Bed leveling that accounts for home XYZ
This commit is contained in:
parent
2e8fd70fb1
commit
9248cfb0ad
@ -165,6 +165,11 @@
|
||||
#ifndef Z_SAFE_HOMING_Y_POINT
|
||||
#define Z_SAFE_HOMING_Y_POINT ((Y_MIN_POS + Y_MAX_POS) / 2)
|
||||
#endif
|
||||
#define X_TILT_FULCRUM Z_SAFE_HOMING_X_POINT
|
||||
#define Y_TILT_FULCRUM Z_SAFE_HOMING_Y_POINT
|
||||
#else
|
||||
#define X_TILT_FULCRUM X_HOME_POS
|
||||
#define Y_TILT_FULCRUM Y_HOME_POS
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
@ -458,45 +458,51 @@ static uint8_t target_extruder;
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
|
||||
#define TOWER_1 X_AXIS
|
||||
#define TOWER_2 Y_AXIS
|
||||
#define TOWER_3 Z_AXIS
|
||||
|
||||
float delta[ABC];
|
||||
float cartesian_position[XYZ] = { 0 };
|
||||
#define SIN_60 0.8660254037844386
|
||||
#define COS_60 0.5
|
||||
float endstop_adj[ABC] = { 0 };
|
||||
|
||||
float delta[ABC],
|
||||
cartesian_position[XYZ] = { 0 },
|
||||
endstop_adj[ABC] = { 0 };
|
||||
|
||||
// these are the default values, can be overriden with M665
|
||||
float delta_radius = DELTA_RADIUS;
|
||||
float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
|
||||
float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
|
||||
float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
|
||||
float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
|
||||
float delta_tower3_x = 0; // back middle tower
|
||||
float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
|
||||
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
||||
float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
|
||||
float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
|
||||
float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
|
||||
float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
|
||||
float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
|
||||
float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
|
||||
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
||||
float delta_clip_start_height = Z_MAX_POS;
|
||||
float delta_radius = DELTA_RADIUS,
|
||||
delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
|
||||
delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
|
||||
delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
|
||||
delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
|
||||
delta_tower3_x = 0, // back middle tower
|
||||
delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
|
||||
delta_diagonal_rod = DELTA_DIAGONAL_ROD,
|
||||
delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
|
||||
delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
|
||||
delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
|
||||
delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
|
||||
delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
|
||||
delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
|
||||
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
|
||||
delta_clip_start_height = Z_MAX_POS;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
int delta_grid_spacing[2] = { 0, 0 };
|
||||
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
|
||||
#endif
|
||||
|
||||
float delta_safe_distance_from_top();
|
||||
void set_cartesian_from_steppers();
|
||||
|
||||
#else
|
||||
|
||||
static bool home_all_axis = true;
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(SCARA)
|
||||
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
|
||||
float delta[ABC];
|
||||
float axis_scaling[ABC] = { 1, 1, 1 }; // Build size scaling, default to 1
|
||||
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
|
||||
delta[ABC],
|
||||
axis_scaling[ABC] = { 1, 1, 1 }, // Build size scaling, default to 1
|
||||
cartesian_position[XYZ] = { 0 };
|
||||
void set_cartesian_from_steppers() { } // to be written later
|
||||
#endif
|
||||
|
||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||
@ -2266,79 +2272,37 @@ static void clean_up_after_endstop_or_probe_move() {
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_GRID)
|
||||
#if DISABLED(DELTA)
|
||||
|
||||
#if DISABLED(DELTA)
|
||||
/**
|
||||
* Get the stepper positions, apply the rotation matrix
|
||||
* using the home XY and Z0 position as the fulcrum.
