Merge pull request #3991 from thinkyhead/rc_axis_units
Rename some vars to clarify their relationship to acceleration
This commit is contained in:
commit
e2d4919c01
@ -420,7 +420,7 @@
|
||||
*/
|
||||
#if ENABLED(ADVANCE)
|
||||
#define EXTRUSION_AREA (0.25 * (D_FILAMENT) * (D_FILAMENT) * M_PI)
|
||||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS] / (EXTRUSION_AREA))
|
||||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_mm[E_AXIS] / (EXTRUSION_AREA))
|
||||
#endif
|
||||
|
||||
#if ENABLED(ULTIPANEL) && DISABLED(ELB_FULL_GRAPHIC_CONTROLLER)
|
||||
|
@ -155,7 +155,7 @@
|
||||
* M84 - Disable steppers until next move,
|
||||
* or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
||||
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
||||
* M92 - Set planner.axis_steps_per_unit - same syntax as G92
|
||||
* M92 - Set planner.axis_steps_per_mm - same syntax as G92
|
||||
* M104 - Set extruder target temp
|
||||
* M105 - Read current temp
|
||||
* M106 - Fan on
|
||||
@ -1683,7 +1683,7 @@ static void setup_for_endstop_move() {
|
||||
* is not where we said to go.
|
||||
*/
|
||||
long stop_steps = stepper.position(Z_AXIS);
|
||||
float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS];
|
||||
float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
|
||||
current_position[Z_AXIS] = mm;
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
@ -5155,15 +5155,15 @@ inline void gcode_M92() {
|
||||
if (i == E_AXIS) {
|
||||
float value = code_value_per_axis_unit(i);
|
||||
if (value < 20.0) {
|
||||
float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
planner.max_e_jerk *= factor;
|
||||
planner.max_feedrate[i] *= factor;
|
||||
planner.axis_steps_per_sqr_second[i] *= factor;
|
||||
planner.max_acceleration_steps_per_s2[i] *= factor;
|
||||
}
|
||||
planner.axis_steps_per_unit[i] = value;
|
||||
planner.axis_steps_per_mm[i] = value;
|
||||
}
|
||||
else {
|
||||
planner.axis_steps_per_unit[i] = code_value_per_axis_unit(i);
|
||||
planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -5198,9 +5198,9 @@ static void report_current_position() {
|
||||
SERIAL_EOL;
|
||||
|
||||
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
||||
SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
|
||||
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
||||
SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
|
||||
SERIAL_EOL; SERIAL_EOL;
|
||||
#endif
|
||||
}
|
||||
@ -5345,7 +5345,7 @@ inline void gcode_M200() {
|
||||
inline void gcode_M201() {
|
||||
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
planner.max_acceleration_units_per_sq_second[i] = code_value_axis_units(i);
|
||||
planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
|
||||
}
|
||||
}
|
||||
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
||||
@ -5355,7 +5355,7 @@ inline void gcode_M201() {
|
||||
#if 0 // Not used for Sprinter/grbl gen6
|
||||
inline void gcode_M202() {
|
||||
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
||||
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_unit[i];
|
||||
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@ -8226,8 +8226,8 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
||||
}
|
||||
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
|
||||
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
||||
destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS],
|
||||
(EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder);
|
||||
destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
|
||||
(EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
|
||||
current_position[E_AXIS] = oldepos;
|
||||
destination[E_AXIS] = oldedes;
|
||||
planner.set_e_position_mm(oldepos);
|
||||
|
@ -43,9 +43,9 @@
|
||||
*
|
||||
* 100 Version (char x4)
|
||||
*
|
||||
* 104 M92 XYZE planner.axis_steps_per_unit (float x4)
|
||||
* 104 M92 XYZE planner.axis_steps_per_mm (float x4)
|
||||
* 120 M203 XYZE planner.max_feedrate (float x4)
|
||||
* 136 M201 XYZE planner.max_acceleration_units_per_sq_second (uint32_t x4)
|
||||
* 136 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
|
||||
* 152 M204 P planner.acceleration (float)
|
||||
* 156 M204 R planner.retract_acceleration (float)
|
||||
* 160 M204 T planner.travel_acceleration (float)
|
||||
@ -173,9 +173,9 @@ void Config_StoreSettings() {
|
||||
char ver[4] = "000";
|
||||
int i = EEPROM_OFFSET;
|
||||
EEPROM_WRITE_VAR(i, ver); // invalidate data first
|
||||
EEPROM_WRITE_VAR(i, planner.axis_steps_per_unit);
