/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * This module is off by default, but can be enabled to facilitate the display of * extra debug information during code development. * * Just connect up 5V and GND to give it power, then connect up the pins assigned * in Configuration_adv.h. For example, on the Re-ARM you could use: * * #define MAX7219_CLK_PIN 77 * #define MAX7219_DIN_PIN 78 * #define MAX7219_LOAD_PIN 79 * * Max7219_init() is called automatically at startup, and then there are a number of * support functions available to control the LEDs in the 8x8 grid. */ #include "../inc/MarlinConfigPre.h" #if ENABLED(MAX7219_DEBUG) #define MAX7219_ERRORS // Disable to save 406 bytes of Program Memory #include "Max7219_Debug_LEDs.h" #include "../module/planner.h" #include "../module/stepper.h" #include "../Marlin.h" #include "../HAL/shared/Delay.h" uint8_t LEDs[8 * (MAX7219_NUMBER_UNITS)] = { 0 }; #ifndef MAX7219_ROTATE #define MAX7219_ROTATE 0 #endif #ifdef CPU_32_BIT // Approximate a 1µs delay on 32-bit ARM #define SIG_DELAY() DELAY_US(1) #else // Delay for 0.1875µs (16MHz AVR) or 0.15µs (20MHz AVR) #define SIG_DELAY() DELAY_NS(188) #endif void Max7219_PutByte(uint8_t data) { #ifndef CPU_32_BIT CRITICAL_SECTION_START; #endif for (uint8_t i = 8; i--;) { SIG_DELAY(); WRITE(MAX7219_CLK_PIN, LOW); // tick SIG_DELAY(); WRITE(MAX7219_DIN_PIN, (data & 0x80) ? HIGH : LOW); // send 1 or 0 based on data bit SIG_DELAY(); WRITE(MAX7219_CLK_PIN, HIGH); // tock SIG_DELAY(); data <<= 1; } #ifndef CPU_32_BIT CRITICAL_SECTION_END; #endif } void Max7219_pulse_load() { SIG_DELAY(); WRITE(MAX7219_LOAD_PIN, LOW); // tell the chip to load the data SIG_DELAY(); WRITE(MAX7219_LOAD_PIN, HIGH); SIG_DELAY(); } void Max7219(const uint8_t reg, const uint8_t data) { SIG_DELAY(); #ifndef CPU_32_BIT CRITICAL_SECTION_START; #endif SIG_DELAY(); Max7219_PutByte(reg); // specify register SIG_DELAY(); Max7219_PutByte(data); // put data #ifndef CPU_32_BIT CRITICAL_SECTION_END; #endif } #if ENABLED(MAX7219_NUMERIC) // Draw an integer with optional leading zeros and optional decimal point void Max7219_Print(const uint8_t start, int16_t value, uint8_t size, const bool leadzero=false, bool dec=false) { constexpr uint8_t led_numeral[10] = { 0x7E, 0x60, 0x6D, 0x79, 0x63, 0x5B, 0x5F, 0x70, 0x7F, 0x7A }, led_decimal = 0x80, led_minus = 0x01; bool blank = false, neg = value < 0; if (neg) value *= -1; while (size--) { const bool minus = neg && blank; if (minus) neg = false; Max7219( max7219_reg_digit0 + start + size, minus ? led_minus : blank ? 0x00 : led_numeral[value % 10] | (dec ? led_decimal : 0x00) ); Max7219_pulse_load(); // tell the chips to load the clocked out data value /= 10; if (!value && !leadzero) blank = true; dec = false; } } // Draw a float with a decimal point and optional digits void Max7219_Print(const uint8_t start, const float value, const uint8_t pre_size, const uint8_t post_size, const bool leadzero=false) { if (pre_size) Max7219_Print(start, value, pre_size, leadzero, !!post_size); if (post_size) { const int16_t after = ABS(value) * (10 ^ post_size); Max7219_Print(start + pre_size, after, post_size, true); } } #endif // MAX7219_NUMERIC inline void Max7219_Error(const char * const func, const int32_t v1, const int32_t v2=-1) { #if ENABLED(MAX7219_ERRORS) SERIAL_ECHOPGM("??? "); serialprintPGM(func); SERIAL_CHAR('('); SERIAL_ECHO(v1); if (v2 > 0) SERIAL_ECHOPAIR(", ", v2); SERIAL_CHAR(')'); SERIAL_EOL(); #else UNUSED(func); UNUSED(v1); UNUSED(v2); #endif } /** * uint32_t flipped(const uint32_t bits, const uint8_t n_bytes) operates on the number * of bytes specified in n_bytes. The lower order bits of the supplied bits are flipped. * flipped( x, 1) flips the low 8 bits of x. * flipped( x, 2) flips the low 16 bits of x. * flipped( x, 3) flips the low 24 bits of x. * flipped( x, 4) flips the low 32 bits of x. */ inline uint32_t flipped(const uint32_t bits, const uint8_t n_bytes) { uint32_t mask = 1, outbits = 0; for (uint8_t b = 0; b < n_bytes * 8; b++) { outbits = (outbits << 1); if (bits & mask) outbits |= 1; mask <<= 1; } return outbits; } // Modify a single LED bit and send the changed line void Max7219_LED_Set(const uint8_t x, const uint8_t y, const bool on) { if (x > (MAX7219_X_LEDS - 1) || y > (MAX7219_Y_LEDS - 1)) return Max7219_Error(PSTR("Max7219_LED_Set"), x, y); if (BIT_7219(x, y) == on) return; XOR_7219(x, y); SEND_7219(MAX7219_UPDATE_AXIS); } void Max7219_LED_On(const uint8_t x, const uint8_t y) { if (x > (MAX7219_X_LEDS - 1) || y > (MAX7219_Y_LEDS - 1)) return Max7219_Error(PSTR("Max7219_LED_On"), x, y); Max7219_LED_Set(x, y, true); } void Max7219_LED_Off(const uint8_t x, const uint8_t y) { if (x > (MAX7219_X_LEDS - 1) || y > (MAX7219_Y_LEDS - 1)) return Max7219_Error(PSTR("Max7219_LED_Off"), x, y); Max7219_LED_Set(x, y, false); } void Max7219_LED_Toggle(const uint8_t x, const uint8_t y) { if (x > (MAX7219_X_LEDS - 1) || y > (MAX7219_Y_LEDS - 1)) return Max7219_Error(PSTR("Max7219_LED_Toggle"), x, y); Max7219_LED_Set(x, y, !BIT_7219(x, y)); } inline void _Max7219_Set_Digit_Segments(const uint8_t digit, const uint8_t val) { LEDs[digit] = val; SEND_7219(digit); } /** * void Max7219_Set_Row( const uint8_t col, const uint32_t val) plots the low order bits of * val to the specified row of the Max7219 matrix. With 4 Max7219 units in the chain, it * is possible to display an entire 32-bit number with one call to the function (if appropriately * orientated). */ void Max7219_Set_Row(const uint8_t row, const uint32_t val) { if (row >= MAX7219_Y_LEDS) return Max7219_Error(PSTR("Max7219_Set_Row"), row); uint32_t mask = 0x0000001; for (uint8_t x = 0; x < MAX7219_X_LEDS; x++) { if (val & mask) SET_PIXEL_7219((MAX7219_X_LEDS-1-x), row); else CLEAR_PIXEL_7219((MAX7219_X_LEDS-1-x), row); mask <<= 1; } #if _ROT == 90 || _ROT == 270 for (uint8_t x = 0; x < 8; x++) SEND_7219(x); // force all columns out to the Max7219 chips and strobe them #else SEND_7219(row); // force the single column out to the Max7219 chips and strobe them #endif } void Max7219_Clear_Row(const uint8_t row) { if (row > 7) return Max7219_Error(PSTR("Max7219_Clear_Row"), row); #if _ROT == 90 || _ROT == 270 for (uint8_t col = 0; col < 8; col++) Max7219_LED_Off(col, row); #else _Max7219_Set_Digit_Segments(row, 0); #endif } /** * void Max7219_Set_Column( const uint8_t col, const uint32_t val) plots the low order bits of * val to the specified column of the Max7219 matrix. With 4 Max7219 units in the chain, it * is possible to display an entire 32-bit number with one call to the function (if appropriately * orientated). */ void Max7219_Set_Column(const uint8_t col, const uint32_t val) { if (col >= MAX7219_X_LEDS) return Max7219_Error(PSTR("Max7219_Set_Column"), col); uint32_t mask = 0x0000001; for (uint8_t y = 0; y < MAX7219_Y_LEDS; y++) { if (val & mask) SET_PIXEL_7219(col, MAX7219_Y_LEDS - y - 1); else CLEAR_PIXEL_7219(col, MAX7219_Y_LEDS - y - 1); mask <<= 1; } #if _ROT == 90 || _ROT == 270 