|
||||
*/
|
||||
vector_3 untilted_stepper_position() {
|
||||
vector_3 pos = vector_3(
|
||||
RAW_X_POSITION(stepper.get_axis_position_mm(X_AXIS)) - X_TILT_FULCRUM,
|
||||
RAW_Y_POSITION(stepper.get_axis_position_mm(Y_AXIS)) - Y_TILT_FULCRUM,
|
||||
RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS))
|
||||
);
|
||||
|
||||
static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
|
||||
matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
|
||||
|
||||
//planner.bed_level_matrix.debug("bed level before");
|
||||
//pos.debug("untilted_stepper_position offset");
|
||||
//bed_level_matrix.debug("untilted_stepper_position");
|
||||
//inverse.debug("in untilted_stepper_position");
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
planner.bed_level_matrix.set_to_identity();
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
vector_3 uncorrected_position = planner.adjusted_position();
|
||||
DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
|
||||
DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
|
||||
}
|
||||
#endif
|
||||
pos.apply_rotation(inverse);
|
||||
|
||||
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
||||
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
||||
pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
|
||||
pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
|
||||
pos.z = LOGICAL_Z_POSITION(pos.z);
|
||||
|
||||
vector_3 corrected_position = planner.adjusted_position();
|
||||
current_position[X_AXIS] = corrected_position.x;
|
||||
current_position[Y_AXIS] = corrected_position.y;
|
||||
current_position[Z_AXIS] = corrected_position.z;
|
||||
//pos.debug("after rotation and reorientation");
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
|
||||
#endif
|
||||
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
}
|
||||
|
||||
#endif // !DELTA
|
||||
|
||||
#else // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
||||
|
||||
planner.bed_level_matrix.set_to_identity();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
vector_3 uncorrected_position = planner.adjusted_position();
|
||||
DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
|
||||
}
|
||||
#endif
|
||||
|
||||
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
||||
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
||||
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
||||
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
|
||||
|
||||
if (planeNormal.z < 0) {
|
||||
planeNormal.x = -planeNormal.x;
|
||||
planeNormal.y = -planeNormal.y;
|
||||
planeNormal.z = -planeNormal.z;
|
||||
}
|
||||
|
||||
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
||||
vector_3 corrected_position = planner.adjusted_position();
|
||||
|
||||
current_position[X_AXIS] = corrected_position.x;
|
||||
current_position[Y_AXIS] = corrected_position.y;
|
||||
current_position[Z_AXIS] = corrected_position.z;
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
|
||||
#endif
|
||||
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
return pos;
|
||||
}
|
||||
|
||||
#endif // !AUTO_BED_LEVELING_GRID
|
||||
#endif // !DELTA
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
|
||||
@ -3626,41 +3590,41 @@ inline void gcode_G28() {
|
||||
|
||||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
if (!dryrun) {
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
vector_3 corrected_position = planner.adjusted_position();
|
||||
DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
|
||||
DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
|
||||
}
|
||||
#endif
|
||||
|
||||
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
|
||||
// Reset the bed_level_matrix because leveling
|
||||
// needs to be done without leveling enabled.
|
||||
planner.bed_level_matrix.set_to_identity();
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
reset_bed_level();
|
||||
#else //!DELTA
|
||||
//
|
||||
// Re-orient the current position without leveling
|
||||
// based on where the steppers are positioned.
|
||||
//
|
||||
#if ENABLED(DELTA) || ENABLED(SCARA)
|
||||
|
||||
//vector_3 corrected_position = planner.adjusted_position();
|
||||
//corrected_position.debug("position before G29");
|
||||
vector_3 uncorrected_position = planner.adjusted_position();
|
||||
//uncorrected_position.debug("position during G29");
|
||||
current_position[X_AXIS] = uncorrected_position.x;
|
||||
current_position[Y_AXIS] = uncorrected_position.y;
|
||||
current_position[Z_AXIS] = uncorrected_position.z;
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
|
||||
#if ENABLED(DELTA)
|
||||
reset_bed_level();
|
||||
#endif
|
||||
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
// For DELTA/SCARA we need to apply forward kinematics.
|
||||
// This returns raw positions and we remap to the space.
