diff --git a/Marlin/createTemperatureLookup.py b/Marlin/createTemperatureLookup.py deleted file mode 100644 index e60a490c8f..0000000000 --- a/Marlin/createTemperatureLookup.py +++ /dev/null @@ -1,127 +0,0 @@ -#!/usr/bin/python -# -# Creates a C code lookup table for doing ADC to temperature conversion -# on a microcontroller -# based on: http://hydraraptor.blogspot.com/2007/10/measuring-temperature-easy-way.html -"""Thermistor Value Lookup Table Generator - -Generates lookup to temperature values for use in a microcontroller in C format based on: -http://hydraraptor.blogspot.com/2007/10/measuring-temperature-easy-way.html - -The main use is for Arduino programs that read data from the circuit board described here: -http://make.rrrf.org/ts-1.0 - -Usage: python createTemperatureLookup.py [options] - -Options: - -h, --help show this help - --r0=... thermistor rating where # is the ohm rating of the thermistor at t0 (eg: 10K = 10000) - --t0=... thermistor temp rating where # is the temperature in Celsuis to get r0 (from your datasheet) - --beta=... thermistor beta rating. see http://reprap.org/bin/view/Main/MeasuringThermistorBeta - --r1=... R1 rating where # is the ohm rating of R1 (eg: 10K = 10000) - --r2=... R2 rating where # is the ohm rating of R2 (eg: 10K = 10000) - --num-temps=... the number of temperature points to calculate (default: 20) - --max-adc=... the max ADC reading to use. if you use R1, it limits the top value for the thermistor circuit, and thus the possible range of ADC values -""" - -from math import * -import sys -import getopt - -class Thermistor: - "Class to do the thermistor maths" - def __init__(self, r0, t0, beta, r1, r2): - self.r0 = r0 # stated resistance, e.g. 10K - self.t0 = t0 + 273.15 # temperature at stated resistance, e.g. 25C - self.beta = beta # stated beta, e.g. 3500 - self.vadc = 5.0 # ADC reference - self.vcc = 5.0 # supply voltage to potential divider - self.k = r0 * exp(-beta / self.t0) # constant part of calculation - - if r1 > 0: - self.vs = r1 * self.vcc / (r1 + r2) # effective bias voltage - self.rs = r1 * r2 / (r1 + r2) # effective bias impedance - else: - self.vs = self.vcc # effective bias voltage - self.rs = r2 # effective bias impedance - - def temp(self,adc): - "Convert ADC reading into a temperature in Celcius" - v = adc * self.vadc / 1024 # convert the 10 bit ADC value to a voltage - r = self.rs * v / (self.vs - v) # resistance of thermistor - return (self.beta / log(r / self.k)) - 273.15 # temperature - - def setting(self, t): - "Convert a temperature into a ADC value" - r = self.r0 * exp(self.beta * (1 / (t + 273.15) - 1 / self.t0)) # resistance of the thermistor - v = self.vs * r / (self.rs + r) # the voltage at the potential divider - return round(v / self.vadc * 1024) # the ADC reading - -def main(argv): - - r0 = 10000; - t0 = 25; - beta = 3947; - r1 = 680; - r2 = 1600; - num_temps = int(20); - - try: - opts, args = getopt.getopt(argv, "h", ["help", "r0=", "t0=", "beta=", "r1=", "r2="]) - except getopt.GetoptError: - usage() - sys.exit(2) - - for opt, arg in opts: - if opt in ("-h", "--help"): - usage() - sys.exit() - elif opt == "--r0": - r0 = int(arg) - elif opt == "--t0": - t0 = int(arg) - elif opt == "--beta": - beta = int(arg) - elif opt == "--r1": - r1 = int(arg) - elif opt == "--r2": - r2 = int(arg) - - if r1: - max_adc = int(1023 * r1 / (r1 + r2)); - else: - max_adc = 1023 - increment = int(max_adc/(num_temps-1)); - - t = Thermistor(r0, t0, beta, r1, r2) - - adcs = range(1, max_adc, increment); -# adcs = [1, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 130, 150, 190, 220, 250, 300] - first = 1 - - print "// Thermistor lookup table for RepRap Temperature Sensor Boards (http://make.rrrf.org/ts)" - print "// Made with createTemperatureLookup.py (http://svn.reprap.org/trunk/reprap/firmware/Arduino/utilities/createTemperatureLookup.py)" - print "// ./createTemperatureLookup.py --r0=%s --t0=%s --r1=%s --r2=%s --beta=%s --max-adc=%s" % (r0, t0, r1, r2, beta, max_adc) - print "// r0: %s" % (r0) - print "// t0: %s" % (t0) - print "// r1: %s" % (r1) - print "// r2: %s" % (r2) - print "// beta: %s" % (beta) - print "// max adc: %s" % (max_adc) - print "#define NUMTEMPS %s" % (len(adcs)) - print "short temptable[NUMTEMPS][2] = {" - - counter = 0 - for adc in adcs: - counter = counter +1 - if counter == len(adcs): - print " {%s, %s}" % (adc, int(t.temp(adc))) - else: - print " {%s, %s}," % (adc, int(t.temp(adc))) - print "};" - -def usage(): - print __doc__ - -if __name__ == "__main__": - main(sys.argv[1:]) diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index a0e4adcf73..161e1b4bf1 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -103,12 +103,11 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro bool allow_cold_extrude=false; #endif #ifdef XY_FREQUENCY_LIMIT +#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) // Used