Use planner.unapply_leveling to undo tilt in G29

This commit is contained in:
Scott Lahteine 2016-12-13 23:22:07 -08:00
parent 04636f78eb
commit b1539394fd

View File

@ -4332,45 +4332,34 @@ inline void gcode_G28() {
// Correct the current XYZ position based on the tilted plane. // Correct the current XYZ position based on the tilted plane.
// //
// 1. Get the distance from the current position to the reference point.
float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
z_real = current_position[Z_AXIS],
z_zero = 0;
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
#endif #endif
matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix); float converted[XYZ];
memcpy(converted, current_position, sizeof(converted));
// 2. Apply the inverse matrix to the distance planner.abl_enabled = true;
// from the reference point to X, Y, and zero. planner.unapply_leveling(converted); // use conversion machinery
apply_rotation_xyz(inverse, x_dist, y_dist, z_zero); planner.abl_enabled = false;
// 3. Get the matrix-based corrected Z. // Use the last measured distance to the bed, if possible
// (Even if not used, get it for comparison.)
float new_z = z_real + z_zero;
// 4. Use the last measured distance to the bed, if possible
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER)) && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
) { ) {
float simple_z = z_real - (measured_z - (-zprobe_zoffset)); float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset));
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Z from Probe:", simple_z); SERIAL_ECHOPAIR("Z from Probe:", simple_z);
SERIAL_ECHOPAIR(" Matrix:", new_z); SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z); SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
} }
#endif #endif
new_z = simple_z; converted[Z_AXIS] = simple_z;
} }
// 5. The rotated XY and corrected Z are now current_position // The rotated XY and corrected Z are now current_position
current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM; memcpy(current_position, converted, sizeof(converted));
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
current_position[Z_AXIS] = new_z;
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);