|
||||
set_cartesian_from_steppers();
|
||||
LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartesian_position[i], i);
|
||||
|
||||
#else
|
||||
|
||||
// For cartesian/core the steppers are already mapped to
|
||||
// the coordinate space by design.
|
||||
LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
|
||||
#endif // !DELTA
|
||||
}
|
||||
|
||||
stepper.synchronize();
|
||||
// Inform the planner about the new coordinates
|
||||
// (This is probably not needed here)
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
}
|
||||
|
||||
setup_for_endstop_or_probe_move();
|
||||
|
||||
@ -3766,7 +3730,20 @@ inline void gcode_G28() {
|
||||
LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
|
||||
stow_probe_after_each, verbose_level);
|
||||
|
||||
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
||||
if (!dryrun) {
|
||||
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1),
|
||||
pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2),
|
||||
pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
||||
|
||||
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
|
||||
|
||||
if (planeNormal.z < 0) {
|
||||
planeNormal.x *= -1;
|
||||
planeNormal.y *= -1;
|
||||
planeNormal.z *= -1;
|
||||
}
|
||||
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
||||
}
|
||||
|
||||
#endif // !AUTO_BED_LEVELING_GRID
|
||||
|
||||
@ -3810,7 +3787,12 @@ inline void gcode_G28() {
|
||||
}
|
||||
}
|
||||
|
||||
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
|
||||
// Create the matrix but don't correct the position yet
|
||||
if (!dryrun) {
|
||||
planner.bed_level_matrix = matrix_3x3::create_look_at(
|
||||
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
|
||||
);
|
||||
}
|
||||
|
||||
// Show the Topography map if enabled
|
||||
if (do_topography_map) {
|
||||
@ -3851,6 +3833,7 @@ inline void gcode_G28() {
|
||||
SERIAL_EOL;
|
||||
} // yy
|
||||
SERIAL_EOL;
|
||||
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
|
||||
|
||||
@ -3876,47 +3859,60 @@ inline void gcode_G28() {
|
||||
SERIAL_EOL;
|
||||
}
|
||||
} //do_topography_map
|
||||
|
||||
#endif //!DELTA
|
||||
|
||||
#endif // AUTO_BED_LEVELING_GRID
|
||||
|
||||
#if DISABLED(DELTA)
|
||||
|
||||
if (verbose_level > 0)
|
||||
planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
|
||||
|
||||
if (!dryrun) {
|
||||
/**
|
||||
* Correct the Z height difference from Z probe position and nozzle tip position.
|
||||
* The Z height on homing is measured by Z probe, but the Z probe is quite far
|
||||
* from the nozzle. When the bed is uneven, this height must be corrected.
|
||||
*/
|
||||
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
|
||||
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
||||
z_tmp = current_position[Z_AXIS],
|
||||
stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
|
||||
//
|
||||
// Correct the current XYZ position based on the tilted plane.
|
||||
//
|
||||
|
||||
// Get the distance from the reference point to the current position
|
||||
// The current XY is in sync with the planner/steppers at this point
|
||||
// but the current Z is only known to the steppers.
|
||||
float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
|
||||
y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
|
||||
z_real = RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS));
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
|
||||
SERIAL_ECHOLNPAIR(" ... z_tmp = ", z_tmp);
|
||||
SERIAL_ECHOPAIR("BEFORE ROTATION ... x_dist:", x_dist);
|
||||
SERIAL_ECHOPAIR("y_dist:", y_dist);
|
||||
SERIAL_ECHOPAIR("z_real:", z_real);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Apply the correction sending the Z probe offset
|
||||
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
||||
// Apply the matrix to the distance from the reference point to XY,
|
||||
// and from the homed Z to the current Z.
|
||||
apply_rotation_xyz(planner.bed_level_matrix, x_dist, y_dist, z_real);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING))
|
||||
SERIAL_ECHOLNPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOPAIR("AFTER ROTATION ... x_dist:", x_dist);
|
||||
SERIAL_ECHOPAIR("y_dist:", y_dist);
|
||||
SERIAL_ECHOPAIR("z_real:", z_real);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Adjust the current Z and send it to the planner.
