/** * Marlin 3D Printer Firmware * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ #ifndef UNIFIED_BED_LEVELING_H #define UNIFIED_BED_LEVELING_H #include "MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "Marlin.h" #include "planner.h" #include "math.h" #include "vector_3.h" #define UBL_VERSION "1.00" #define UBL_OK false #define UBL_ERR true typedef struct { int8_t x_index, y_index; float distance; // When populated, the distance from the search location } mesh_index_pair; // ubl.cpp void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y); void bit_set(uint16_t bits[16], uint8_t x, uint8_t y); bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y); // ubl_motion.cpp void debug_current_and_destination(const char * const title); void ubl_line_to_destination(const float&, uint8_t); // ubl_G29.cpp enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; void dump(char * const str, const float &f); void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); float measure_business_card_thickness(const float&); mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool); void shift_mesh_height(); void fine_tune_mesh(const float&, const float&, const bool); bool g29_parameter_parsing(); void g29_what_command(); void g29_eeprom_dump(); void g29_compare_current_mesh_to_stored_mesh(); // External references char *ftostr43sign(const float&, char); bool ubl_lcd_clicked(); void home_all_axes(); void gcode_G26(); void gcode_G29(); extern uint8_t ubl_cnt; /////////////////////////////////////////////////////////////////////////////////////////////////////// #if ENABLED(ULTRA_LCD) extern char lcd_status_message[]; void lcd_quick_feedback(); #endif #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1)) #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1)) typedef struct { bool active = false; float z_offset = 0.0; int8_t eeprom_storage_slot = -1; } ubl_state; class unified_bed_leveling { private: static float last_specified_z; public: void find_mean_mesh_height(); void shift_mesh_height(); void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest); void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3); void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map); void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map); void save_ubl_active_state_and_disable(); void restore_ubl_active_state_and_leave(); void g29_what_command(); void g29_eeprom_dump() ; void g29_compare_current_mesh_to_stored_mesh(); void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map); void smart_fill_mesh(); void display_map(const int); void reset(); void invalidate(); void store_state(); void load_state(); void store_mesh(const int16_t); void load_mesh(const int16_t); bool sanity_check(); static ubl_state state; static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // 15 is the maximum nubmer of grid points supported + 1 safety margin for now, // until determinism prevails constexpr static float mesh_index_to_xpos[16] PROGMEM = { UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST), UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST), UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST), UBL_MESH_MIN_X + 6 * (MESH_X_DIST), UBL_MESH_MIN_X + 7 * (MESH_X_DIST), UBL_MESH_MIN_X + 8 * (MESH_X_DIST), UBL_MESH_MIN_X + 9 * (MESH_X_DIST), UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST), UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST), UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST) }; constexpr static float mesh_index_to_ypos[16] PROGMEM = { UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 6 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 7 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 8 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 9 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST) }; static bool g26_debug_flag, has_control_of_lcd_panel; static int16_t eeprom_start; // Please do no change this to 8 bits in size // It needs to hold values bigger than this. static volatile int encoder_diff; // Volatile because it's changed at interrupt time. unified_bed_leveling(); FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } int8_t get_cell_index_x(const float &x) { const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)); return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX } // position. But with this defined this way, it is possible // to extrapolate off of this point even further out. Probably // that is OK because something else should be keeping that from // happening and should not be worried about at this level. int8_t get_cell_index_y(const float &y) { const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST)); return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX } // position. But with this defined this way, it is possible // to extrapolate off of this point even further out. Probably // that is OK because something else should be keeping that from // happening and should not be worried about at this level. int8_t find_closest_x_index(const float &x) { const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1; } int8_t find_closest_y_index(const float &y) { const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1; } /** * z2 --| * z0 | | * | | + (z2-z1) * z1 | | | * ---+-------------+--------+-- --| * a1 a0 a2 * |<---delta_a---------->| * * calc_z0 is the basis for all the Mesh Based correction. It is used to * find the expected Z Height at a position between two known Z-Height locations. * * It is fairly expensive with its 4 floating point additions and 2 floating point * multiplications. */ FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); } /** * z_correction_for_x_on_horizontal_mesh_line is an optimization for * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi). */ inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) { SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0); SERIAL_ECHOPAIR(",x1_i=", x1_i); SERIAL_ECHOPAIR(",yi=", yi); SERIAL_CHAR(')'); SERIAL_EOL; return NAN; } const float xratio = (RAW_X_POSITION(lx0) - pgm_read_float(&mesh_index_to_xpos[x1_i])) * (1.0 / (MESH_X_DIST)), z1 = z_values[x1_i][yi]; return z1 + xratio * (z_values[x1_i + 1][yi] - z1); } // // See comments above for z_correction_for_x_on_horizontal_mesh_line // inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) { SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0); SERIAL_ECHOPAIR(", x1_i=", xi); SERIAL_ECHOPAIR(", yi=", y1_i); SERIAL_CHAR(')'); SERIAL_EOL; return NAN; } const float yratio = (RAW_Y_POSITION(ly0) - pgm_read_float(&mesh_index_to_ypos[y1_i])) * (1.0 / (MESH_Y_DIST)), z1 = z_values[xi][y1_i]; return z1 + yratio * (z_values[xi][y1_i + 1] - z1); } /** * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first * does a linear interpolation along both of the bounding X-Mesh-Lines to find the * Z-Height at both ends. Then it does a linear interpolation of these heights based * on the Y position within the cell. */ float get_z_correction(const float &lx0, const float &ly0) { const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)), cy = get_cell_index_y(RAW_Y_POSITION(ly0)); if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 1)) { SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0); SERIAL_ECHOPAIR(", ly0=", ly0); SERIAL_CHAR(')'); SERIAL_EOL; #if ENABLED(ULTRA_LCD) strcpy(lcd_status_message, "get_z_correction() indexes out of range."); lcd_quick_feedback(); #endif return 0.0; // this used to return state.z_offset } const float z1 = calc_z0(RAW_X_POSITION(lx0), pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy], pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy]); const float z2 = calc_z0(RAW_X_POSITION(lx0), pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy + 1], pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy + 1]); float z0 = calc_z0(RAW_Y_POSITION(ly0), pgm_read_float(&mesh_index_to_ypos[cy]), z1, pgm_read_float(&mesh_index_to_ypos[cy + 1]), z2); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPAIR(" raw get_z_correction(", lx0); SERIAL_CHAR(','); SERIAL_ECHO(ly0); SERIAL_ECHOPGM(") = "); SERIAL_ECHO_F(z0, 6); } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPGM(" >>>---> "); SERIAL_ECHO_F(z0, 6); SERIAL_EOL; } #endif if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN z0 = 0.0; // in ubl.z_values[][] and propagate through the // calculations. If our correction is NAN, we throw it out // because part of the Mesh is undefined and we don't have the // information we need to complete the height correction. #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0); SERIAL_CHAR(','); SERIAL_ECHO(ly0); SERIAL_CHAR(')'); SERIAL_EOL; } #endif } return z0; // there used to be a +state.z_offset on this line } /** * This function sets the Z leveling fade factor based on the given Z height, * only re-calculating when necessary. * * Returns 1.0 if planner.z_fade_height is 0.0. * Returns 0.0 if Z is past the specified 'Fade Height'. */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { if (planner.z_fade_height == 0.0) return 1.0; static float fade_scaling_factor = 1.0; const float rz = RAW_Z_POSITION(lz); if (last_specified_z != rz) { last_specified_z = rz; fade_scaling_factor = rz < planner.z_fade_height ? 1.0 - (rz * planner.inverse_z_fade_height) : 0.0; } return fade_scaling_factor; } #endif }; // class unified_bed_leveling extern unified_bed_leveling ubl; #define UBL_LAST_EEPROM_INDEX E2END #endif // AUTO_BED_LEVELING_UBL #endif // UNIFIED_BED_LEVELING_H