SEND_7219(col); // force the column out to the Max7219 chips and strobe them #else for (uint8_t yy = 0; yy < 8; yy++) SEND_7219(yy); // force all columns out to the Max7219 chips and strobe them #endif } void Max7219_Clear_Column(const uint8_t col) { if (col >= MAX7219_X_LEDS) return Max7219_Error(PSTR("Max7219_Clear_Column"), col); for (uint8_t yy = 0; yy < MAX7219_Y_LEDS; yy++) CLEAR_PIXEL_7219(col, yy); #if _ROT == 90 || _ROT == 270 SEND_7219(col); // force the column out to the Max7219 chips and strobe them #else for (uint8_t y = 0; y < 8; y++) SEND_7219(y); // force all columns out to the Max7219 chips and strobe them #endif } void Max7219_Clear() { for (uint8_t i = 0; i <= 7; i++) { // Clear LED bitmap for (uint8_t j = 0; j < MAX7219_NUMBER_UNITS; j++) LEDs[i + j * 8] = 0x00; SEND_7219(i); } } void Max7219_Set_Rows_16bits(const uint8_t y, uint32_t val) { #if MAX7219_X_LEDS == 8 if (y > MAX7219_Y_LEDS - 2) return Max7219_Error(PSTR("Max7219_Set_Rows_16bits"), y, val); Max7219_Set_Row(y + 1, val); val >>= 8; Max7219_Set_Row(y + 0, val); #else // at least 16 bits on each row if (y > MAX7219_Y_LEDS - 1) return Max7219_Error(PSTR("Max7219_Set_Rows_16bits"), y, val); Max7219_Set_Row(y, val); #endif } void Max7219_Set_Rows_32bits(const uint8_t y, uint32_t val) { #if MAX7219_X_LEDS == 8 if (y > MAX7219_Y_LEDS - 4) return Max7219_Error(PSTR("Max7219_Set_Rows_32bits"), y, val); Max7219_Set_Row(y + 3, val); val >>= 8; Max7219_Set_Row(y + 2, val); val >>= 8; Max7219_Set_Row(y + 1, val); val >>= 8; Max7219_Set_Row(y + 0, val); #elif MAX7219_X_LEDS == 16 if (y > MAX7219_Y_LEDS - 2) return Max7219_Error(PSTR("Max7219_Set_Rows_32bits"), y, val); Max7219_Set_Row(y + 1, val); val >>= 16; Max7219_Set_Row(y + 0, val); #else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bits if (y > MAX7219_Y_LEDS - 1) return Max7219_Error(PSTR("Max7219_Set_Rows_32bits"), y, val); Max7219_Set_Row(y, val); #endif } void Max7219_Set_Columns_16bits(const uint8_t x, uint32_t val) { #if MAX7219_Y_LEDS == 8 if (x > MAX7219_X_LEDS - 2) return Max7219_Error(PSTR("Max7219_Set_Columns_16bits"), x, val); Max7219_Set_Column(x + 0, val); val >>= 8; Max7219_Set_Column(x + 1, val); #else // at least 16 bits in each column if (x > MAX7219_X_LEDS - 1) return Max7219_Error(PSTR("Max7219_Set_Columns_16bits"), x, val); Max7219_Set_Column(x, val); #endif } void Max7219_Set_Columns_32bits(const uint8_t x, uint32_t val) { #if MAX7219_Y_LEDS == 8 if (x > MAX7219_X_LEDS - 4) return Max7219_Error(PSTR("Max7219_Set_Rows_32bits"), x, val); Max7219_Set_Column(x + 3, val); val >>= 8; Max7219_Set_Column(x + 2, val); val >>= 8; Max7219_Set_Column(x + 1, val); val >>= 8; Max7219_Set_Column(x + 0, val); #elif MAX7219_Y_LEDS == 16 if (x > MAX7219_X_LEDS - 2) return Max7219_Error(PSTR("Max7219_Set_Rows_32bits"), x, val); Max7219_Set_Column(x + 1, val); val >>= 16; Max7219_Set_Column(x + 0, val); #else // at least 24 bits on each row. In the 3 matrix case, just display the low 24 bits if (x > MAX7219_X_LEDS - 1) return Max7219_Error(PSTR("Max7219_Set_Rows_32bits"), x, val); Max7219_Set_Column(x, val); #endif } void Max7219_register_setup() { // Initialize the Max7219 for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++) Max7219(max7219_reg_scanLimit, 0x07); Max7219_pulse_load(); // tell the chips to load the clocked out data for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++) Max7219(max7219_reg_decodeMode, 0x00); // using an led matrix (not digits) Max7219_pulse_load(); // tell the