp variable; scale it; then update the PID driver
|
||||
void copy_and_scalePID_d()
|
||||
{
|
||||
#ifdef PIDTEMP
|
||||
|
@ -17,7 +17,7 @@
|
||||
void lcd_setcontrast(uint8_t value);
|
||||
#endif
|
||||
|
||||
static unsigned char blink = 0; // Variable for visualisation of fan rotation in GLCD
|
||||
static unsigned char blink = 0; // Variable for visualization of fan rotation in GLCD
|
||||
|
||||
#define LCD_MESSAGEPGM(x) lcd_setstatuspgm(PSTR(x))
|
||||
#define LCD_ALERTMESSAGEPGM(x) lcd_setalertstatuspgm(PSTR(x))
|
||||
@ -29,7 +29,7 @@
|
||||
void lcd_buttons_update();
|
||||
extern volatile uint8_t buttons; //the last checked buttons in a bit array.
|
||||
#ifdef REPRAPWORLD_KEYPAD
|
||||
extern volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shiftregister values
|
||||
extern volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shift register values
|
||||
#endif
|
||||
#else
|
||||
FORCE_INLINE void lcd_buttons_update() {}
|
||||
@ -72,7 +72,7 @@
|
||||
#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_MIDDLE)
|
||||
#endif //REPRAPWORLD_KEYPAD
|
||||
#else
|
||||
//atomatic, do not change
|
||||
//atomic, do not change
|
||||
#define B_LE (1<<BL_LE)
|
||||
#define B_UP (1<<BL_UP)
|
||||
#define B_MI (1<<BL_MI)
|
||||
@ -85,7 +85,7 @@
|
||||
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
|
||||
#endif//NEWPANEL
|
||||
|
||||
#else //no lcd
|
||||
#else //no LCD
|
||||
FORCE_INLINE void lcd_update() {}
|
||||
FORCE_INLINE void lcd_init() {}
|
||||
FORCE_INLINE void lcd_setstatus(const char* message) {}
|
||||
|
@ -2,8 +2,8 @@
|
||||
#define ULTRA_LCD_IMPLEMENTATION_HITACHI_HD44780_H
|
||||
|
||||
/**
|
||||
* Implementation of the LCD display routines for a hitachi HD44780 display. These are common LCD character displays.
|
||||
* When selecting the rusian language, a slightly different LCD implementation is used to handle UTF8 characters.
|
||||
* Implementation of the LCD display routines for a Hitachi HD44780 display. These are common LCD character displays.
|
||||
* When selecting the Russian language, a slightly different LCD implementation is used to handle UTF8 characters.
|
||||
**/
|
||||
|
||||
#ifndef REPRAPWORLD_KEYPAD
|
||||
@ -20,7 +20,7 @@ extern volatile uint16_t buttons; //an extended version of the last checked but
|
||||
// via a shift/i2c register.