|
||||
EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
|
||||
EEPROM_WRITE_VAR(i, planner.max_feedrate);
|
||||
EEPROM_WRITE_VAR(i, planner.max_acceleration_units_per_sq_second);
|
||||
EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
|
||||
EEPROM_WRITE_VAR(i, planner.acceleration);
|
||||
EEPROM_WRITE_VAR(i, planner.retract_acceleration);
|
||||
EEPROM_WRITE_VAR(i, planner.travel_acceleration);
|
||||
@ -353,9 +353,9 @@ void Config_RetrieveSettings() {
|
||||
float dummy = 0;
|
||||
|
||||
// version number match
|
||||
EEPROM_READ_VAR(i, planner.axis_steps_per_unit);
|
||||
EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
|
||||
EEPROM_READ_VAR(i, planner.max_feedrate);
|
||||
EEPROM_READ_VAR(i, planner.max_acceleration_units_per_sq_second);
|
||||
EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
|
||||
|
||||
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
||||
planner.reset_acceleration_rates();
|
||||
@ -527,9 +527,9 @@ void Config_ResetDefault() {
|
||||
float tmp2[] = DEFAULT_MAX_FEEDRATE;
|
||||
long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
||||
for (uint8_t i = 0; i < NUM_AXIS; i++) {
|
||||
planner.axis_steps_per_unit[i] = tmp1[i];
|
||||
planner.axis_steps_per_mm[i] = tmp1[i];
|
||||
planner.max_feedrate[i] = tmp2[i];
|
||||
planner.max_acceleration_units_per_sq_second[i] = tmp3[i];
|
||||
planner.max_acceleration_mm_per_s2[i] = tmp3[i];
|
||||
#if ENABLED(SCARA)
|
||||
if (i < COUNT(axis_scaling))
|
||||
axis_scaling[i] = 1;
|
||||
@ -652,10 +652,10 @@ void Config_PrintSettings(bool forReplay) {
|
||||
SERIAL_ECHOLNPGM("Steps per unit:");
|
||||
CONFIG_ECHO_START;
|
||||
}
|
||||
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_unit[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_unit[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_unit[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_unit[E_AXIS]);
|
||||
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
|
||||
SERIAL_EOL;
|
||||
|
||||
CONFIG_ECHO_START;
|
||||
@ -687,10 +687,10 @@ void Config_PrintSettings(bool forReplay) {
|
||||
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
|
||||
CONFIG_ECHO_START;
|
||||
}
|
||||
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_units_per_sq_second[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_units_per_sq_second[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_units_per_sq_second[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", planner.max_acceleration_units_per_sq_second[E_AXIS]);
|
||||
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
|
||||
SERIAL_EOL;
|
||||
CONFIG_ECHO_START;
|
||||
if (!forReplay) {
|
||||
|
@ -81,9 +81,9 @@ volatile uint8_t Planner::block_buffer_head = 0; // Index of the next
|
||||
volatile uint8_t Planner::block_buffer_tail = 0;
|
||||
|
||||
float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
|
||||
float Planner::axis_steps_per_unit[NUM_AXIS];
|
||||
unsigned long Planner::axis_steps_per_sqr_second[NUM_AXIS];
|
||||
unsigned long Planner::max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
|
||||
float Planner::axis_steps_per_mm[NUM_AXIS];
|
||||
unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
|
||||
unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
|
||||
|
||||
millis_t Planner::min_segment_time;
|
||||
float Planner::min_feedrate;
|
||||
@ -155,7 +155,7 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor,
|
||||
NOLESS(initial_rate, 120);
|
||||
NOLESS(final_rate, 120);
|
||||
|
||||
long accel = block->acceleration_st;
|
||||
long accel = block->acceleration_steps_per_s2;
|
||||
int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
|
||||
int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
|
||||
|
||||
@ -549,10 +549,10 @@ void Planner::check_axes_activity() {
|
||||
// Calculate target position in absolute steps
|
||||
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
||||
long target[NUM_AXIS] = {
|
||||
lround(x * axis_steps_per_unit[X_AXIS]),
|
||||
lround(y * axis_steps_per_unit[Y_AXIS]),
|
||||
lround(z * axis_steps_per_unit[Z_AXIS]),
|
||||
lround(e * axis_steps_per_unit[E_AXIS])
|
||||
lround(x * axis_steps_per_mm[X_AXIS]),
|
||||
lround(y * axis_steps_per_mm[Y_AXIS]),
|
||||
lround(z * axis_steps_per_mm[Z_AXIS]),
|
||||
lround(e * axis_steps_per_mm[E_AXIS])
|
||||
};
|
||||
|
||||
long dx = target[X_AXIS] - position[X_AXIS],
|
||||
@ -574,7 +574,7 @@ void Planner::check_axes_activity() {
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