|
||||
current_position[Z_AXIS] += z_tmp - stepper_z;
|
||||
// Apply the rotated distance and Z to the current position
|
||||
current_position[X_AXIS] = LOGICAL_X_POSITION(X_TILT_FULCRUM + x_dist);
|
||||
current_position[Y_AXIS] = LOGICAL_Y_POSITION(Y_TILT_FULCRUM + y_dist);
|
||||
current_position[Z_AXIS] = LOGICAL_Z_POSITION(z_real);
|
||||
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected XYZ in G29", current_position);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // !DELTA
|
||||
|
||||
#ifdef Z_PROBE_END_SCRIPT
|
||||
@ -7850,15 +7846,15 @@ void ok_to_send() {
|
||||
RAW_Z_POSITION(in_cartesian[Z_AXIS])
|
||||
};
|
||||
|
||||
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
|
||||
delta[A_AXIS] = sqrt(delta_diagonal_rod_2_tower_1
|
||||
- sq(delta_tower1_x - cartesian[X_AXIS])
|
||||
- sq(delta_tower1_y - cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
|
||||
delta[B_AXIS] = sqrt(delta_diagonal_rod_2_tower_2
|
||||
- sq(delta_tower2_x - cartesian[X_AXIS])
|
||||
- sq(delta_tower2_y - cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
|
||||
delta[C_AXIS] = sqrt(delta_diagonal_rod_2_tower_3
|
||||
- sq(delta_tower3_x - cartesian[X_AXIS])
|
||||
- sq(delta_tower3_y - cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
@ -7867,9 +7863,9 @@ void ok_to_send() {
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
|
||||
SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
|
||||
SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
|
||||
SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[A_AXIS]);
|
||||
SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[B_AXIS]);
|
||||
SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[C_AXIS]);
|
||||
*/
|
||||
}
|
||||
|
||||
@ -7880,10 +7876,10 @@ void ok_to_send() {
|
||||
LOGICAL_Z_POSITION(0)
|
||||
};
|
||||
inverse_kinematics(cartesian);
|
||||
float distance = delta[TOWER_3];
|
||||
float distance = delta[A_AXIS];
|
||||
cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
|
||||
inverse_kinematics(cartesian);
|
||||
return abs(distance - delta[TOWER_3]);
|
||||
return abs(distance - delta[A_AXIS]);
|
||||
}
|
||||
|
||||
void forward_kinematics_DELTA(float z1, float z2, float z3) {
|
||||
@ -8014,7 +8010,7 @@ void set_current_from_steppers_for_axis(AxisEnum axis) {
|
||||
set_cartesian_from_steppers();
|
||||
current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
vector_3 pos = planner.adjusted_position();
|
||||
vector_3 pos = untilted_stepper_position();
|
||||
current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
|
||||
#else
|
||||
current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
|
||||
|
@ -521,6 +521,38 @@ void Planner::check_axes_activity() {
|
||||
#endif
|
||||
}
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
void Planner::apply_leveling(
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
const float &x, const float &y
|
||||
#else
|
||||
float &x, float &y
|
||||
#endif
|
||||
, float &z
|
||||
) {
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
if (mbl.active())
|
||||
z += mbl.get_z(RAW_X_POSITION(x), RAW_Y_POSITION(y));
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
|
||||
float tx = RAW_X_POSITION(x) - (X_TILT_FULCRUM),
|
||||
ty = RAW_Y_POSITION(y) - (Y_TILT_FULCRUM),
|
||||
tz = RAW_Z_POSITION(z);
|
||||
|
||||
apply_rotation_xyz(bed_level_matrix, tx, ty, tz);
|
||||
|
||||
x = LOGICAL_X_POSITION(tx + X_TILT_FULCRUM);
|
||||
y = LOGICAL_Y_POSITION(ty + Y_TILT_FULCRUM);
|
||||
z = LOGICAL_Z_POSITION(tz);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Planner::buffer_line
|
||||
*
|
||||
@ -531,12 +563,14 @@ void Planner::check_axes_activity() {
|
||||
* extruder - target extruder
|
||||
*/
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
void Planner::buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder)
|
||||
#else
|
||||
void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder)
|
||||
#endif // AUTO_BED_LEVELING_FEATURE
|
||||
{
|
||||
void Planner::buffer_line(
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
float x, float y, float z
|
||||
#else
|
||||
const float& x, const float& y, const float& z
|
||||
#endif
|
||||
, const float& e, float fr_mm_s, const uint8_t extruder
|
||||
) {
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = next_block_index(block_buffer_head);
|
||||
|
||||
@ -544,11 +578,8 @@ void Planner::check_axes_activity() {
|
||||
// Rest here until there is room in the buffer.