|
||||
|
||||
#ifdef ULTIPANEL
|
||||
// All Ultipanels might have an encoder - so this is always be mapped onto first two bits
|
||||
// All UltiPanels might have an encoder - so this is always be mapped onto first two bits
|
||||
#define BLEN_B 1
|
||||
#define BLEN_A 0
|
||||
|
||||
@ -718,6 +718,7 @@ static void lcd_implementation_quick_feedback()
|
||||
#endif
|
||||
#elif defined(BEEPER) && BEEPER > -1
|
||||
SET_OUTPUT(BEEPER);
|
||||
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
||||
for(int8_t i=0;i<10;i++)
|
||||
{
|
||||
WRITE(BEEPER,HIGH);
|
||||
@ -725,6 +726,15 @@ static void lcd_implementation_quick_feedback()
|
||||
WRITE(BEEPER,LOW);
|
||||
delayMicroseconds(100);
|
||||
}
|
||||
#else
|
||||
for(int8_t i=0;i<(LCD_FEEDBACK_FREQUENCY_DURATION_MS / (1000 / LCD_FEEDBACK_FREQUENCY_HZ));i++)
|
||||
{
|
||||
WRITE(BEEPER,HIGH);
|
||||
delayMicroseconds(1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2);
|
||||
WRITE(BEEPER,LOW);
|
||||
delayMicroseconds(1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -12,8 +12,8 @@
|
||||
#define ST7920_DAT_PIN LCD_PINS_ENABLE
|
||||
#define ST7920_CS_PIN LCD_PINS_RS
|
||||
|
||||
//#define PAGE_HEIGHT 8 //128 byte frambuffer
|
||||
//#define PAGE_HEIGHT 16 //256 byte frambuffer
|
||||
//#define PAGE_HEIGHT 8 //128 byte framebuffer
|
||||
//#define PAGE_HEIGHT 16 //256 byte framebuffer
|
||||
#define PAGE_HEIGHT 32 //512 byte framebuffer
|
||||
|
||||
#define WIDTH 128
|
||||
@ -59,8 +59,8 @@ uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, vo
|
||||
ST7920_SET_CMD();
|
||||
ST7920_WRITE_BYTE(0x08); //display off, cursor+blink off
|
||||
ST7920_WRITE_BYTE(0x01); //clear CGRAM ram
|
||||
u8g_Delay(10); //delay for cgram clear
|
||||
ST7920_WRITE_BYTE(0x3E); //extended mode + gdram active
|
||||
u8g_Delay(10); //delay for CGRAM clear
|
||||
ST7920_WRITE_BYTE(0x3E); //extended mode + GDRAM active
|
||||
for(y=0;y<HEIGHT/2;y++) //clear GDRAM
|
||||
{
|
||||
ST7920_WRITE_BYTE(0x80|y); //set y
|
||||
|
@ -22,19 +22,9 @@
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
#include "vector_3.h"
|
||||
|
||||
vector_3::vector_3()
|
||||
{
|
||||
this->x = 0;
|
||||
this->y = 0;
|
||||
this->z = 0;
|
||||
}
|
||||
vector_3::vector_3() : x(0), y(0), z(0) { }
|
||||
|
||||
vector_3::vector_3(float x, float y, float z)
|
||||
{
|
||||
this->x = x;
|
||||
this->y = y;
|
||||
this->z = z;
|
||||
}
|
||||
vector_3::vector_3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) { }
|
||||
|
||||
vector_3 vector_3::cross(vector_3 left, vector_3 right)
|
||||
{
|
||||
|
@ -4,9 +4,9 @@
|
||||
#include "Marlin.h"
|
||||
|
||||
#ifdef USE_WATCHDOG
|
||||
// intialise watch dog with a 1 sec interrupt time
|
||||
// initialize watch dog with a 1 sec interrupt time
|
||||
void watchdog_init();
|
||||
// pad the dog/reset watchdog. MUST be called at least every second after the first watchdog_init or avr will go into emergency procedures..
|
||||
// pad the dog/reset watchdog. MUST be called at least every second after the first watchdog_init or AVR will go into emergency procedures..
|
||||
void watchdog_reset();
|
||||
#else
|
||||
//If we do not have a watchdog, then we can have empty functions which are optimized away.
|
||||
|
@ -85,7 +85,7 @@ AutoTemp:
|
||||
If your gcode contains a wide spread of extruder velocities, or you realtime change the building speed, the temperature should be changed accordingly.
|
||||
Usually, higher speed requires higher temperature.
|
||||
This can now be performed by the AutoTemp function
|
||||
By calling M109 S<mintemp> T<maxtemp> F<factor> you enter the autotemp mode.
|
||||
By calling M109 S<mintemp> B<maxtemp> F<factor> you enter the autotemp mode.
|
||||
|
||||
You can leave it by calling M109 without any F.
|
||||
If active, the maximal extruder stepper rate of all buffered moves will be calculated, and named "maxerate" [steps/sec].
|
||||
|
Loading…
Reference in New Issue
Block a user