From 96f51f400f1ef444baf9e31b8788d64d6cdaad71 Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Wed, 27 Apr 2016 18:06:32 -0700 Subject: [PATCH] Planner singleton class --- Marlin/Marlin.h | 6 + Marlin/Marlin_main.cpp | 192 +++++++++--------- Marlin/configuration_store.cpp | 142 ++++++------- Marlin/planner.cpp | 350 ++++++++++++++------------------- Marlin/planner.h | 302 ++++++++++++++++++++-------- Marlin/stepper.cpp | 12 +- Marlin/stepper.h | 2 +- Marlin/temperature.cpp | 2 +- Marlin/temperature.h | 10 +- Marlin/ultralcd.cpp | 68 +++---- 10 files changed, 587 insertions(+), 499 deletions(-) diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 1db06e9bc2..f6f488df84 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -283,6 +283,12 @@ extern float sw_endstop_max[3]; // axis[n].sw_endstop_max extern bool axis_known_position[3]; // axis[n].is_known extern bool axis_homed[3]; // axis[n].is_homed +// GCode support for external objects +extern bool code_seen(char); +extern float code_value(); +extern long code_value_long(); +extern int16_t code_value_short(); + #if ENABLED(DELTA) #ifndef DELTA_RADIUS_TRIM_TOWER_1 #define DELTA_RADIUS_TRIM_TOWER_1 0.0 diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index ce85e5091b..0f5fa9c42d 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -149,7 +149,7 @@ * M84 - Disable steppers until next move, * or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. * M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) - * M92 - Set axis_steps_per_unit - same syntax as G92 + * M92 - Set planner.axis_steps_per_unit - same syntax as G92 * M104 - Set extruder target temp * M105 - Read current temp * M106 - Fan on @@ -540,7 +540,7 @@ static void report_current_position(); if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position); #endif calculate_delta(current_position); - plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); + planner.set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); } #endif @@ -817,7 +817,6 @@ void setup() { lcd_init(); tp_init(); // Initialize temperature loop - plan_init(); // Initialize planner; #if ENABLED(DELTA) || ENABLED(SCARA) // Vital to init kinematic equivalent for X0 Y0 Z0 @@ -1405,17 +1404,17 @@ inline void set_homing_bump_feedrate(AxisEnum axis) { // (or from wherever it has been told it is located). // inline void line_to_current_position() { - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); + planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); } inline void line_to_z(float zPosition) { - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder); + planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder); } // // line_to_destination // Move the planner, not necessarily synced with current_position // inline void line_to_destination(float mm_m) { - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder); + planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder); } inline void line_to_destination() { line_to_destination(feedrate); @@ -1430,9 +1429,9 @@ inline void sync_plan_position() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); #endif - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } -inline void sync_plan_position_e() { plan_set_e_position(current_position[E_AXIS]); } +inline void sync_plan_position_e() { planner.set_e_position(current_position[E_AXIS]); } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } @@ -1459,7 +1458,7 @@ static void setup_for_endstop_move() { #endif refresh_cmd_timeout(); calculate_delta(destination); - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); + planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); set_current_to_destination(); } #endif @@ -1470,21 +1469,21 @@ static void setup_for_endstop_move() { static void set_bed_level_equation_lsq(double* plane_equation_coefficients) { - //plan_bed_level_matrix.debug("bed level before"); + //planner.bed_level_matrix.debug("bed level before"); #if ENABLED(DEBUG_LEVELING_FEATURE) - plan_bed_level_matrix.set_to_identity(); + planner.bed_level_matrix.set_to_identity(); if (DEBUGGING(LEVELING)) { - vector_3 uncorrected_position = plan_get_position(); + vector_3 uncorrected_position = planner.adjusted_position(); DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position); DEBUG_POS(">>> set_bed_level_equation_lsq", current_position); } #endif vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - vector_3 corrected_position = plan_get_position(); + vector_3 corrected_position = planner.adjusted_position(); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; @@ -1502,7 +1501,7 @@ static void setup_for_endstop_move() { static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { - plan_bed_level_matrix.set_to_identity(); + planner.bed_level_matrix.set_to_identity(); vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); @@ -1515,9 +1514,9 @@ static void setup_for_endstop_move() { planeNormal.z = -planeNormal.z; } - plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); + planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); - vector_3 corrected_position = plan_get_position(); + vector_3 corrected_position = planner.adjusted_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { @@ -1568,7 +1567,7 @@ static void setup_for_endstop_move() { * is not where we said to go. */ long stop_steps = stepper.position(Z_AXIS); - float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; + float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS]; current_position[Z_AXIS] = mm; #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -1579,7 +1578,7 @@ static void setup_for_endstop_move() { #else // !DELTA - plan_bed_level_matrix.set_to_identity(); + planner.bed_level_matrix.set_to_identity(); feedrate = homing_feedrate[Z_AXIS]; // Move down until the Z probe (or endstop?) is triggered @@ -1589,7 +1588,7 @@ static void setup_for_endstop_move() { // Tell the planner where we ended up - Get this from the stepper handler zPosition = stepper.get_axis_position_mm(Z_AXIS); - plan_set_position( + planner.set_position( current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS] ); @@ -2552,7 +2551,7 @@ inline void gcode_G28() { // For auto bed leveling, clear the level matrix #if ENABLED(AUTO_BED_LEVELING_FEATURE) - plan_bed_level_matrix.set_to_identity(); + planner.bed_level_matrix.set_to_identity(); #if ENABLED(DELTA) reset_bed_level(); #endif @@ -2630,7 +2629,7 @@ inline void gcode_G28() { // Raise Z before homing any other axes and z is not already high enough (never lower z) if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) { destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING; - feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s) + feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING)); @@ -3201,22 +3200,22 @@ inline void gcode_G28() { #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA) if (DEBUGGING(LEVELING)) { - vector_3 corrected_position = plan_get_position(); + vector_3 corrected_position = planner.adjusted_position(); DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position); DEBUG_POS("BEFORE matrix.set_to_identity", current_position); } #endif // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong - plan_bed_level_matrix.set_to_identity(); + planner.bed_level_matrix.set_to_identity(); #if ENABLED(DELTA) reset_bed_level(); #else //!DELTA - //vector_3 corrected_position = plan_get_position(); + //vector_3 corrected_position = planner.adjusted_position(); //corrected_position.debug("position before G29"); - vector_3 uncorrected_position = plan_get_position(); + vector_3 uncorrected_position = planner.adjusted_position(); //uncorrected_position.debug("position during G29"); current_position[X_AXIS] = uncorrected_position.x; current_position[Y_AXIS] = uncorrected_position.y; @@ -3415,7 +3414,7 @@ inline void gcode_G28() { y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; - apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); + apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); NOMORE(min_diff, eqnBVector[ind] - z_tmp); @@ -3438,7 +3437,7 @@ inline void gcode_G28() { y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; - apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); + apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); float diff = eqnBVector[ind] - z_tmp - min_diff; if (diff >= 0.0) @@ -3497,7 +3496,7 @@ inline void gcode_G28() { #endif #else // !DELTA if (verbose_level > 0) - plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); + planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); if (!dryrun) { /** @@ -3508,7 +3507,7 @@ inline void gcode_G28() { float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, z_tmp = current_position[Z_AXIS], - real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane) + real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { @@ -3520,13 +3519,13 @@ inline void gcode_G28() { #endif // Apply the