Apply sq macro throughout
This commit is contained in:
parent
93ba5bddd7
commit
9f9fe043ba
@ -3596,7 +3596,7 @@ inline void gcode_G28() {
|
||||
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
||||
*/
|
||||
|
||||
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
||||
int abl2 = sq(auto_bed_leveling_grid_points);
|
||||
|
||||
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
||||
eqnBVector[abl2], // "B" vector of Z points
|
||||
@ -3629,7 +3629,7 @@ inline void gcode_G28() {
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
||||
float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
|
||||
float distance_from_center = HYPOT(xProbe, yProbe);
|
||||
if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
|
||||
#endif //DELTA
|
||||
|
||||
@ -4252,7 +4252,7 @@ inline void gcode_M42() {
|
||||
return;
|
||||
}
|
||||
#else
|
||||
if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
|
||||
if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
|
||||
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
|
||||
return;
|
||||
}
|
||||
@ -4342,7 +4342,7 @@ inline void gcode_M42() {
|
||||
#else
|
||||
// If we have gone out too far, we can do a simple fix and scale the numbers
|
||||
// back in closer to the origin.
|
||||
while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
|
||||
while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
|
||||
X_current /= 1.25;
|
||||
Y_current /= 1.25;
|
||||
if (verbose_level > 3) {
|
||||
@ -4378,10 +4378,9 @@ inline void gcode_M42() {
|
||||
* data points we have so far
|
||||
*/
|
||||
sum = 0.0;
|
||||
for (uint8_t j = 0; j <= n; j++) {
|
||||
float ss = sample_set[j] - mean;
|
||||
sum += ss * ss;
|
||||
}
|
||||
for (uint8_t j = 0; j <= n; j++)
|
||||
sum += sq(sample_set[j] - mean);
|
||||
|
||||
sigma = sqrt(sum / (n + 1));
|
||||
if (verbose_level > 0) {
|
||||
if (verbose_level > 1) {
|
||||
@ -8139,7 +8138,7 @@ void prepare_move_to_destination() {
|
||||
* This is important when there are successive arc motions.
|
||||
*/
|
||||
// Vector rotation matrix values
|
||||
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
|
||||
float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
|
||||
float sin_T = theta_per_segment;
|
||||
|
||||
float arc_target[NUM_AXIS];
|
||||
|
@ -36,6 +36,7 @@
|
||||
// Macros for maths shortcuts
|
||||
#define RADIANS(d) ((d)*M_PI/180.0)
|
||||
#define DEGREES(r) ((r)*180.0/M_PI)
|
||||
#define HYPOT(x,y) sqrt(sq(x)+sq(y))
|
||||
|
||||
// Macros to contrain values
|
||||
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
|
||||
|
@ -171,8 +171,8 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor,
|
||||
}
|
||||
|
||||
#if ENABLED(ADVANCE)
|
||||
volatile long initial_advance = block->advance * entry_factor * entry_factor;
|
||||
volatile long final_advance = block->advance * exit_factor * exit_factor;
|
||||
volatile long initial_advance = block->advance * sq(entry_factor);
|
||||
volatile long final_advance = block->advance * sq(exit_factor);
|
||||
#endif // ADVANCE
|
||||
|
||||
// block->accelerate_until = accelerate_steps;
|
||||
@ -815,13 +815,13 @@ void Planner::check_axes_activity() {
|
||||
else {
|
||||
block->millimeters = sqrt(
|
||||
#if ENABLED(COREXY)
|
||||
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
|
||||
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
|
||||
#elif ENABLED(COREXZ)
|
||||
square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
|
||||
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
|
||||
#elif ENABLED(COREYZ)
|
||||
square(delta_mm[X_AXIS]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_HEAD])
|
||||
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
|
||||
#else
|
||||
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
|
||||
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
|
||||
#endif
|
||||
);
|
||||
}
|
||||
@ -1030,7 +1030,7 @@ void Planner::check_axes_activity() {
|
||||
dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
|
||||
dsz = fabs(csz - previous_speed[Z_AXIS]),
|
||||
dse = fabs(cse - previous_speed[E_AXIS]),
|
||||
jerk = sqrt(dsx * dsx + dsy * dsy);
|
||||
jerk = HYPOT(dsx, dsy);
|
||||
|
||||
// if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
||||
vmax_junction = block->nominal_speed;
|
||||
@ -1086,7 +1086,7 @@ void Planner::check_axes_activity() {
|
||||
}
|
||||
else {
|
||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
|
||||
float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
|
||||
float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(cse, EXTRUSION_AREA) * 256;
|
||||
block->advance = advance;
|
||||
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
|
||||
}
|
||||
|
@ -290,7 +290,7 @@ class Planner {
|
||||
*/
|
||||
static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) {
|
||||
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
|
||||
return (target_rate * target_rate - initial_rate * initial_rate) / (accel * 2);
|
||||
return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -303,7 +303,7 @@ class Planner {
|
||||
*/
|
||||
static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) {
|
||||
if (accel == 0) return 0; // accel was 0, set intersection distance to 0
|
||||
return (accel * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (accel * 4);
|
||||
return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -312,7 +312,7 @@ class Planner {
|
||||
* 'distance'.
|
||||
*/
|
||||
static float max_allowable_speed(float accel, float target_velocity, float distance) {
|
||||
return sqrt(target_velocity * target_velocity - 2 * accel * distance);
|
||||
return sqrt(sq(target_velocity) - 2 * accel * distance);
|
||||
}
|
||||
|
||||
static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
|
||||
|
@ -1356,7 +1356,7 @@ void kill_screen(const char* lcd_msg) {
|
||||
}
|
||||
#if ENABLED(DELTA)
|
||||
static float delta_clip_radius_2 = (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS);
|
||||
static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - a*a); }
|
||||
static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - sq(a)); }
|
||||
static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); }
|
||||
static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); }
|
||||
#else
|
||||
|
Loading…
Reference in New Issue
Block a user