diff --git a/Marlin/src/HAL/HAL_STM32F4/HAL_Servo_STM32F4.cpp b/Marlin/src/HAL/HAL_STM32F4/HAL_Servo_STM32F4.cpp index f8ce4715d0..df5397685a 100644 --- a/Marlin/src/HAL/HAL_STM32F4/HAL_Servo_STM32F4.cpp +++ b/Marlin/src/HAL/HAL_STM32F4/HAL_Servo_STM32F4.cpp @@ -39,7 +39,7 @@ int8_t libServo::attach(const int pin, const int min, const int max) { void libServo::move(const int value) { constexpr uint16_t servo_delay[] = SERVO_DELAY; - static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); + static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long."); if (this->attach(0) >= 0) { this->write(value); safe_delay(servo_delay[this->servoIndex]); diff --git a/Marlin/src/HAL/platforms.h b/Marlin/src/HAL/platforms.h index e0387cf991..cf0a8cf931 100644 --- a/Marlin/src/HAL/platforms.h +++ b/Marlin/src/HAL/platforms.h @@ -14,7 +14,7 @@ #elif defined(__STM32F1__) || defined(TARGET_STM32F1) #define HAL_PLATFORM HAL_STM32F1 #elif defined(STM32F4) - #define HAL_PLATFORM HAL_STM32F4 + #define HAL_PLATFORM HAL_STM32F4 #elif defined(STM32F7) #define HAL_PLATFORM HAL_STM32F7 #else diff --git a/Marlin/src/gcode/calibrate/G28.cpp b/Marlin/src/gcode/calibrate/G28.cpp index 17f3ea7474..510262bd03 100644 --- a/Marlin/src/gcode/calibrate/G28.cpp +++ b/Marlin/src/gcode/calibrate/G28.cpp @@ -234,7 +234,7 @@ void GcodeSuite::G28(const bool always_home_all) { #endif (parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT) ); - + if (z_homing_height && (home_all || homeX || homeY)) { // Raise Z before homing any other axes and z is not already high enough (never lower z) destination[Z_AXIS] = z_homing_height; diff --git a/Marlin/src/lcd/lcdprint_hd44780.cpp b/Marlin/src/lcd/lcdprint_hd44780.cpp index a9b9640fdb..c7e58e164f 100644 --- a/Marlin/src/lcd/lcdprint_hd44780.cpp +++ b/Marlin/src/lcd/lcdprint_hd44780.cpp @@ -95,7 +95,7 @@ static const hd44780_charmap_t g_hd44780_charmap_device[] PROGMEM = { {IV('「'), 0xA2, 0}, {IV('」'), 0xA3, 0}, {IV('゛'), 0xDE, 0}, // ‶ - {IV('゜'), 0xDF, 0}, // '〫' + {IV('゜'), 0xDF, 0}, // '〫' {IV('゠'), '=', 0}, {IV('ァ'), 0xA7, 0}, {IV('ア'), 0xB1, 0}, diff --git a/Marlin/src/module/planner.cpp b/Marlin/src/module/planner.cpp index 2b257056c4..8aa08cd54b 100644 --- a/Marlin/src/module/planner.cpp +++ b/Marlin/src/module/planner.cpp @@ -407,76 +407,76 @@ void Planner::init() { __asm__ __volatile__( // %8:%7:%6 = interval - // r31:r30: MUST be those registers, and they must point to the inv_tab + // r31:r30: MUST be those registers, and they must point to the inv_tab - " clr %13" "\n\t" // %13 = 0 + " clr %13" "\n\t" // %13 = 0 - // Now we must compute - // result = 0xFFFFFF / d + // Now we must compute + // result = 0xFFFFFF / d // %8:%7:%6 = interval - // %16:%15:%14 = nr + // %16:%15:%14 = nr // %13 = 0 - // A plain division of 