correction sending the Z probe offset - apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); + apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); /* * Get the current Z position and send it to the planner. * * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z - * (most recent plan_set_position/sync_plan_position) + * (most recent planner.set_position/sync_plan_position) * * >> zprobe_zoffset : Z distance from nozzle to Z probe * (set by default, M851, EEPROM, or Menu) @@ -4065,7 +4064,7 @@ inline void gcode_M42() { reset_bed_level(); #else // we don't do bed level correction in M48 because we want the raw data when we probe - plan_bed_level_matrix.set_to_identity(); + planner.bed_level_matrix.set_to_identity(); #endif if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0) @@ -4454,10 +4453,7 @@ inline void gcode_M109() { } #if ENABLED(AUTOTEMP) - autotemp_enabled = code_seen('F'); - if (autotemp_enabled) autotemp_factor = code_value(); - if (code_seen('S')) autotemp_min = code_value(); - if (code_seen('B')) autotemp_max = code_value(); + planner.autotemp_M109(); #endif #if TEMP_RESIDENCY_TIME > 0 @@ -4897,15 +4893,15 @@ inline void gcode_M92() { if (i == E_AXIS) { float value = code_value(); if (value < 20.0) { - float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. - max_e_jerk *= factor; - max_feedrate[i] *= factor; - axis_steps_per_sqr_second[i] *= factor; + float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. + planner.max_e_jerk *= factor; + planner.max_feedrate[i] *= factor; + planner.axis_steps_per_sqr_second[i] *= factor; } - axis_steps_per_unit[i] = value; + planner.axis_steps_per_unit[i] = value; } else { - axis_steps_per_unit[i] = code_value(); + planner.axis_steps_per_unit[i] = code_value(); } } } @@ -4940,9 +4936,9 @@ static void report_current_position() { SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); - SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]); + SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta:"); - SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]); + SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]); SERIAL_EOL; SERIAL_EOL; #endif } @@ -5083,17 +5079,17 @@ inline void gcode_M200() { inline void gcode_M201() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { - max_acceleration_units_per_sq_second[i] = code_value(); + planner.max_acceleration_units_per_sq_second[i] = code_value(); } } // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) - reset_acceleration_rates(); + planner.reset_acceleration_rates(); } #if 0 // Not used for Sprinter/grbl gen6 inline void gcode_M202() { for (int8_t i = 0; i < NUM_AXIS; i++) { - if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; + if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * planner.axis_steps_per_unit[i]; } } #endif @@ -5105,7 +5101,7 @@ inline void gcode_M201() { inline void gcode_M203() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { - max_feedrate[i] = code_value(); + planner.max_feedrate[i] = code_value(); } } } @@ -5121,23 +5117,23 @@ inline void gcode_M203() { */ inline void gcode_M204() { if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments. - travel_acceleration = acceleration = code_value(); - SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration); + planner.travel_acceleration = planner.acceleration = code_value(); + SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration); SERIAL_EOL; } if (code_seen('P')) { - acceleration = code_value(); - SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration); + planner.acceleration = code_value(); + SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration); SERIAL_EOL; } if (code_seen('R')) { - retract_acceleration = code_value(); - SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration); + planner.retract_acceleration = code_value(); + SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration); SERIAL_EOL; } if (code_seen('T')) { - travel_acceleration = code_value(); - SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration); + planner.travel_acceleration = code_value(); + SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration); SERIAL_EOL; } } @@ -5153,12 +5149,12 @@ inline void gcode_M204() { * E = Max E Jerk (mm/s/s) */ inline void gcode_M205() { - if (code_seen('S')) minimumfeedrate = code_value(); - if (code_seen('T')) mintravelfeedrate = code_value(); - if (code_seen('B')) minsegmenttime = code_value(); - if (code_seen('X')) max_xy_jerk = code_value(); - if (code_seen('Z')) max_z_jerk = code_value(); - if (code_seen('E')) max_e_jerk = code_value(); + if (code_seen('S')) planner.min_feedrate = code_value(); + if (code_seen('T')) planner.min_travel_feedrate = code_value(); + if (code_seen('B')) planner.min_segment_time = code_value(); + if (code_seen('X')) planner.max_xy_jerk = code_value(); + if (code_seen('Z')) planner.max_z_jerk = code_value(); + if (code_seen('E')) planner.max_e_jerk = code_value(); } /** @@ -6004,7 +6000,7 @@ inline void gcode_M503() { #if ENABLED(DELTA) #define RUNPLAN calculate_delta(destination); \ - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder); + planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder); #else #define RUNPLAN line_to_destination(); #endif @@ -6097,8 +6093,8 @@ inline void gcode_M503() { #if ENABLED(DELTA) // Move XYZ to starting position, then E calculate_delta(lastpos); - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder); - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); + planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder); + planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); #else // Move XY to starting position, then Z, then E destination[X_AXIS] = lastpos[X_AXIS]; @@ -6292,7 +6288,7 @@ inline void gcode_T(uint8_t tmp_extruder) { #ifdef XY_TRAVEL_SPEED feedrate = XY_TRAVEL_SPEED; #else - feedrate = min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]); + feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]); #endif } @@ -6304,12 +6300,12 @@ inline void gcode_T(uint8_t tmp_extruder) { if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() && (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) { // Park old head: 1) raise 2) move to park position 3) lower - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, - current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); - plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, - current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder); - plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS], - current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); + planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, + current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); + planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, + current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder); + planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS], + current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); stepper.synchronize(); } @@ -7186,9 +7182,9 @@ void clamp_to_software_endstops(float target[3]) { #if ENABLED(MESH_BED_LEVELING) // This function is used to split lines on mesh borders so each segment is only part of one mesh area -void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { +void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { if (!mbl.active) { - plan_buffer_line(x, y, z, e, feed_rate, extruder); + planner.buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } @@ -7202,7 +7198,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ iy = min(iy, MESH_NUM_Y_POINTS - 2); if (pix == ix && piy == iy) { // Start and end on same mesh square - plan_buffer_line(x, y, z, e, feed_rate, extruder); + planner.buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } @@ -7241,7 +7237,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ } else { // Already split on a border - plan_buffer_line(x, y, z, e, feed_rate, extruder); + planner.buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } @@ -7250,12 +7246,12 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ destination[Y_AXIS] = ny; destination[Z_AXIS] = nz; destination[E_AXIS] = ne; - mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits); + mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits); destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[Z_AXIS] = z; destination[E_AXIS] = e; - mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); + mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); } #endif // MESH_BED_LEVELING @@ -7314,7 +7310,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ //DEBUG_POS("prepare_move_delta", target); //DEBUG_POS("prepare_move_delta", delta); - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder); + planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder); } return true; } @@ -7331,9 +7327,9 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ if (active_extruder_parked) { if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { // move duplicate extruder into correct duplication position. - plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, - current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1); + planner.set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, + current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1); sync_plan_position(); stepper.synchronize(); extruder_duplication_enabled = true; @@ -7353,9 +7349,9 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ } delayed_move_time = 0; // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower - plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder); - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); + planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); + planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder); + planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); active_extruder_parked = false; } } @@ -7373,7 +7369,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ } else { #if ENABLED(MESH_BED_LEVELING) - mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); + mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); return false; #else line_to_destination(feedrate * feedrate_multiplier / 100.0); @@ -7387,7 +7383,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_ /** * Prepare a single move and get ready for the next one * - * (This may call plan_buffer_line several times to put + * (This may call planner.buffer_line several times to put * smaller moves into the planner for DELTA or SCARA.) */ void prepare_move() { @@ -7531,9 +7527,9 @@ void plan_arc( #if ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(arc_target); #endif - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); + planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); #else - plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); + planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); #endif } @@ -7543,9 +7539,9 @@ void plan_arc( #if ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(target); #endif - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); + planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); #else - plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); + planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); #endif // As far as the parser is concerned, the position is now == target. In reality the @@ -7762,7 +7758,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) { if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED)); if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time) - && !ignore_stepper_queue && !blocks_queued()) { + && !ignore_stepper_queue && !planner.blocks_queued()) { #if ENABLED(DISABLE_INACTIVE_X) disable_x(); #endif @@ -7855,12 +7851,12 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) { #endif } float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS]; - plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], - destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], - (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder); + planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], + destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], + (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder); current_position[E_AXIS] = oldepos; destination[E_AXIS] = oldedes; - plan_set_e_position(oldepos); + planner.set_e_position(oldepos); previous_cmd_ms = ms; // refresh_cmd_timeout() stepper.synchronize(); switch (active_extruder) { @@ -7900,7 +7896,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) { handle_status_leds(); #endif - check_axes_activity(); + planner.check_axes_activity(); } void kill(const char* lcd_msg) { diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp index 057f95b1c5..8946156b11 100644 --- a/Marlin/configuration_store.cpp +++ b/Marlin/configuration_store.cpp @@ -43,18 +43,18 @@ * * 100 Version (char x4) * - * 104 M92 XYZE axis_steps_per_unit (float x4) - * 120 M203 XYZE max_feedrate (float x4) - * 136 M201 XYZE max_acceleration_units_per_sq_second (uint32_t x4) - * 152 M204 P acceleration (float) - * 156 M204 R retract_acceleration (float) - * 160 M204 T travel_acceleration (float) - * 164 M205 S minimumfeedrate (float) - * 168 M205 T mintravelfeedrate (float) - * 172 M205 B minsegmenttime (ulong) - * 176 M205 X max_xy_jerk (float) - * 180 M205 Z max_z_jerk (float) - * 184 M205 E max_e_jerk (float) + * 104 M92 XYZE planner.axis_steps_per_unit (float x4) + * 120 M203 XYZE planner.max_feedrate (float x4) + * 136 M201 XYZE planner.max_acceleration_units_per_sq_second (uint32_t x4) + * 152 M204 P planner.acceleration (float) + * 156 M204 R planner.retract_acceleration (float) + * 160 M204 T planner.travel_acceleration (float) + * 164 M205 S planner.min_feedrate (float) + * 168 M205 T planner.min_travel_feedrate (float) + * 172 M205 B planner.min_segment_time (ulong) + * 176 M205 X planner.max_xy_jerk (float) + * 180 M205 Z planner.max_z_jerk (float) + * 184 M205 E planner.max_e_jerk (float) * 188 M206 XYZ home_offset (float x3) * * Mesh bed leveling: @@ -173,18 +173,18 @@ void Config_StoreSettings() { char ver[4] = "000"; int i = EEPROM_OFFSET; EEPROM_WRITE_VAR(i, ver); // invalidate data first - EEPROM_WRITE_VAR(i, axis_steps_per_unit); - EEPROM_WRITE_VAR(i, max_feedrate); - EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second); - EEPROM_WRITE_VAR(i, acceleration); - EEPROM_WRITE_VAR(i, retract_acceleration); - EEPROM_WRITE_VAR(i, travel_acceleration); - EEPROM_WRITE_VAR(i, minimumfeedrate); - EEPROM_WRITE_VAR(i, mintravelfeedrate); - EEPROM_WRITE_VAR(i, minsegmenttime); - EEPROM_WRITE_VAR(i, max_xy_jerk); - EEPROM_WRITE_VAR(i, max_z_jerk); - EEPROM_WRITE_VAR(i, max_e_jerk); + EEPROM_WRITE_VAR(i, planner.axis_steps_per_unit); + EEPROM_WRITE_VAR(i, planner.max_feedrate); + EEPROM_WRITE_VAR(i, planner.max_acceleration_units_per_sq_second); + EEPROM_WRITE_VAR(i, planner.acceleration); + EEPROM_WRITE_VAR(i, planner.retract_acceleration); + EEPROM_WRITE_VAR(i, planner.travel_acceleration); + EEPROM_WRITE_VAR(i, planner.min_feedrate); + EEPROM_WRITE_VAR(i, planner.min_travel_feedrate); + EEPROM_WRITE_VAR(i, planner.min_segment_time); + EEPROM_WRITE_VAR(i, planner.max_xy_jerk); + EEPROM_WRITE_VAR(i, planner.max_z_jerk); + EEPROM_WRITE_VAR(i, planner.max_e_jerk); EEPROM_WRITE_VAR(i, home_offset); uint8_t mesh_num_x = 3; @@ -351,22 +351,22 @@ void Config_RetrieveSettings() { float dummy = 0; // version number match - EEPROM_READ_VAR(i, axis_steps_per_unit); - EEPROM_READ_VAR(i, max_feedrate); - EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second); + EEPROM_READ_VAR(i, planner.axis_steps_per_unit); + EEPROM_READ_VAR(i, planner.max_feedrate); + EEPROM_READ_VAR(i, planner.max_acceleration_units_per_sq_second); // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) - reset_acceleration_rates(); + planner.reset_acceleration_rates(); - EEPROM_READ_VAR(i, acceleration); - EEPROM_READ_VAR(i, retract_acceleration); - EEPROM_READ_VAR(i, travel_acceleration); - EEPROM_READ_VAR(i, minimumfeedrate); - EEPROM_READ_VAR(i, mintravelfeedrate); - EEPROM_READ_VAR(i, minsegmenttime); - EEPROM_READ_VAR(i, max_xy_jerk); - EEPROM_READ_VAR(i, max_z_jerk); - EEPROM_READ_VAR(i, max_e_jerk); + EEPROM_READ_VAR(i, planner.acceleration); + EEPROM_READ_VAR(i, planner.retract_acceleration); + EEPROM_READ_VAR(i, planner.travel_acceleration); + EEPROM_READ_VAR(i, planner.min_feedrate); + EEPROM_READ_VAR(i, planner.min_travel_feedrate); + EEPROM_READ_VAR(i, planner.min_segment_time); + EEPROM_READ_VAR(i, planner.max_xy_jerk); + EEPROM_READ_VAR(i, planner.max_z_jerk); + EEPROM_READ_VAR(i, planner.max_e_jerk); EEPROM_READ_VAR(i, home_offset); uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0; @@ -528,9 +528,9 @@ void Config_ResetDefault() { float tmp2[] = DEFAULT_MAX_FEEDRATE; long tmp3[] = DEFAULT_MAX_ACCELERATION; for (uint8_t i = 0; i < NUM_AXIS; i++) { - axis_steps_per_unit[i] = tmp1[i]; - max_feedrate[i] = tmp2[i]; - max_acceleration_units_per_sq_second[i] = tmp3[i]; + planner.axis_steps_per_unit[i] = tmp1[i]; + planner.max_feedrate[i] = tmp2[i]; + planner.max_acceleration_units_per_sq_second[i] = tmp3[i]; #if ENABLED(SCARA) if (i < COUNT(axis_scaling)) axis_scaling[i] = 1; @@ -538,17 +538,17 @@ void Config_ResetDefault() { } // steps per sq second need to be updated to agree with the units per sq second - reset_acceleration_rates(); + planner.reset_acceleration_rates(); - acceleration = DEFAULT_ACCELERATION; - retract_acceleration = DEFAULT_RETRACT_ACCELERATION; - travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; - minimumfeedrate = DEFAULT_MINIMUMFEEDRATE; - minsegmenttime = DEFAULT_MINSEGMENTTIME; - mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE; - max_xy_jerk = DEFAULT_XYJERK; - max_z_jerk = DEFAULT_ZJERK; - max_e_jerk = DEFAULT_EJERK; + planner.acceleration = DEFAULT_ACCELERATION; + planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION; + planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION; + planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE; + planner.min_segment_time = DEFAULT_MINSEGMENTTIME; + planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE; + planner.max_xy_jerk = DEFAULT_XYJERK; + planner.max_z_jerk = DEFAULT_ZJERK; + planner.max_e_jerk = DEFAULT_EJERK; home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0; #if ENABLED(MESH_BED_LEVELING) @@ -653,10 +653,10 @@ void Config_PrintSettings(bool forReplay) { SERIAL_ECHOLNPGM("Steps per unit:"); CONFIG_ECHO_START; } - SERIAL_ECHOPAIR(" M92 X", axis_steps_per_unit[X_AXIS]); - SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]); - SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]); - SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]); + SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_unit[X_AXIS]); + SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_unit[Y_AXIS]); + SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_unit[Z_AXIS]); + SERIAL_ECHOPAIR(" E", planner.axis_steps_per_unit[E_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; @@ -677,10 +677,10 @@ void Config_PrintSettings(bool forReplay) { SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); CONFIG_ECHO_START; } - SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]); - SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]); - SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]); - SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]); + SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate[X_AXIS]); + SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]); + SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]); + SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; @@ -688,19 +688,19 @@ void Config_PrintSettings(bool forReplay) { SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):"); CONFIG_ECHO_START; } - SERIAL_ECHOPAIR(" M201 X", max_acceleration_units_per_sq_second[X_AXIS]); - SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS]); - SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS]); - SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]); + SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_units_per_sq_second[X_AXIS]); + SERIAL_ECHOPAIR(" Y", planner.max_acceleration_units_per_sq_second[Y_AXIS]); + SERIAL_ECHOPAIR(" Z", planner.max_acceleration_units_per_sq_second[Z_AXIS]); + SERIAL_ECHOPAIR(" E", planner.max_acceleration_units_per_sq_second[E_AXIS]); SERIAL_EOL; CONFIG_ECHO_START; if (!forReplay) { SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel"); CONFIG_ECHO_START; } - SERIAL_ECHOPAIR(" M204 P", acceleration); - SERIAL_ECHOPAIR(" R", retract_acceleration); - SERIAL_ECHOPAIR(" T", travel_acceleration); + SERIAL_ECHOPAIR(" M204 P", planner.acceleration); + SERIAL_ECHOPAIR(" R", planner.retract_acceleration); + SERIAL_ECHOPAIR(" T", planner.travel_acceleration); SERIAL_EOL; CONFIG_ECHO_START; @@ -708,12 +708,12 @@ void Config_PrintSettings(bool forReplay) { SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)"); CONFIG_ECHO_START; } - SERIAL_ECHOPAIR(" M205 S", minimumfeedrate); - SERIAL_ECHOPAIR(" T", mintravelfeedrate); - SERIAL_ECHOPAIR(" B", minsegmenttime); - SERIAL_ECHOPAIR(" X", max_xy_jerk); - SERIAL_ECHOPAIR(" Z", max_z_jerk); - SERIAL_ECHOPAIR(" E", max_e_jerk); + SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate); + SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate); + SERIAL_ECHOPAIR(" B", planner.min_segment_time); + SERIAL_ECHOPAIR(" X", planner.max_xy_jerk); + SERIAL_ECHOPAIR(" Z", planner.max_z_jerk); + SERIAL_ECHOPAIR(" E", planner.max_e_jerk); SERIAL_EOL; CONFIG_ECHO_START; diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 9347744a58..5e55c7dd88 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -81,105 +81,27 @@ #include "mesh_bed_leveling.h" #endif -//=========================================================================== -//============================= public variables ============================ -//=========================================================================== +Planner planner; -millis_t minsegmenttime; -float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute -float axis_steps_per_unit[NUM_AXIS]; -unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software -float minimumfeedrate; -float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX -float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX -float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX -float max_xy_jerk; // The largest speed change requiring no acceleration -float max_z_jerk; -float max_e_jerk; -float mintravelfeedrate; -unsigned long axis_steps_per_sqr_second[NUM_AXIS]; - -#if ENABLED(AUTO_BED_LEVELING_FEATURE) - // Transform required to compensate for bed level - matrix_3x3 plan_bed_level_matrix = { - 1.0, 0.0, 0.0, - 0.0, 1.0, 0.0, - 0.0, 0.0, 1.0 - }; -#endif // AUTO_BED_LEVELING_FEATURE - -#if ENABLED(AUTOTEMP) - float autotemp_max = 250; - float autotemp_min = 210; - float autotemp_factor = 0.1; - bool autotemp_enabled = false; -#endif - -#if ENABLED(FAN_SOFT_PWM) - extern unsigned char fanSpeedSoftPwm[FAN_COUNT]; -#endif - -//=========================================================================== -//============ semi-private variables, used in inline functions ============= -//=========================================================================== - -block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions -volatile unsigned char block_buffer_head; // Index of the next block to be pushed -volatile unsigned char block_buffer_tail; // Index of the block to process now - -//=========================================================================== -//============================ private variables ============================ -//=========================================================================== - -// The current position of the tool in absolute steps -long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode -static float previous_speed[NUM_AXIS]; // Speed of previous path line segment -static float previous_nominal_speed; // Nominal speed of previous path line segment - -uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 }; - -#ifdef XY_FREQUENCY_LIMIT - // Used for the frequency limit - #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) - // Old direction bits. Used for speed calculations - static unsigned char old_direction_bits = 0; - // Segment times (in µs). Used for speed calculations - static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} }; -#endif - -#if ENABLED(DUAL_X_CARRIAGE) - extern bool extruder_duplication_enabled; -#endif - -//=========================================================================== -//================================ functions ================================ -//=========================================================================== - -// Get the next / previous index of the next block in the ring buffer -// NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2 -FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } -FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } - -// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the -// given acceleration: -FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { - if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0 - return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2); +Planner::Planner() { + #if ENABLED(AUTO_BED_LEVELING_FEATURE) + bed_level_matrix.set_to_identity(); + #endif + init(); } -// This function gives you the point at which you must start braking (at the rate of -acceleration) if -// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after -// a total travel of distance. This can be used to compute the intersection point between acceleration and -// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) - -FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { - if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0 - return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4); +void Planner::init() { + block_buffer_head = block_buffer_tail = 0; + memset(position, 0, sizeof(position)); // clear position + for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0; + previous_nominal_speed = 0.0; } -// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. - -void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) { +/** + * Calculate trapezoid parameters, multiplying the entry- and exit-speeds + * by the provided factors. + */ +void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) { unsigned long initial_rate = ceil(block->nominal_rate * entry_factor), final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second) @@ -225,12 +147,6 @@ void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exi