/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors * Derived from Grbl * * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see . */ #ifndef STEPPER_H #define STEPPER_H #include "stepper_indirection.h" #ifdef __AVR__ #include "speed_lookuptable.h" #endif #include "../inc/MarlinConfig.h" #include "../module/planner.h" #include "../core/language.h" class Stepper; extern Stepper stepper; class Stepper { public: static block_t* current_block; // A pointer to the block currently being traced #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) static bool abort_on_endstop_hit; #endif #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) static bool performing_homing; #endif #if HAS_MOTOR_CURRENT_PWM #ifndef PWM_MOTOR_CURRENT #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT #endif static uint32_t motor_current_setting[3]; #endif static int16_t cleaning_buffer_counter; private: static uint8_t last_direction_bits; // The next stepping-bits to be output #if ENABLED(X_DUAL_ENDSTOPS) static bool locked_x_motor, locked_x2_motor; #endif #if ENABLED(Y_DUAL_ENDSTOPS) static bool locked_y_motor, locked_y2_motor; #endif #if ENABLED(Z_DUAL_ENDSTOPS) static bool locked_z_motor, locked_z2_motor; #endif // Counter variables for the Bresenham line tracer static int32_t counter_X, counter_Y, counter_Z, counter_E; static volatile uint32_t step_events_completed; // The number of step events executed in the current block #if ENABLED(BEZIER_JERK_CONTROL) static int32_t bezier_A, // A coefficient in Bézier speed curve bezier_B, // B coefficient in Bézier speed curve bezier_C; // C coefficient in Bézier speed curve static uint32_t bezier_F; // F coefficient in Bézier speed curve static uint32_t bezier_AV; // AV coefficient in Bézier speed curve #ifdef __AVR__ static bool A_negative; // If A coefficient was negative #endif static bool bezier_2nd_half; // If Bézier curve has been initialized or not #endif #if ENABLED(LIN_ADVANCE) static uint32_t LA_decelerate_after; // Copy from current executed block. Needed because current_block is set to NULL "too early". static hal_timer_t nextMainISR, nextAdvanceISR, eISR_Rate; static uint16_t current_adv_steps, final_adv_steps, max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early". #define _NEXT_ISR(T) nextMainISR = T static int8_t e_steps; static bool use_advance_lead; #if E_STEPPERS > 1 static int8_t LA_active_extruder; // Copy from current executed block. Needed because current_block is set to NULL "too early". #else static constexpr int8_t LA_active_extruder = 0; #endif #else // !LIN_ADVANCE #define _NEXT_ISR(T) HAL_timer_set_compare(STEP_TIMER_NUM, T); #endif // !LIN_ADVANCE static int32_t acceleration_time, deceleration_time; static uint8_t step_loops, step_loops_nominal; static hal_timer_t OCR1A_nominal; #if DISABLED(BEZIER_JERK_CONTROL) static hal_timer_t acc_step_rate; // needed for deceleration start point #endif static volatile int32_t endstops_trigsteps[XYZ]; static volatile int32_t endstops_stepsTotal, endstops_stepsDone; // // Positions of stepper motors, in step units // static volatile int32_t count_position[NUM_AXIS]; // // Current direction of stepper motors (+1 or -1) // static volatile signed char count_direction[NUM_AXIS]; // // Mixing extruder mix counters // #if ENABLED(MIXING_EXTRUDER) static int32_t counter_m[MIXING_STEPPERS]; #define MIXING_STEPPERS_LOOP(VAR) \ for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++) \ if (current_block->mix_event_count[VAR]) #endif public: // // Constructor / initializer // Stepper() { }; // // Initialize stepper hardware // static void init(); // // Interrupt Service Routines // static void isr(); #if ENABLED(LIN_ADVANCE) static void advance_isr(); static void advance_isr_scheduler(); #endif // // Set the current position in steps // static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e); FORCE_INLINE static void _set_position(const AxisEnum a, const int32_t &v) { count_position[a] = v; } FORCE_INLINE static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { planner.synchronize(); CRITICAL_SECTION_START; _set_position(a, b, c, e); CRITICAL_SECTION_END; } static void set_position(const AxisEnum a, const int32_t &v) { planner.synchronize(); CRITICAL_SECTION_START; count_position[a] = v; CRITICAL_SECTION_END; } FORCE_INLINE static void _set_e_position(const int32_t &e) { count_position[E_AXIS] = e; } static void set_e_position(const int32_t &e) { planner.synchronize(); CRITICAL_SECTION_START; count_position[E_AXIS] = e; CRITICAL_SECTION_END; } // // Set direction bits for all steppers // static void set_directions(); // // Get the position of a