24x24 bits should take 388 cycles to complete. We will + // A plain division of 24x24 bits should take 388 cycles to complete. We will // use Newton-Raphson for the calculation, and will strive to get way less cycles // for the same result - Using C division, it takes 500cycles to complete . - " clr %3" "\n\t" // idx = 0 + " clr %3" "\n\t" // idx = 0 " mov %14,%6" "\n\t" " mov %15,%7" "\n\t" - " mov %16,%8" "\n\t" // nr = interval - " tst %16" "\n\t" // nr & 0xFF0000 == 0 ? - " brne 2f" "\n\t" // No, skip this + " mov %16,%8" "\n\t" // nr = interval + " tst %16" "\n\t" // nr & 0xFF0000 == 0 ? + " brne 2f" "\n\t" // No, skip this " mov %16,%15" "\n\t" - " mov %15,%14" "\n\t" // nr <<= 8, %14 not needed - " subi %3,-8" "\n\t" // idx += 8 - " tst %16" "\n\t" // nr & 0xFF0000 == 0 ? - " brne 2f" "\n\t" // No, skip this - " mov %16,%15" "\n\t" // nr <<= 8, %14 not needed - " clr %15" "\n\t" // We clear %14 - " subi %3,-8" "\n\t" // idx += 8 + " mov %15,%14" "\n\t" // nr <<= 8, %14 not needed + " subi %3,-8" "\n\t" // idx += 8 + " tst %16" "\n\t" // nr & 0xFF0000 == 0 ? + " brne 2f" "\n\t" // No, skip this + " mov %16,%15" "\n\t" // nr <<= 8, %14 not needed + " clr %15" "\n\t" // We clear %14 + " subi %3,-8" "\n\t" // idx += 8 - // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0 + // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0 "2:" "\n\t" - " cpi %16,0x10" "\n\t" // (nr & 0xf00000) == 0 ? - " brcc 3f" "\n\t" // No, skip this - " swap %15" "\n\t" // Swap nibbles - " swap %16" "\n\t" // Swap nibbles. Low nibble is 0 + " cpi %16,0x10" "\n\t" // (nr & 0xf00000) == 0 ? + " brcc 3f" "\n\t" // No, skip this + " swap %15" "\n\t" // Swap nibbles + " swap %16" "\n\t" // Swap nibbles. Low nibble is 0 " mov %14, %15" "\n\t" - " andi %14,0x0f" "\n\t" // Isolate low nibble - " andi %15,0xf0" "\n\t" // Keep proper nibble in %15 - " or %16, %14" "\n\t" // %16:%15 <<= 4 - " subi %3,-4" "\n\t" // idx += 4 + " andi %14,0x0f" "\n\t" // Isolate low nibble + " andi %15,0xf0" "\n\t" // Keep proper nibble in %15 + " or %16, %14" "\n\t" // %16:%15 <<= 4 + " subi %3,-4" "\n\t" // idx += 4 "3:" "\n\t" - " cpi %16,0x40" "\n\t" // (nr & 0xc00000) == 0 ? + " cpi %16,0x40" "\n\t" // (nr & 0xc00000) == 0 ? " brcc 4f" "\n\t" // No, skip this " add %15,%15" "\n\t" " adc %16,%16" "\n\t" " add %15,%15" "\n\t" - " adc %16,%16" "\n\t" // %16:%15 <<= 2 - " subi %3,-2" "\n\t" // idx += 2 + " adc %16,%16" "\n\t" // %16:%15 <<= 2 + " subi %3,-2" "\n\t" // idx += 2 "4:" "\n\t" - " cpi %16,0x80" "\n\t" // (nr & 0x800000) == 0 ? - " brcc 5f" "\n\t" // No, skip this + " cpi %16,0x80" "\n\t" // (nr & 0x800000) == 0 ? + " brcc 5f" "\n\t" // No, skip this " add %15,%15" "\n\t" - " adc %16,%16" "\n\t" // %16:%15 <<= 1 - " inc %3" "\n\t" // idx += 1 + " adc %16,%16" "\n\t" // %16:%15 <<= 1 + " inc %3" "\n\t" // idx += 1 // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure // we have at least 9 MSBits available to enter the initial estimation table "5:" "\n\t" " add %15,%15" "\n\t" " adc %16,%16" "\n\t" // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table) - " add r30,%16" "\n\t" // Only use top 8 bits - " adc r31,%13" "\n\t" // r31:r30 = inv_tab + (tidx) - " lpm %14, Z" "\n\t" // %14 = inv_tab[tidx] - " ldi %15, 1" "\n\t" // %15 = 1 %15:%14 = inv_tab[tidx] + 256 + " add r30,%16" "\n\t" // Only use top 8 bits + " adc r31,%13" "\n\t" // r31:r30 = inv_tab + (tidx) + " lpm %14, Z" "\n\t" // %14 = inv_tab[tidx] + " ldi %15, 1" "\n\t" // %15 = 1 %15:%14 = inv_tab[tidx] + 256 // We must scale the approximation to the proper place - " clr %16" "\n\t" // %16 will always be 0 here - " subi %3,8" "\n\t" // idx == 8 ? + " clr %16" "\n\t" // %16 will always be 0 here + " subi %3,8" "\n\t" // idx == 8 ? " breq 6f" "\n\t" // yes, no need to scale " brcs 7f" "\n\t" // If C=1, means idx < 8, result was negative! @@ -503,13 +503,13 @@ void Planner::init() { " or %15,%12" "\n\t" // %15:%16 <<= 4 "16:" "\n\t" " sbrs %3,3" "\n\t" // shift by 8bits position? - " rjmp 6f" "\n\t" // No, we are done + " rjmp 6f" "\n\t" // No, we are done " mov %16,%15" "\n\t" " mov %15,%14" "\n\t" " clr %14" "\n\t" " jmp 6f" "\n\t" - // idx < 8, now %3 = idx - 8. Get the count of bits + // idx < 8, now %3 = idx - 8. Get the count of bits "7:" "\n\t" " neg %3" "\n\t" // %3 = -idx = count of bits to move right. idx range:[1...8] " sbrs %3,0" "\n\t" // shift by 1 bit position ? @@ -541,7 +541,7 @@ void Planner::init() { // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough // to get more than 18bits of precision (the initial table lookup gives 9 bits of - // precision to start from). 18bits of precision is all what is needed here for result + // precision to start from). 18bits of precision is all what is needed here for result // %8:%7:%6 = d = interval // %16:%15:%14 = x = initial estimation of 0x1000000 / d @@ -585,7 +585,7 @@ void Planner::init() { // %16:%15:%14 = x = initial estimation of 0x1000000 / d // %3:%2:%1:%0 = (1<<25) - x*d = acc - // %13 = 0 + // %13 = 0 // result = %11:%10:%9:%5:%4 " mul %14,%0" "\n\t" // r1:r0 = LO(x) * LO(acc) @@ -599,7 +599,7 @@ void Planner::init() { " adc %5,r1" "\n\t" " adc %9,%13" "\n\t" " adc %10,%13" "\n\t" - " adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * LO(acc) + " adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * LO(acc) " mul %16,%0" "\n\t" // r1:r0 = HI(x) * LO(acc) " add %5,r0" "\n\t" " adc %9,r1" "\n\t" @@ -645,12 +645,12 @@ void Planner::init() { " mul %16,%3" "\n\t" // r1:r0 = HI(x) * HI(acc) " add %11,r0" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32 - // At