chips to load the clocked out data for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++) Max7219(max7219_reg_shutdown, 0x01); // not in shutdown mode Max7219_pulse_load(); // tell the chips to load the clocked out data for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++) Max7219(max7219_reg_displayTest, 0x00); // no display test Max7219_pulse_load(); // tell the chips to load the clocked out data for (uint8_t i = 0; i < MAX7219_NUMBER_UNITS; i++) Max7219(max7219_reg_intensity, 0x01 & 0x0F); // the first 0x0F is the value you can set // range: 0x00 to 0x0F Max7219_pulse_load(); // tell the chips to load the clocked out data } #ifdef MAX7219_INIT_TEST #if (MAX7219_INIT_TEST + 0) == 2 inline void Max7219_spiral(const bool on, const uint16_t del) { constexpr int8_t way[] = { 1, 0, 0, 1, -1, 0, 0, -1 }; int8_t px = 0, py = 0, dir = 0; for (uint8_t i = MAX7219_X_LEDS * MAX7219_Y_LEDS; i--;) { Max7219_LED_Set(px, py, on); delay(del); const int8_t x = px + way[dir], y = py + way[dir + 1]; if (!WITHIN(x, 0, MAX7219_X_LEDS-1) || !WITHIN(y, 0, MAX7219_Y_LEDS-1) || BIT_7219(x, y) == on) dir = (dir + 2) & 0x7; px += way[dir]; py += way[dir + 1]; } } #else inline void Max7219_sweep(const int8_t dir, const uint16_t ms, const bool on) { uint8_t x = dir > 0 ? 0 : MAX7219_X_LEDS-1; for (uint8_t i = MAX7219_X_LEDS; i--; x += dir) { Max7219_Set_Column(x, on ? 0xFFFFFFFF : 0x00000000); delay(ms); } } #endif #endif // MAX7219_INIT_TEST void Max7219_init() { SET_OUTPUT(MAX7219_DIN_PIN); SET_OUTPUT(MAX7219_CLK_PIN); OUT_WRITE(MAX7219_LOAD_PIN, HIGH); delay(1); Max7219_register_setup(); for (uint8_t i = 0; i <= 7; i++) { // Empty registers to turn all LEDs off LEDs[i] = 0x00; Max7219(max7219_reg_digit0 + i, 0); Max7219_pulse_load(); // tell the chips to load the clocked out data } #ifdef MAX7219_INIT_TEST #if (MAX7219_INIT_TEST + 0) == 2 Max7219_spiral(true, 8); delay(150); Max7219_spiral(false, 8); #else // Do an aesthetically-pleasing pattern to fully test the Max7219 module and LEDs. // Light up and turn off columns, both forward and backward. Max7219_sweep(1, 20, true); Max7219_sweep(1, 20, false); delay(150); Max7219_sweep(-1, 20, true); Max7219_sweep(-1, 20, false); #endif #endif } /** * This code demonstrates some simple debugging using a single 8x8 LED Matrix. If your feature could * benefit from matrix display, add its code here. Very little processing is required, so the 7219 is * ideal for debugging when realtime feedback is important but serial output can't be used. */ // Apply changes to update a marker inline void Max7219_Mark16(const uint8_t y, const uint8_t v1, const uint8_t v2) { #if MAX7219_X_LEDS == 8 #if MAX7219_Y_LEDS == 8 Max7219_LED_Off(v1 & 0x7, y + (v1 >= 8)); Max7219_LED_On(v2 & 0x7, y + (v2 >= 8)); #else Max7219_LED_Off(y, v1 & 0xF); // The Max7219 Y-Axis has at least 16 LED's. So use a single column Max7219_LED_On(y, v2 & 0xF); #endif #else // LED matrix has at least 16 LED's on the X-Axis. Use single line of LED's Max7219_LED_Off(v1 & 0xf, y); Max7219_LED_On(v2 & 0xf, y); #endif } // Apply changes to update a tail-to-head range inline void Max7219_Range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh) { #if MAX7219_X_LEDS == 8 #if MAX7219_Y_LEDS == 8 if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF) Max7219_LED_Off(n & 0x7, y + (n >= 8)); if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF) Max7219_LED_On(n & 0x7, y + (n >= 8)); #else // The Max7219 Y-Axis has at least 16 LED's. So use a