||||
}
|
||||
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
||||
if (labs(de) > axis_steps_per_unit[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
|
||||
if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
|
||||
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
||||
de = 0; // no difference
|
||||
SERIAL_ECHO_START;
|
||||
@ -771,31 +771,31 @@ void Planner::check_axes_activity() {
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
||||
float delta_mm[6];
|
||||
#if ENABLED(COREXY)
|
||||
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
||||
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
|
||||
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
||||
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
|
||||
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
|
||||
delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
|
||||
delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
|
||||
delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
|
||||
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
|
||||
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
|
||||
#elif ENABLED(COREXZ)
|
||||
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
||||
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
||||
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
|
||||
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
|
||||
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
|
||||
delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
|
||||
delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
|
||||
delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
|
||||
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
|
||||
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
|
||||
#elif ENABLED(COREYZ)
|
||||
delta_mm[X_AXIS] = dx / axis_steps_per_unit[A_AXIS];
|
||||
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[Y_AXIS];
|
||||
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
|
||||
delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_unit[B_AXIS];
|
||||
delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_unit[C_AXIS];
|
||||
delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS];
|
||||
delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS];
|
||||
delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
|
||||
delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
|
||||
delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
|
||||
#endif
|
||||
#else
|
||||
float delta_mm[4];
|
||||
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
|
||||
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
||||
delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
|
||||
delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
|
||||
#endif
|
||||
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
|
||||
delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
|
||||
|
||||
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
|
||||
block->millimeters = fabs(delta_mm[E_AXIS]);
|
||||
@ -936,27 +936,27 @@ void Planner::check_axes_activity() {
|
||||
float steps_per_mm = block->step_event_count / block->millimeters;
|
||||
long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
|
||||
if (bsx == 0 && bsy == 0 && bsz == 0) {
|
||||
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
}
|
||||
else if (bse == 0) {
|
||||
block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
block->acceleration_steps_per_s2 = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
}
|
||||
else {
|
||||
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
block->acceleration_steps_per_s2 = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
}
|
||||
// Limit acceleration per axis
|
||||
unsigned long acc_st = block->acceleration_st,
|
||||
xsteps = axis_steps_per_sqr_second[X_AXIS],
|
||||
ysteps = axis_steps_per_sqr_second[Y_AXIS],
|
||||
zsteps = axis_steps_per_sqr_second[Z_AXIS],
|
||||
esteps = axis_steps_per_sqr_second[E_AXIS],
|
||||
unsigned long acc_st = block->acceleration_steps_per_s2,
|
||||
x_acc_st = max_acceleration_steps_per_s2[X_AXIS],
|
||||
y_acc_st = max_acceleration_steps_per_s2[Y_AXIS],
|
||||
z_acc_st = max_acceleration_steps_per_s2[Z_AXIS],
|
||||
e_acc_st = max_acceleration_steps_per_s2[E_AXIS],
|
||||
allsteps = block->step_event_count;
|
||||
if (xsteps < (acc_st * bsx) / allsteps) acc_st = (xsteps * allsteps) / bsx;
|
||||
if (ysteps < (acc_st * bsy) / allsteps) acc_st = (ysteps * allsteps) / bsy;