this point, %11:%10:%9 contains the new estimation of x. + // At this point, %11:%10:%9 contains the new estimation of x. // Finally, we must correct the result. Estimate remainder as - // (1<<24) - x*d - // %11:%10:%9 = x - // %8:%7:%6 = d = interval" "\n\t" + // (1<<24) - x*d + // %11:%10:%9 = x + // %8:%7:%6 = d = interval" "\n\t" " ldi %3,1" "\n\t" " clr %2" "\n\t" " clr %1" "\n\t" @@ -682,23 +682,23 @@ void Planner::init() { " mul %7,%11" "\n\t" // r1:r0 = MI(d) * HI(x) " sub %3,r0" "\n\t" // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 // %3:%2:%1:%0 = r = (1<<24) - x*d - // %8:%7:%6 = d = interval + // %8:%7:%6 = d = interval // Perform the final correction " sub %0,%6" "\n\t" " sbc %1,%7" "\n\t" " sbc %2,%8" "\n\t" // r -= d - " brcs 14f" "\n\t" // if ( r >= d) + " brcs 14f" "\n\t" // if ( r >= d) - // %11:%10:%9 = x + // %11:%10:%9 = x " ldi %3,1" "\n\t" " add %9,%3" "\n\t" " adc %10,%13" "\n\t" " adc %11,%13" "\n\t" // x++ "14:" "\n\t" - // Estimation is done. %11:%10:%9 = x - " clr __zero_reg__" "\n\t" // Make C runtime happy + // Estimation is done. %11:%10:%9 = x + " clr __zero_reg__" "\n\t" // Make C runtime happy // [211 cycles total] : "=r" (r2), "=r" (r3), diff --git a/Marlin/src/module/probe.cpp b/Marlin/src/module/probe.cpp index b3169b5221..8100060267 100644 --- a/Marlin/src/module/probe.cpp +++ b/Marlin/src/module/probe.cpp @@ -500,7 +500,7 @@ static bool do_probe_move(const float z, const float fr_mm_m) { while (thermalManager.isHeatingBed()) safe_delay(200); lcd_reset_status(); } - #endif + #endif // Deploy BLTouch at the start of any probe #if ENABLED(BLTOUCH) diff --git a/Marlin/src/pins/pins_STM32F4.h b/Marlin/src/pins/pins_STM32F4.h index 018b36a0a7..fe5b6ca631 100644 --- a/Marlin/src/pins/pins_STM32F4.h +++ b/Marlin/src/pins/pins_STM32F4.h @@ -125,8 +125,8 @@ // Misc. Functions // -//#define CASE_LIGHT_PIN_CI PF13 -//#define CASE_LIGHT_PIN_DO PF14 +//#define CASE_LIGHT_PIN_CI PF13 +//#define CASE_LIGHT_PIN_DO PF14 //#define NEOPIXEL_PIN PF13 // @@ -148,24 +148,24 @@ #define SS_PIN PE7 #define LED_PIN PB7 //Alive #define PS_ON_PIN PA10 -#define KILL_PIN PA8 +#define KILL_PIN PA8 #define PWR_LOSS PA4 //Power loss / nAC_FAULT // // LCD / Controller // -#define SD_DETECT_PIN PA15 -#define BEEPER_PIN PC9 -#define LCD_PINS_RS PE9 -#define LCD_PINS_ENABLE PE8 -#define LCD_PINS_D4 PB12 -#define LCD_PINS_D5 PB13 -#define LCD_PINS_D6 PB14 -#define LCD_PINS_D7 PB15 -#define BTN_EN1 PC4 -#define BTN_EN2 PC5 -#define BTN_ENC PC3 +#define SD_DETECT_PIN PA15 +#define BEEPER_PIN PC9 +#define LCD_PINS_RS PE9 +#define LCD_PINS_ENABLE PE8 +#define LCD_PINS_D4 PB12 +#define LCD_PINS_D5 PB13 +#define LCD_PINS_D6 PB14 +#define LCD_PINS_D7 PB15 +#define BTN_EN1 PC4 +#define BTN_EN2 PC5 +#define BTN_ENC PC3 // // Filament runout