single column if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF) Max7219_LED_Off(y, n & 0xF); if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF) Max7219_LED_On(y, n & 0xF); #endif #else // LED matrix has at least 16 LED's on the X-Axis. Use single line of LED's if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF) Max7219_LED_Off(n & 0xf, y); if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF) Max7219_LED_On(n & 0xf, y); #endif } // Apply changes to update a quantity inline void Max7219_Quantity16(const uint8_t y, const uint8_t ov, const uint8_t nv) { for (uint8_t i = MIN(nv, ov); i < MAX(nv, ov); i++) #if MAX7219_X_LEDS == 8 #if MAX7219_Y_LEDS == 8 Max7219_LED_Set(i >> 1, y + (i & 1), nv >= ov); // single 8x8 LED matrix. Use two lines to get 16 LED's #else Max7219_LED_Set(y, i, nv >= ov); // The Max7219 Y-Axis has at least 16 LED's. So use a single column #endif #else Max7219_LED_Set(i, y, nv >= ov); // LED matrix has at least 16 LED's on the X-Axis. Use single line of LED's #endif } void Max7219_idle_tasks() { #define MAX7219_USE_HEAD (defined(MAX7219_DEBUG_PLANNER_HEAD) || defined(MAX7219_DEBUG_PLANNER_QUEUE)) #define MAX7219_USE_TAIL (defined(MAX7219_DEBUG_PLANNER_TAIL) || defined(MAX7219_DEBUG_PLANNER_QUEUE)) #if MAX7219_USE_HEAD || MAX7219_USE_TAIL #ifndef CPU_32_BIT CRITICAL_SECTION_START; #endif #if MAX7219_USE_HEAD const uint8_t head = planner.block_buffer_head; #endif #if MAX7219_USE_TAIL const uint8_t tail = planner.block_buffer_tail; #endif #ifndef CPU_32_BIT CRITICAL_SECTION_END; #endif #endif #if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE) static uint8_t refresh_cnt; // = 0 constexpr uint16_t refresh_limit = 5; static millis_t next_blink = 0; const millis_t ms = millis(); const bool do_blink = ELAPSED(ms, next_blink); #else static uint16_t refresh_cnt; // = 0 constexpr bool do_blink = true; constexpr uint16_t refresh_limit = 50000; #endif // Some Max7219 units are vulnerable to electrical noise, especially // with long wires next to high current wires. If the display becomes // corrupted, this will fix it within a couple seconds. if (do_blink && ++refresh_cnt >= refresh_limit) { refresh_cnt = 0; Max7219_register_setup(); } #if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE) if (do_blink) { Max7219_LED_Toggle(MAX7219_X_LEDS - 1, MAX7219_Y_LEDS - 1); next_blink = ms + 1000; } #endif #if defined(MAX7219_DEBUG_PLANNER_HEAD) && defined(MAX7219_DEBUG_PLANNER_TAIL) && MAX7219_DEBUG_PLANNER_HEAD == MAX7219_DEBUG_PLANNER_TAIL static int16_t last_head_cnt = 0xF, last_tail_cnt = 0xF; if (last_head_cnt != head || last_tail_cnt != tail) { Max7219_Range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head); last_head_cnt = head; last_tail_cnt = tail; } #else #ifdef MAX7219_DEBUG_PLANNER_HEAD static int16_t last_head_cnt = 0x1; if (last_head_cnt != head) { Max7219_Mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head); last_head_cnt = head; } #endif #ifdef MAX7219_DEBUG_PLANNER_TAIL static int16_t last_tail_cnt = 0x1; if (last_tail_cnt != tail) { Max7219_Mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail); last_tail_cnt = tail; } #endif #endif #ifdef MAX7219_DEBUG_PLANNER_QUEUE static int16_t last_depth = 0; const int16_t current_depth = (head - tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1) & 0xF; if (current_depth != last_depth) { Max7219_Quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth); last_depth = current_depth; } #endif } #endif // MAX7219_DEBUG