|
||||
while (block_buffer_tail == next_buffer_head) idle();
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
if (mbl.active())
|
||||
z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
apply_rotation_xyz(bed_level_matrix, x, y, z);
|
||||
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
apply_leveling(x, y, z);
|
||||
#endif
|
||||
|
||||
// The target position of the tool in absolute steps
|
||||
@ -1116,61 +1147,33 @@ void Planner::check_axes_activity() {
|
||||
|
||||
} // buffer_line()
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
|
||||
|
||||
/**
|
||||
* Get the XYZ position of the steppers as a vector_3.
|
||||
*
|
||||
* On CORE machines XYZ is derived from ABC.
|
||||
*/
|
||||
vector_3 Planner::adjusted_position() {
|
||||
vector_3 pos = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
|
||||
|
||||
//pos.debug("in Planner::adjusted_position");
|
||||
//bed_level_matrix.debug("in Planner::adjusted_position");
|
||||
|
||||
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
||||
//inverse.debug("in Planner::inverse");
|
||||
|
||||
pos.apply_rotation(inverse);
|
||||
//pos.debug("after rotation");
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_FEATURE && !DELTA
|
||||
|
||||
/**
|
||||
* Directly set the planner XYZ position (hence the stepper positions).
|
||||
*
|
||||
* On CORE machines stepper ABC will be translated from the given XYZ.
|
||||
*/
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
void Planner::set_position_mm(float x, float y, float z, const float& e)
|
||||
#else
|
||||
void Planner::set_position_mm(const float& x, const float& y, const float& z, const float& e)
|
||||
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
|
||||
{
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
void Planner::set_position_mm(
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
float x, float y, float z
|
||||
#else
|
||||
const float& x, const float& y, const float& z
|
||||
#endif
|
||||
, const float& e
|
||||
) {
|
||||
|
||||
if (mbl.active())
|
||||
z += mbl.get_z(RAW_X_POSITION(x), RAW_Y_POSITION(y));
|
||||
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
apply_leveling(x, y, z);
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
|
||||
ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
|
||||
nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
|
||||
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
||||
stepper.set_position(nx, ny, nz, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
|
||||
apply_rotation_xyz(bed_level_matrix, x, y, z);
|
||||
|
||||
#endif
|
||||
|
||||
long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
|
||||
ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
|
||||
nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
|
||||
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
||||
stepper.set_position(nx, ny, nz, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
|
||||
LOOP_XYZE(i) previous_speed[i] = 0.0;
|
||||
}
|
||||
LOOP_XYZE(i) previous_speed[i] = 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Directly set the planner E position (hence the stepper E position).
|
||||
|
@ -203,11 +203,10 @@ class Planner {
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
/**
|
||||
* The corrected position, applying the bed level matrix
|
||||
*/
|
||||
static vector_3 adjusted_position();
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
static void apply_leveling(const float &x, const float &y, float &z);
|
||||
#else
|
||||
static void apply_leveling(float &x, float &y, float &z);
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
Loading…
Reference in New Issue
Block a user