|
||||
if (zsteps < (acc_st * bsz) / allsteps) acc_st = (zsteps * allsteps) / bsz;
|
||||
if (esteps < (acc_st * bse) / allsteps) acc_st = (esteps * allsteps) / bse;
|
||||
if (x_acc_st < (acc_st * bsx) / allsteps) acc_st = (x_acc_st * allsteps) / bsx;
|
||||
if (y_acc_st < (acc_st * bsy) / allsteps) acc_st = (y_acc_st * allsteps) / bsy;
|
||||
if (z_acc_st < (acc_st * bsz) / allsteps) acc_st = (z_acc_st * allsteps) / bsz;
|
||||
if (e_acc_st < (acc_st * bse) / allsteps) acc_st = (e_acc_st * allsteps) / bse;
|
||||
|
||||
block->acceleration_st = acc_st;
|
||||
block->acceleration_steps_per_s2 = acc_st;
|
||||
block->acceleration = acc_st / steps_per_mm;
|
||||
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
|
||||
|
||||
@ -1057,7 +1057,7 @@ void Planner::check_axes_activity() {
|
||||
block->advance = 0;
|
||||
}
|
||||
else {
|
||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
|
||||
float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
|
||||
block->advance = advance;
|
||||
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
|
||||
@ -1127,10 +1127,10 @@ void Planner::check_axes_activity() {
|
||||
apply_rotation_xyz(bed_level_matrix, x, y, z);
|
||||
#endif
|
||||
|
||||
long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
|
||||
ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
|
||||
nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
|
||||
ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||
long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
|
||||
ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
|
||||
nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
|
||||
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
||||
stepper.set_position(nx, ny, nz, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
|
||||
@ -1141,14 +1141,14 @@ void Planner::check_axes_activity() {
|
||||
* Directly set the planner E position (hence the stepper E position).
|
||||
*/
|
||||
void Planner::set_e_position_mm(const float& e) {
|
||||
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||
position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
||||
stepper.set_e_position(position[E_AXIS]);
|
||||
}
|
||||
|
||||
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
||||
void Planner::reset_acceleration_rates() {
|
||||
for (int i = 0; i < NUM_AXIS; i++)
|
||||
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
||||
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
|
||||
}
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
|
@ -58,9 +58,9 @@ typedef struct {
|
||||
long steps[NUM_AXIS]; // Step count along each axis
|
||||
unsigned long step_event_count; // The number of step events required to complete this block
|
||||
|
||||
long accelerate_until; // The index of the step event on which to stop acceleration
|
||||
long decelerate_after; // The index of the step event on which to start decelerating
|
||||
long acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||
long accelerate_until, // The index of the step event on which to stop acceleration
|
||||
decelerate_after, // The index of the step event on which to start decelerating
|
||||
acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||
|
||||
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
||||
|
||||
@ -72,27 +72,26 @@ typedef struct {
|
||||
#endif
|
||||
|
||||
// Fields used by the motion planner to manage acceleration
|
||||
float nominal_speed; // The nominal speed for this block in mm/sec
|
||||
float entry_speed; // Entry speed at previous-current junction in mm/sec
|
||||
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec
|
||||
float millimeters; // The total travel of this block in mm
|
||||
float acceleration; // acceleration mm/sec^2
|
||||
unsigned char recalculate_flag; // Planner flag to recalculate trapezoids on entry junction
|
||||
unsigned char nominal_length_flag; // Planner flag for nominal speed always reached
|
||||
float nominal_speed, // The nominal speed for this block in mm/sec
|
||||
entry_speed, // Entry speed at previous-current junction in mm/sec
|
||||
max_entry_speed, // Maximum allowable junction entry speed in mm/sec
|
||||
millimeters, // The total travel of this block in mm
|
||||
acceleration; // acceleration mm/sec^2
|
||||
unsigned char recalculate_flag, // Planner flag to recalculate trapezoids on entry junction
|
||||
nominal_length_flag; // Planner flag for nominal speed always reached
|
||||
|
||||