stepper, in steps // static int32_t position(const AxisEnum axis); // // Report the positions of the steppers, in steps // static void report_positions(); // // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work. // static void wake_up(); // // Wait for moves to finish and disable all steppers // static void finish_and_disable(); // // Quickly stop all steppers and clear the blocks queue // static void quick_stop(); // // The direction of a single motor // FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); } #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digitalPotWrite(const int16_t address, const int16_t value); static void digipot_current(const uint8_t driver, const int16_t current); #endif #if HAS_MICROSTEPS static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2); static void microstep_mode(const uint8_t driver, const uint8_t stepping); static void microstep_readings(); #endif #if ENABLED(X_DUAL_ENDSTOPS) FORCE_INLINE static void set_homing_flag_x(const bool state) { performing_homing = state; } FORCE_INLINE static void set_x_lock(const bool state) { locked_x_motor = state; } FORCE_INLINE static void set_x2_lock(const bool state) { locked_x2_motor = state; } #endif #if ENABLED(Y_DUAL_ENDSTOPS) FORCE_INLINE static void set_homing_flag_y(const bool state) { performing_homing = state; } FORCE_INLINE static void set_y_lock(const bool state) { locked_y_motor = state; } FORCE_INLINE static void set_y2_lock(const bool state) { locked_y2_motor = state; } #endif #if ENABLED(Z_DUAL_ENDSTOPS) FORCE_INLINE static void set_homing_flag_z(const bool state) { performing_homing = state; } FORCE_INLINE static void set_z_lock(const bool state) { locked_z_motor = state; } FORCE_INLINE static void set_z2_lock(const bool state) { locked_z2_motor = state; } #endif #if ENABLED(BABYSTEPPING) static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention #endif static inline void kill_current_block() { step_events_completed = current_block->step_event_count; } // // Handle a triggered endstop // static void endstop_triggered(const AxisEnum axis); // // Triggered position of an axis in mm (not core-savvy) // FORCE_INLINE static float triggered_position_mm(const AxisEnum axis) { return endstops_trigsteps[axis] * planner.steps_to_mm[axis]; } #if HAS_MOTOR_CURRENT_PWM static void refresh_motor_power(); #endif private: FORCE_INLINE static hal_timer_t calc_timer_interval(hal_timer_t step_rate) { hal_timer_t timer; NOMORE(step_rate, MAX_STEP_FREQUENCY); // TODO: HAL: tidy this up, use condtionals_post.h #ifdef CPU_32_BIT #if ENABLED(DISABLE_MULTI_STEPPING) step_loops = 1; #else if (step_rate > STEP_DOUBLER_FREQUENCY * 2) { // If steprate > (STEP_DOUBLER_FREQUENCY * 2) kHz >> step 4 times step_rate >>= 2; step_loops = 4; } else if (step_rate > STEP_DOUBLER_FREQUENCY) { // If steprate > STEP_DOUBLER_FREQUENCY kHz >> step 2 times step_rate >>= 1; step_loops = 2; } else { step_loops = 1; } #endif #else if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate >>= 2; step_loops = 4; } else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate >>= 1; step_loops = 2; } else { step_loops = 1; } #endif #ifdef CPU_32_BIT // In case of high-performance processor, it is able to calculate in real-time const uint32_t min_time_per_step = (HAL_STEPPER_TIMER_RATE) / ((STEP_DOUBLER_FREQUENCY) * 2); timer = uint32_t(HAL_STEPPER_TIMER_RATE) / step_rate; NOLESS(timer, min_time_per_step); // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen) #else NOLESS(step_rate, F_CPU / 500000); step_rate -= F_CPU / 500000; // Correct for minimal speed if (step_rate >= (8 * 256)) { // higher step rate uint8_t tmp_step_rate = (step_rate & 0x00FF); uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0]; uint16_t gain = (uint16_t)pgm_read_word_near(table_address + 2); timer = MultiU16X8toH16(tmp_step_rate, gain); timer = (uint16_t)pgm_read_word_near(table_address) - timer; } else { // lower step rates uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0]; table_address += ((step_rate) >> 1) & 0xFFFC; timer = (uint16_t)pgm_read_word_near(table_address); timer -= (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3); } if (timer < 100) { // (20kHz - this should never happen) timer = 100; SERIAL_ECHOPGM(MSG_STEPPER_TOO_HIGH); SERIAL_ECHOLN(step_rate); } #endif return timer; } #if ENABLED(BEZIER_JERK_CONTROL) static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av); static int32_t _eval_bezier_curve(const uint32_t curr_step); #endif #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digipot_init(); #endif #if HAS_MICROSTEPS static void microstep_init(); #endif }; #endif // STEPPER_H