for the frequency limit static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations -static long x_segment_time[3]={ - 0,0,0}; // Segment times (in us). Used for speed calculations -static long y_segment_time[3]={ - 0,0,0}; +static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations +static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; #endif // Returns the index of the next block in the ring buffer @@ -435,7 +434,7 @@ void getHighESpeed() } #endif -void check_axes_activity() +void check_axes_activity() { unsigned char x_active = 0; unsigned char y_active = 0; @@ -445,11 +444,11 @@ void check_axes_activity() unsigned char tail_fan_speed = 0; block_t *block; - if(block_buffer_tail != block_buffer_head) + if(block_buffer_tail != block_buffer_head) { uint8_t block_index = block_buffer_tail; tail_fan_speed = block_buffer[block_index].fan_speed; - while(block_index != block_buffer_head) + while(block_index != block_buffer_head) { block = &block_buffer[block_index]; if(block->steps_x != 0) x_active++; @@ -460,7 +459,7 @@ void check_axes_activity() block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); } } - else + else { #if FAN_PIN > -1 if (FanSpeed != 0){ @@ -471,19 +470,19 @@ void check_axes_activity() if((DISABLE_X) && (x_active == 0)) disable_x(); if((DISABLE_Y) && (y_active == 0)) disable_y(); if((DISABLE_Z) && (z_active == 0)) disable_z(); - if((DISABLE_E) && (e_active == 0)) + if((DISABLE_E) && (e_active == 0)) { disable_e0(); disable_e1(); disable_e2(); } #if FAN_PIN > -1 - if((FanSpeed == 0) && (fan_speed ==0)) + if((FanSpeed == 0) && (fan_speed ==0)) { analogWrite(FAN_PIN, 0); } - if (FanSpeed != 0 && tail_fan_speed !=0) + if (FanSpeed != 0 && tail_fan_speed !=0) { analogWrite(FAN_PIN,tail_fan_speed); } @@ -505,7 +504,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. - while(block_buffer_tail == next_buffer_head) + while(block_buffer_tail == next_buffer_head) { manage_heater(); manage_inactivity(); @@ -522,7 +521,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); #ifdef PREVENT_DANGEROUS_EXTRUDE - if(target[E_AXIS]!=position[E_AXIS]) + if(target[E_AXIS]!=position[E_AXIS]) { if(degHotend(active_extruder)axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) { @@ -538,7 +537,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } - #endif + #endif } #endif @@ -558,7 +557,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); // Bail if this is a zero-length block - if (block->step_event_count <= dropsegments) + if (block->step_event_count <= dropsegments) { return; } @@ -567,19 +566,19 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa // Compute direction bits for this block block->direction_bits = 0; - if (target[X_AXIS] < position[X_AXIS]) + if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<direction_bits |= (1<steps_e != 0) + if(block->steps_e != 0) { enable_e0(); enable_e1(); enable_e2(); } - if (block->steps_e == 0) + if (block->steps_e == 0) { if(feed_ratesteps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) + if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) { block->millimeters = fabs(delta_mm[E_AXIS]); } - else + else { block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); } @@ -632,18 +631,21 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill #ifdef OLD_SLOWDOWN - if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) + if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); #endif #ifdef SLOWDOWN // segment time im micro seconds unsigned long segment_time = lround(1000000.0/inverse_second); - if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) + if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) { - if (segment_time < minsegmenttime) + if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); + #ifdef XY_FREQUENCY_LIMIT + segment_time = lround(1000000.0/inverse_second); + #endif } } #endif @@ -656,7 +658,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa // Calculate and limit speed in mm/sec for each axis float current_speed[4]; float speed_factor = 1.0; //factor <=1 do decrease speed - for(int i=0; i < 4; i++) + for(int i=0; i < 4; i++) { current_speed[i] = delta_mm[i] * inverse_second; if(fabs(current_speed[i]) > max_feedrate[i]) @@ -666,26 +668,26 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa // Max segement time in us. #ifdef XY_FREQUENCY_LIMIT #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) - // Check and limit the xy direction change frequency unsigned char direction_change = block->direction_bits ^ old_direction_bits; old_direction_bits = block->direction_bits; - - if((direction_change & (1<step_event_count/block->millimeters; - if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) + if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } - else + else { block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 // Limit acceleration per axis