// Settings for the trapezoid generator
|
||||
unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
|
||||
unsigned long initial_rate; // The jerk-adjusted step rate at start of block
|
||||
unsigned long final_rate; // The minimal rate at exit
|
||||
unsigned long acceleration_st; // acceleration steps/sec^2
|
||||
unsigned long nominal_rate, // The nominal step rate for this block in step_events/sec
|
||||
initial_rate, // The jerk-adjusted step rate at start of block
|
||||
final_rate, // The minimal rate at exit
|
||||
acceleration_steps_per_s2; // acceleration steps/sec^2
|
||||
|
||||
#if FAN_COUNT > 0
|
||||
unsigned long fan_speed[FAN_COUNT];
|
||||
#endif
|
||||
|
||||
#if ENABLED(BARICUDA)
|
||||
unsigned long valve_pressure;
|
||||
unsigned long e_to_p_pressure;
|
||||
unsigned long valve_pressure, e_to_p_pressure;
|
||||
#endif
|
||||
|
||||
volatile char busy;
|
||||
@ -113,9 +112,9 @@ class Planner {
|
||||
static volatile uint8_t block_buffer_tail;
|
||||
|
||||
static float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
|
||||
static float axis_steps_per_unit[NUM_AXIS];
|
||||
static unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||
static unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
|
||||
static float axis_steps_per_mm[NUM_AXIS];
|
||||
static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
|
||||
static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
|
||||
|
||||
static millis_t min_segment_time;
|
||||
static float min_feedrate;
|
||||
@ -135,7 +134,7 @@ class Planner {
|
||||
|
||||
/**
|
||||
* The current position of the tool in absolute steps
|
||||
* Reclculated if any axis_steps_per_unit are changed by gcode
|
||||
* Reclculated if any axis_steps_per_mm are changed by gcode
|
||||
*/
|
||||
static long position[NUM_AXIS];
|
||||
|
||||
@ -213,7 +212,7 @@ class Planner {
|
||||
* Set the planner.position and individual stepper positions.
|
||||
* Used by G92, G28, G29, and other procedures.
|
||||
*
|
||||
* Multiplies by axis_steps_per_unit[] and does necessary conversion
|
||||
* Multiplies by axis_steps_per_mm[] and does necessary conversion
|
||||
* for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
|
||||
*
|
||||
* Clears previous speed values.
|
||||
|
@ -754,7 +754,7 @@ float Stepper::get_axis_position_mm(AxisEnum axis) {
|
||||
#else
|
||||
axis_steps = position(axis);
|
||||
#endif
|
||||
return axis_steps / planner.axis_steps_per_unit[axis];
|
||||
return axis_steps / planner.axis_steps_per_mm[axis];
|
||||
}
|
||||
|
||||
void Stepper::finish_and_disable() {
|
||||
|
@ -243,7 +243,7 @@ class Stepper {
|
||||
// Triggered position of an axis in mm (not core-savvy)
|
||||
//
|
||||
static FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
|
||||
return endstops_trigsteps[axis] / planner.axis_steps_per_unit[axis];
|
||||
return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis];
|
||||
}
|
||||
|
||||
private:
|
||||
|
@ -559,7 +559,7 @@ float Temperature::get_pid_output(int e) {
|
||||
lpq[lpq_ptr++] = 0;
|
||||
}
|
||||
if (lpq_ptr >= lpq_len) lpq_ptr = 0;
|
||||
cTerm[_CTERM_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_unit[E_AXIS]) * PID_PARAM(Kc, e);
|
||||
cTerm[_CTERM_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, e);
|
||||
pid_output += cTerm[e];
|
||||
}
|
||||
#endif //PID_ADD_EXTRUSION_RATE
|
||||
|
@ -1686,20 +1686,20 @@ static void lcd_control_motion_menu() {
|
||||
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999);
|
||||
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_units_per_sq_second[Z_AXIS], 10, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_acceleration_rates);
|
||||
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000);
|
||||
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000);
|
||||
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_unit[X_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_unit[Y_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999);
|
||||
#if ENABLED(DELTA)
|
||||
MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999);
|
||||
#else
|
||||
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_unit[Z_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999);
|
||||
#endif
|
||||
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_unit[E_AXIS], 5, 9999);
|
||||
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999);
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit);
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user