CRITICAL_SECTION_END; } -// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the -// acceleration within the allotted distance. -FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { - return sqrt(target_velocity * target_velocity - 2 * acceleration * distance); -} - // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks. @@ -240,8 +156,8 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity //} -// The kernel called by planner_recalculate() when scanning the plan from last to first entry. -void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) { +// The kernel called by recalculate() when scanning the plan from last to first entry. +void Planner::reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) { if (!current) return; UNUSED(previous); @@ -267,31 +183,34 @@ void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* n } // Skip last block. Already initialized and set for recalculation. } -// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This -// implements the reverse pass. -void planner_reverse_pass() { - uint8_t block_index = block_buffer_head; +/** + * recalculate() needs to go over the current plan twice. + * Once in reverse and once forward. This implements the reverse pass. + */ +void Planner::reverse_pass() { - //Make a local copy of block_buffer_tail, because the interrupt can alter it - CRITICAL_SECTION_START; - unsigned char tail = block_buffer_tail; - CRITICAL_SECTION_END + if (movesplanned() > 3) { - if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued - block_index = BLOCK_MOD(block_buffer_head - 3); block_t* block[3] = { NULL, NULL, NULL }; - while (block_index != tail) { - block_index = prev_block_index(block_index); + + // Make a local copy of block_buffer_tail, because the interrupt can alter it + CRITICAL_SECTION_START; + uint8_t tail = block_buffer_tail; + CRITICAL_SECTION_END + + uint8_t b = BLOCK_MOD(block_buffer_head - 3); + while (b != tail) { + b = prev_block_index(b); block[2] = block[1]; block[1] = block[0]; - block[0] = &block_buffer[block_index]; - planner_reverse_pass_kernel(block[0], block[1], block[2]); + block[0] = &block_buffer[b]; + reverse_pass_kernel(block[0], block[1], block[2]); } } } -// The kernel called by planner_recalculate() when scanning the plan from first to last entry. -void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* next) { +// The kernel called by recalculate() when scanning the plan from first to last entry. +void Planner::forward_pass_kernel(block_t* previous, block_t* current, block_t* next) { if (!previous) return; UNUSED(next); @@ -312,26 +231,28 @@ void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* n } } -// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This -// implements the forward pass. -void planner_forward_pass() { - uint8_t block_index = block_buffer_tail; +/** + * recalculate() needs to go over the current plan twice. + * Once in reverse and once forward. This implements the forward pass. + */ +void Planner::forward_pass() { block_t* block[3] = { NULL, NULL, NULL }; - while (block_index != block_buffer_head) { + for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block[0] = block[1]; block[1] = block[2]; - block[2] = &block_buffer[block_index]; - planner_forward_pass_kernel(block[0], block[1], block[2]); - block_index = next_block_index(block_index); + block[2] = &block_buffer[b]; + forward_pass_kernel(block[0], block[1], block[2]); } - planner_forward_pass_kernel(block[1], block[2], NULL); + forward_pass_kernel(block[1], block[2], NULL); } -// Recalculates the trapezoid speed profiles for all blocks in the plan according to the -// entry_factor for each junction. Must be called by planner_recalculate() after -// updating the blocks. -void planner_recalculate_trapezoids() { +/** + * Recalculate the trapezoid speed profiles for all blocks in the plan + * according to the entry_factor for each junction. Must be called by + * recalculate() after updating the blocks. + */ +void Planner::recalculate_trapezoids() { int8_t block_index = block_buffer_tail; block_t* current; block_t* next = NULL; @@ -358,54 +279,52 @@ void planner_recalculate_trapezoids() { } } -// Recalculates the motion plan according to the following algorithm: -// -// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) -// so that: -// a. The junction jerk is within the set limit -// b. No speed reduction within one block requires faster deceleration than the one, true constant -// acceleration. -// 2. Go over every block in chronological order and dial down junction speed reduction values if -// a. The speed increase within one block would require faster acceleration than the one, true -// constant acceleration. -// -// When these stages are complete all blocks have an entry_factor that will allow all speed changes to -// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than -// the set limit. Finally it will: -// -// 3. Recalculate trapezoids for all blocks. - -void planner_recalculate() { - planner_reverse_pass(); - planner_forward_pass(); - planner_recalculate_trapezoids(); -} - -void plan_init() { - block_buffer_head = block_buffer_tail = 0; - memset(position, 0, sizeof(position)); // clear position - for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0; - previous_nominal_speed = 0.0; +/* + * Recalculate the motion plan according to the following algorithm: + * + * 1. Go over every block in reverse order... + * + * Calculate a junction speed reduction (block_t.entry_factor) so: + * + * a. The junction jerk is within the set limit, and + * + * b. No speed reduction within one block requires faster + * deceleration than the one, true constant acceleration. + * + * 2. Go over every block in chronological order... + * + * Dial down junction speed reduction values if: + * a. The speed increase within one block would require faster + * acceleration than the one, true constant acceleration. + * + * After that, all blocks will have an entry_factor allowing all speed changes to + * be performed using only the one, true constant acceleration, and where no junction + * jerk is jerkier than the set limit, Jerky. Finally it will: + * + * 3. Recalculate "trapezoids" for all blocks. + */ +void Planner::recalculate() { + reverse_pass(); + forward_pass(); + recalculate_trapezoids(); } #if ENABLED(AUTOTEMP) - void getHighESpeed() { + + void Planner::getHighESpeed() { static float oldt = 0; if (!autotemp_enabled) return; if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero. float high = 0.0; - uint8_t block_index = block_buffer_tail; - - while (block_index != block_buffer_head) { - block_t* block = &block_buffer[block_index]; + for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { + block_t* block = &block_buffer[b]; if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) { float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec; NOLESS(high, se); } - block_index = next_block_index(block_index); } float t = autotemp_min + high * autotemp_factor; @@ -417,9 +336,13 @@ void plan_init() { oldt = t; setTargetHotend0(t); } + #endif //AUTOTEMP -void check_axes_activity() { +/** + * Maintain fans, paste extruder pressure, + */ +void Planner::check_axes_activity() { unsigned char axis_active[NUM_AXIS] = { 0 }, tail_fan_speed[FAN_COUNT]; @@ -432,26 +355,23 @@ void check_axes_activity() { tail_e_to_p_pressure = baricuda_e_to_p_pressure; #endif - block_t* block; - if (blocks_queued()) { - uint8_t block_index = block_buffer_tail; - #if FAN_COUNT > 0 - for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_index].fan_speed[i]; + for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i]; #endif + block_t* block; + #if ENABLED(BARICUDA) - block = &block_buffer[block_index]; + block = &block_buffer[block_buffer_tail]; tail_valve_pressure = block->valve_pressure; tail_e_to_p_pressure = block->e_to_p_pressure; #endif - while (block_index != block_buffer_head) { - block = &block_buffer[block_index]; + for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { + block = &block_buffer[b]; for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++; - block_index = next_block_index(block_index); } } #if ENABLED(DISABLE_X) @@ -549,15 +469,20 @@ void check_axes_activity() { #endif } +/** + * Planner::buffer_line + * + * Add a new linear movement to the buffer. + * + * x,y,z,e - target position in mm + * feed_rate - (target) speed of the move + * extruder - target extruder + */ -float junction_deviation = 0.1; -// Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in -// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration -// calculation the caller must also provide the physical length of the line in millimeters. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) - void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder) + void Planner::buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder) #else - void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder) + void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder) #endif // AUTO_BED_LEVELING_FEATURE { // Calculate the buffer head after we push this byte @@ -570,7 +495,7 @@ float junction_deviation = 0.1; #if ENABLED(MESH_BED_LEVELING) if (mbl.active) z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]); #elif ENABLED(AUTO_BED_LEVELING_FEATURE) - apply_rotation_xyz(plan_bed_level_matrix, x, y, z); + apply_rotation_xyz(bed_level_matrix, x, y, z); #endif // The target position of the tool in absolute steps @@ -703,7 +628,8 @@ float junction_deviation = 0.1; // Enable extruder(s) if (block->steps[E_AXIS]) { - if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder + + #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder for (int i = 0; i < EXTRUDERS; i++) if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; @@ -762,19 +688,18 @@ float junction_deviation = 0.1; #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 } - } - else { // enable all + #else enable_e0(); enable_e1(); enable_e2(); enable_e3(); - } + #endif } if (block->steps[E_AXIS]) - NOLESS(feed_rate, minimumfeedrate); + NOLESS(feed_rate, min_feedrate); else - NOLESS(feed_rate, mintravelfeedrate); + NOLESS(feed_rate, min_travel_feedrate); /** * This part of the code calculates the total length of the movement. @@ -837,9 +762,9 @@ float junction_deviation = 0.1; // segment time im micro seconds unsigned long segment_time = lround(1000000.0/inverse_second); if (mq) { - if (segment_time < minsegmenttime) { + if (segment_time < min_segment_time) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. - inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued)); + inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued)); #ifdef XY_FREQUENCY_LIMIT segment_time = lround(1000000.0 / inverse_second); #endif @@ -968,6 +893,9 @@ float junction_deviation = 0.1; block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0)); #if 0 // Use old jerk for now + + float junction_deviation = 0.1; + // Compute path unit vector double unit_vec[3]; @@ -1083,11 +1011,11 @@ float junction_deviation = 0.1; // Update position for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i]; - planner_recalculate(); + recalculate(); stepper.wake_up(); -} // plan_buffer_line() +} // buffer_line() #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA) @@ -1096,13 +1024,15 @@ float junction_deviation = 0.1; * * On CORE machines XYZ is derived from ABC. */ - vector_3 plan_get_position() { + vector_3 Planner::adjusted_position() { vector_3 position = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS)); - //position.debug("in plan_get position"); - //plan_bed_level_matrix.debug("in plan_get_position"); - matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix); - //inverse.debug("in plan_get inverse"); + //position.debug("in Planner::position"); + //bed_level_matrix.debug("in Planner::position"); + + matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); + //inverse.debug("in Planner::inverse"); + position.apply_rotation(inverse); //position.debug("after rotation"); @@ -1117,15 +1047,15 @@ float junction_deviation = 0.1; * On CORE machines stepper ABC will be translated from the given XYZ. */ #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) - void plan_set_position(float x, float y, float z, const float& e) + void Planner::set_position(float x, float y, float z, const float& e) #else - void plan_set_position(const float& x, const float& y, const float& z, const float& e) + void Planner::set_position(const float& x, const float& y, const float& z, const float& e) #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING { #if ENABLED(MESH_BED_LEVELING) if (mbl.active) z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]); #elif ENABLED(AUTO_BED_LEVELING_FEATURE) - apply_rotation_xyz(plan_bed_level_matrix, x, y, z); + apply_rotation_xyz(bed_level_matrix, x, y, z); #endif long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]), @@ -1138,13 +1068,27 @@ float junction_deviation = 0.1; for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0; } -void plan_set_e_position(const float& e) { +/** + * Directly set the planner E position (hence the stepper E position). + */ +void Planner::set_e_position(const float& e) { position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); stepper.set_e_position(position[E_AXIS]); } -// Calculate the steps/s^2 acceleration rates, based on the mm/s^s -void reset_acceleration_rates() { +// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 +void Planner::reset_acceleration_rates() { for (int i = 0; i < NUM_AXIS; i++) axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; } + +#if ENABLED(AUTOTEMP) + + void Planner::autotemp_M109() { + autotemp_enabled = code_seen('F'); + if (autotemp_enabled) autotemp_factor = code_value(); + if (code_seen('S')) autotemp_min = code_value(); + if (code_seen('B')) autotemp_max = code_value(); + } + +#endif diff --git a/Marlin/planner.h b/Marlin/planner.h index dd724424b6..f4e126c0bd 100644 --- a/Marlin/planner.h +++ b/Marlin/planner.h @@ -48,17 +48,36 @@ #include "Marlin.h" -// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in -// the source g-code and may never actually be reached if acceleration management is active. +#if ENABLED(AUTO_BED_LEVELING_FEATURE) + #include "vector_3.h" +#endif + +class Planner; +extern Planner planner; + +/** + * struct block_t + * + * A single entry in the planner buffer. + * Tracks linear movement over multiple axes. + * + * The "nominal" values are as-specified by gcode, and + * may never actually be reached due to acceleration limits. + */ typedef struct { + + unsigned char active_extruder; // The extruder to move (if E move) + // Fields used by the bresenham algorithm for tracing the line long steps[NUM_AXIS]; // Step count along each axis unsigned long step_event_count; // The number of step events required to complete this block + long accelerate_until; // The index of the step event on which to stop acceleration long decelerate_after; // The index of the step event on which to start decelerating long acceleration_rate; // The acceleration rate used for acceleration calculation + unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) - unsigned char active_extruder; // Selects the active extruder + #if ENABLED(ADVANCE) long advance_rate; volatile long initial_advance; @@ -67,7 +86,6 @@ typedef struct { #endif // Fields used by the motion planner to manage acceleration - // float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis float nominal_speed; // The nominal speed for this block in mm/sec float entry_speed; // Entry speed at previous-current junction in mm/sec float max_entry_speed; // Maximum allowable junction entry speed in mm/sec @@ -97,102 +115,220 @@ typedef struct { #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1)) -// Initialize the motion plan subsystem -void plan_init(); +class Planner { -void check_axes_activity(); - -// Get the number of buffered moves -extern volatile unsigned char block_buffer_head; -extern volatile unsigned char block_buffer_tail; -FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); } - -#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) - - #if ENABLED(AUTO_BED_LEVELING_FEATURE) - #include "vector_3.h" - - // Transform required to compensate for bed level - extern matrix_3x3 plan_bed_level_matrix; + public: /** - * Get the position applying the bed level matrix + * A ring buffer of moves described in steps */ - vector_3 plan_get_position(); - #endif // AUTO_BED_LEVELING_FEATURE + block_t block_buffer[BLOCK_BUFFER_SIZE]; + volatile uint8_t block_buffer_head = 0; // Index of the next block to be pushed + volatile uint8_t block_buffer_tail = 0; - /** - * Add a new linear movement to the buffer. x, y, z are the signed, absolute target position in - * millimeters. Feed rate specifies the (target) speed of the motion. - */ - void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder); + float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute + float axis_steps_per_unit[NUM_AXIS]; + unsigned long axis_steps_per_sqr_second[NUM_AXIS]; + unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software - /** - * Set the planner positions. Used for G92 instructions. - * Multiplies by axis_steps_per_unit[] to set stepper positions. - * Clears previous speed values. - */ - void plan_set_position(float x, float y, float z, const float& e); + millis_t min_segment_time; + float min_feedrate; + float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX + float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX + float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX + float max_xy_jerk; // The largest speed change requiring no acceleration + float max_z_jerk; + float max_e_jerk; + float min_travel_feedrate; -#else + #if ENABLED(AUTO_BED_LEVELING_FEATURE) + matrix_3x3 bed_level_matrix; // Transform to compensate for bed level + #endif - void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder); - void plan_set_position(const float& x, const float& y, const float& z, const float& e); + private: -#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING + /** + * The current position of the tool in absolute steps + * Reclculated if any axis_steps_per_unit are changed by gcode + */ + long position[NUM_AXIS] = { 0 }; -void plan_set_e_position(const float& e); + /** + * Speed of previous path line segment + */ + float previous_speed[NUM_AXIS]; -//=========================================================================== -//============================= public variables ============================ -//=========================================================================== + /** + * Nominal speed of previous path line segment + */ + float previous_nominal_speed; -extern millis_t minsegmenttime; -extern float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute -extern float axis_steps_per_unit[NUM_AXIS]; -extern unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software -extern float minimumfeedrate; -extern float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX -extern float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX -extern float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX -extern float max_xy_jerk; // The largest speed change requiring no acceleration -extern float max_z_jerk; -extern float max_e_jerk; -extern float mintravelfeedrate; -extern unsigned long axis_steps_per_sqr_second[NUM_AXIS]; + #if ENABLED(DISABLE_INACTIVE_EXTRUDER) + /** + * Counters to manage disabling inactive extruders + */ + uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 }; + #endif // DISABLE_INACTIVE_EXTRUDER -#if ENABLED(AUTOTEMP) - extern bool autotemp_enabled; - extern float autotemp_max; - extern float autotemp_min; - extern float autotemp_factor; -#endif + #ifdef XY_FREQUENCY_LIMIT + // Used for the frequency limit + #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) + // Old direction bits. Used for speed calculations + static unsigned char old_direction_bits = 0; + // Segment times (in µs). Used for speed calculations + static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} }; + #endif -extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions -extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed -extern volatile unsigned char block_buffer_tail; + #if ENABLED(DUAL_X_CARRIAGE) + extern bool extruder_duplication_enabled; + #endif -// Returns true if the buffer has a queued block, false otherwise -FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); } + public: -// Called when the current block is no longer needed. Discards -// the block and makes the memory available for new blocks. -FORCE_INLINE void plan_discard_current_block() { - if (blocks_queued()) - block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1); -} + Planner(); -// Gets the current block. Returns NULL if buffer empty -FORCE_INLINE block_t* plan_get_current_block() { - if (blocks_queued()) { - block_t* block = &block_buffer[block_buffer_tail]; - block->busy = true; - return block; - } - else - return NULL; -} + void init(); -void reset_acceleration_rates(); + void reset_acceleration_rates(); + + // Manage fans, paste pressure, etc. + void check_axes_activity(); + + /** + * Number of moves currently in the planner + */ + FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); } + + #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) + + #if ENABLED(AUTO_BED_LEVELING_FEATURE) + /** + * The corrected position, applying the bed level matrix + */ + vector_3 adjusted_position(); + #endif + + /** + * Add a new linear movement to the buffer. + * + * x,y,z,e - target position in mm + * feed_rate - (target) speed of the move + * extruder - target extruder + */ + void buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder); + + /** + * Set the planner.position and individual stepper positions. + * Used by G92, G28, G29, and other procedures. + * + * Multiplies by axis_steps_per_unit[] and does necessary conversion + * for COREXY / COREXZ to set the corresponding stepper positions. + * + * Clears previous speed values. + */ + void set_position(float x, float y, float z, const float& e); + + #else + + void buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder); + void set_position(const float& x, const float& y, const float& z, const float& e); + + #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING + + /** + * Set the E position (mm) of the planner (and the E stepper) + */ + void set_e_position(const float& e); + + /** + * Does the buffer have any blocks queued? + */ + FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); } + + /** + * "Discards" the block and "releases" the memory. + * Called when the current block is no longer needed. + */ + FORCE_INLINE void discard_current_block() { + if (blocks_queued()) + block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1); + } + + /** + * The current block. NULL if the buffer is empty. + * This also marks the block as busy. + */ + FORCE_INLINE block_t* get_current_block() { + if (blocks_queued()) { + block_t* block = &block_buffer[block_buffer_tail]; + block->busy = true; + return block; + } + else + return NULL; + } + + /** + * Get the index of the next / previous block in the ring buffer + */ + FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } + FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } + + /** + * Calculate the distance (not time) it takes to accelerate + * from initial_rate to target_rate using the given acceleration: + */ + FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { + if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0 + return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2); + } + + /** + * Return the point at which you must start braking (at the rate of -'acceleration') if + * you start at 'initial_rate', accelerate (until reaching the point), and want to end at + * 'final_rate' after traveling 'distance'. + * + * This is used to compute the intersection point between acceleration and deceleration + * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed) + */ + FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { + if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0 + return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4); + } + + /** + * Calculate the maximum allowable speed at this point, in order + * to reach 'target_velocity' using 'acceleration' within a given + * 'distance'. + */ + FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { + return sqrt(target_velocity * target_velocity - 2 * acceleration * distance); + } + + + #if ENABLED(AUTOTEMP) + float autotemp_max = 250; + float autotemp_min = 210; + float autotemp_factor = 0.1; + bool autotemp_enabled = false; + void getHighESpeed(); + void autotemp_M109(); + #endif + + private: + + void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor); + + void reverse_pass_kernel(block_t* previous, block_t* current, block_t* next); + void forward_pass_kernel(block_t* previous, block_t* current, block_t* next); + + void reverse_pass(); + void forward_pass(); + + void recalculate_trapezoids(); + + void recalculate(); + +}; #endif // PLANNER_H diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index d3fa2b6375..e282801373 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -242,7 +242,7 @@ ISR(TIMER1_COMPA_vect) { stepper.isr(); } void Stepper::isr() { if (cleaning_buffer_counter) { current_block = NULL; - plan_discard_current_block(); + planner.discard_current_block(); #ifdef SD_FINISHED_RELEASECOMMAND if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); #endif @@ -254,7 +254,7 @@ void Stepper::isr() { // If there is no current block, attempt to pop one from the buffer if (!current_block) { // Anything in the buffer? - current_block = plan_get_current_block(); + current_block = planner.get_current_block(); if (current_block) { current_block->busy = true; trapezoid_generator_reset(); @@ -396,7 +396,7 @@ void Stepper::isr() { // If current block is finished, reset pointer if (step_events_completed >= current_block->step_event_count) { current_block = NULL; - plan_discard_current_block(); + planner.discard_current_block(); } } } @@ -620,7 +620,7 @@ void Stepper::init() { /** * Block until all buffered steps are executed */ -void Stepper::synchronize() { while (blocks_queued()) idle(); } +void Stepper::synchronize() { while (planner.blocks_queued()) idle(); } /** * Set the stepper positions directly in steps @@ -693,7 +693,7 @@ float Stepper::get_axis_position_mm(AxisEnum axis) { #else axis_steps = position(axis); #endif - return axis_steps / axis_steps_per_unit[axis]; + return axis_steps / planner.axis_steps_per_unit[axis]; } void Stepper::finish_and_disable() { @@ -704,7 +704,7 @@ void Stepper::finish_and_disable() { void Stepper::quick_stop() { cleaning_buffer_counter = 5000; DISABLE_STEPPER_DRIVER_INTERRUPT(); - while (blocks_queued()) plan_discard_current_block(); + while (planner.blocks_queued()) planner.discard_current_block(); current_block = NULL; ENABLE_STEPPER_DRIVER_INTERRUPT(); } diff --git a/Marlin/stepper.h b/Marlin/stepper.h index 3efad54694..6f2e99dc99 100644 --- a/Marlin/stepper.h +++ b/Marlin/stepper.h @@ -245,7 +245,7 @@ class Stepper { // Triggered position of an axis in mm (not core-savvy) // FORCE_INLINE float triggered_position_mm(AxisEnum axis) { - return endstops_trigsteps[axis] / axis_steps_per_unit[axis]; + return endstops_trigsteps[axis] / planner.axis_steps_per_unit[axis]; } FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { diff --git a/Marlin/temperature.cpp b/Marlin/temperature.cpp index de61e63304..7c5db54c8f 100644 --- a/Marlin/temperature.cpp +++ b/Marlin/temperature.cpp @@ -613,7 +613,7 @@ float get_pid_output(int e) { lpq[lpq_ptr++] = 0; } if (lpq_ptr >= lpq_len) lpq_ptr = 0; - cTerm[e] = (lpq[lpq_ptr] / axis_steps_per_unit[E_AXIS]) * PID_PARAM(Kc, e); + cTerm[e] = (lpq[lpq_ptr] / planner.axis_steps_per_unit[E_AXIS]) * PID_PARAM(Kc, e); pid_output += cTerm[e]; } #endif //PID_ADD_EXTRUSION_RATE diff --git a/Marlin/temperature.h b/Marlin/temperature.h index c49f2c46a5..11406c5339 100644 --- a/Marlin/temperature.h +++ b/Marlin/temperature.h @@ -79,6 +79,10 @@ extern float current_temperature_bed; extern unsigned char soft_pwm_bed; #endif +#if ENABLED(FAN_SOFT_PWM) + extern unsigned char fanSpeedSoftPwm[FAN_COUNT]; +#endif + #if ENABLED(PIDTEMP) #if ENABLED(PID_PARAMS_PER_EXTRUDER) @@ -178,9 +182,9 @@ void checkExtruderAutoFans(); FORCE_INLINE void autotempShutdown() { #if ENABLED(AUTOTEMP) - if (autotemp_enabled) { - autotemp_enabled = false; - if (degTargetHotend(active_extruder) > autotemp_min) + if (planner.autotemp_enabled) { + planner.autotemp_enabled = false; + if (degTargetHotend(active_extruder) > planner.autotemp_min) setTargetHotend(0, active_extruder); } #endif diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 33ede883a0..6acb889ec7 100644 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -463,9 +463,9 @@ static void lcd_status_screen() { inline void line_to_current(AxisEnum axis) { #if ENABLED(DELTA) calculate_delta(current_position); - plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); + planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); #else - plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); + planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder); #endif } @@ -495,7 +495,7 @@ inline void line_to_current(AxisEnum axis) { static void lcd_main_menu() { START_MENU(); MENU_ITEM(back, MSG_WATCH); - if (movesplanned() || IS_SD_PRINTING) { + if (planner.movesplanned() || IS_SD_PRINTING) { MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu); } else { @@ -934,7 +934,7 @@ void lcd_cooldown() { ENCODER_DIRECTION_NORMAL(); // Encoder wheel adjusts the Z position - if (encoderPosition && movesplanned() <= 3) { + if (encoderPosition && planner.movesplanned() <= 3) { refresh_cmd_timeout(); current_position[Z_AXIS] += float((int32_t)encoderPosition) * (MBL_Z_STEP); NOLESS(current_position[Z_AXIS], 0); @@ -1037,7 +1037,7 @@ void lcd_cooldown() { if (LCD_CLICKED) { _lcd_level_bed_position = 0; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; - plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); lcd_goto_menu(_lcd_level_goto_next_point, true); } } @@ -1191,7 +1191,7 @@ float move_menu_scale; static void _lcd_move(const char* name, AxisEnum axis, float min, float max) { ENCODER_DIRECTION_NORMAL(); - if (encoderPosition && movesplanned() <= 3) { + if (encoderPosition && planner.movesplanned() <= 3) { refresh_cmd_timeout(); current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale; if (min_software_endstops) NOLESS(current_position[axis], min); @@ -1223,7 +1223,7 @@ static void lcd_move_e( unsigned short original_active_extruder = active_extruder; active_extruder = e; #endif - if (encoderPosition && movesplanned() <= 3) { + if (encoderPosition && planner.movesplanned() <= 3) { current_position[E_AXIS] += float((int32_t)encoderPosition) * move_menu_scale; line_to_current(E_AXIS); lcdDrawUpdate = LCDVIEW_REDRAW_NOW; @@ -1511,10 +1511,10 @@ static void lcd_control_temperature_menu() { // Autotemp, Min, Max, Fact // #if ENABLED(AUTOTEMP) && (TEMP_SENSOR_0 != 0) - MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled); - MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 15); - MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 15); - MENU_ITEM_EDIT(float32, MSG_FACTOR, &autotemp_factor, 0.0, 1.0); + MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &planner.autotemp_enabled); + MENU_ITEM_EDIT(float3, MSG_MIN, &planner.autotemp_min, 0, HEATER_0_MAXTEMP - 15); + MENU_ITEM_EDIT(float3, MSG_MAX, &planner.autotemp_max, 0, HEATER_0_MAXTEMP - 15); + MENU_ITEM_EDIT(float32, MSG_FACTOR, &planner.autotemp_factor, 0.0, 1.0); #endif // @@ -1618,6 +1618,8 @@ static void lcd_control_temperature_preheat_abs_settings_menu() { END_MENU(); } +static void _reset_acceleration_rates() { planner.reset_acceleration_rates(); } + /** * * "Control" > "Motion" submenu @@ -1633,34 +1635,34 @@ static void lcd_control_motion_menu() { #if ENABLED(MANUAL_BED_LEVELING) MENU_ITEM_EDIT(float43, MSG_BED_Z, &mbl.z_offset, -1, 1); #endif - MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 10, 99000); - MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990); + MENU_ITEM_EDIT(float5, MSG_ACC, &planner.acceleration, 10, 99000); + MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &planner.max_xy_jerk, 1, 990); #if ENABLED(DELTA) - MENU_ITEM_EDIT(float3, MSG_VZ_JERK, &max_z_jerk, 1, 990); + MENU_ITEM_EDIT(float3, MSG_VZ_JERK, &planner.max_z_jerk, 1, 990); #else - MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &max_z_jerk, 0.1, 990); + MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_z_jerk, 0.1, 990); #endif - MENU_ITEM_EDIT(float3, MSG_VE_JERK, &max_e_jerk, 1, 990); - MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &max_feedrate[X_AXIS], 1, 999); - MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &max_feedrate[Y_AXIS], 1, 999); - MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &max_feedrate[Z_AXIS], 1, 999); - MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &max_feedrate[E_AXIS], 1, 999); - MENU_ITEM_EDIT(float3, MSG_VMIN, &minimumfeedrate, 0, 999); - MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &mintravelfeedrate, 0, 999); - MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, reset_acceleration_rates); - MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, reset_acceleration_rates); - MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &max_acceleration_units_per_sq_second[Z_AXIS], 10, 99000, reset_acceleration_rates); - MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, reset_acceleration_rates); - MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &retract_acceleration, 100, 99000); - MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &travel_acceleration, 100, 99000); - MENU_ITEM_EDIT(float52, MSG_XSTEPS, &axis_steps_per_unit[X_AXIS], 5, 9999); - MENU_ITEM_EDIT(float52, MSG_YSTEPS, &axis_steps_per_unit[Y_AXIS], 5, 9999); + MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_e_jerk, 1, 990); + MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate[X_AXIS], 1, 999); + MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate[Y_AXIS], 1, 999); + MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate[Z_AXIS], 1, 999); + MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999); + MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999); + MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999); + MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, _reset_acceleration_rates); + MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, _reset_acceleration_rates); + MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_units_per_sq_second[Z_AXIS], 10, 99000, _reset_acceleration_rates); + MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, _reset_acceleration_rates); + MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000); + MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000); + MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_unit[X_AXIS], 5, 9999); + MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_unit[Y_AXIS], 5, 9999); #if ENABLED(DELTA) - MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999); + MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999); #else - MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999); + MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999); #endif - MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999); + MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_unit[E_AXIS], 5, 9999); #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &abort_on_endstop_hit); #endif