/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once /** * Configuration.h * * Basic settings such as: * * - Type of electronics * - Type of temperature sensor * - Printer geometry * - Endstop configuration * - LCD controller * - Extra features * * Advanced settings can be found in Configuration_adv.h */ #define CONFIGURATION_H_VERSION 02010100 //=========================================================================== //============================= Getting Started ============================= //=========================================================================== /** * Here are some useful links to help get your machine configured and calibrated: * * Example Configs: https://github.com/MarlinFirmware/Configurations/branches/all * * Průša Calculator: https://blog.prusaprinters.org/calculator_3416/ * * Calibration Guides: https://reprap.org/wiki/Calibration * https://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide * https://sites.google.com/site/repraplogphase/calibration-of-your-reprap * https://youtu.be/wAL9d7FgInk * * Calibration Objects: https://www.thingiverse.com/thing:5573 * https://www.thingiverse.com/thing:1278865 */ // @section info // Author info of this build printed to the host during boot and M115 #define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes. //#define CUSTOM_VERSION_FILE Version.h // Path from the root directory (no quotes) /** * *** VENDORS PLEASE READ *** * * Marlin allows you to add a custom boot image for Graphical LCDs. * With this option Marlin will first show your custom screen followed * by the standard Marlin logo with version number and web URL. * * We encourage you to take advantage of this new feature and we also * respectfully request that you retain the unmodified Marlin boot screen. */ // Show the Marlin bootscreen on startup. ** ENABLE FOR PRODUCTION ** #define SHOW_BOOTSCREEN // Show the bitmap in Marlin/_Bootscreen.h on startup. //#define SHOW_CUSTOM_BOOTSCREEN // Show the bitmap in Marlin/_Statusscreen.h on the status screen. //#define CUSTOM_STATUS_SCREEN_IMAGE // @section machine // Choose the name from boards.h that matches your setup #ifndef MOTHERBOARD #define MOTHERBOARD BOARD_RAMPS_14_EFB #endif /** * Select the serial port on the board to use for communication with the host. * This allows the connection of wireless adapters (for instance) to non-default port pins. * Serial port -1 is the USB emulated serial port, if available. * Note: The first serial port (-1 or 0) will always be used by the Arduino bootloader. * * :[-1, 0, 1, 2, 3, 4, 5, 6, 7] */ #define SERIAL_PORT 0 /** * Serial Port Baud Rate * This is the default communication speed for all serial ports. * Set the baud rate defaults for additional serial ports below. * * 250000 works in most cases, but you might try a lower speed if * you commonly experience drop-outs during host printing. * You may try up to 1000000 to speed up SD file transfer. * * :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] */ #define BAUDRATE 250000 //#define BAUD_RATE_GCODE // Enable G-code M575 to set the baud rate /** * Select a secondary serial port on the board to use for communication with the host. * Currently Ethernet (-2) is only supported on Teensy 4.1 boards. * :[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7] */ //#define SERIAL_PORT_2 -1 //#define BAUDRATE_2 250000 // Enable to override BAUDRATE /** * Select a third serial port on the board to use for communication with the host. * Currently only supported for AVR, DUE, LPC1768/9 and STM32/STM32F1 * :[-1, 0, 1, 2, 3, 4, 5, 6, 7] */ //#define SERIAL_PORT_3 1 //#define BAUDRATE_3 250000 // Enable to override BAUDRATE // Enable the Bluetooth serial interface on AT90USB devices //#define BLUETOOTH // Name displayed in the LCD "Ready" message and Info menu //#define CUSTOM_MACHINE_NAME "3D Printer" // Printer's unique ID, used by some programs to differentiate between machines. // Choose your own or use a service like https://www.uuidgenerator.net/version4 //#define MACHINE_UUID "00000000-0000-0000-0000-000000000000" /** * Stepper Drivers * * These settings allow Marlin to tune stepper driver timing and enable advanced options for * stepper drivers that support them. You may also override timing options in Configuration_adv.h. * * Use TMC2208/TMC2208_STANDALONE for TMC2225 drivers and TMC2209/TMC2209_STANDALONE for TMC2226 drivers. * * Options: A4988, A5984, DRV8825, LV8729, TB6560, TB6600, TMC2100, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] */ #define X_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988 #define Z_DRIVER_TYPE A4988 //#define X2_DRIVER_TYPE A4988 //#define Y2_DRIVER_TYPE A4988 //#define Z2_DRIVER_TYPE A4988 //#define Z3_DRIVER_TYPE A4988 //#define Z4_DRIVER_TYPE A4988 //#define I_DRIVER_TYPE A4988 //#define J_DRIVER_TYPE A4988 //#define K_DRIVER_TYPE A4988 //#define U_DRIVER_TYPE A4988 //#define V_DRIVER_TYPE A4988 //#define W_DRIVER_TYPE A4988 #define E0_DRIVER_TYPE A4988 //#define E1_DRIVER_TYPE A4988 //#define E2_DRIVER_TYPE A4988 //#define E3_DRIVER_TYPE A4988 //#define E4_DRIVER_TYPE A4988 //#define E5_DRIVER_TYPE A4988 //#define E6_DRIVER_TYPE A4988 //#define E7_DRIVER_TYPE A4988 /** * Additional Axis Settings * * Define AXISn_ROTATES for all axes that rotate or pivot. * Rotational axis coordinates are expressed in degrees. * * AXISn_NAME defines the letter used to refer to the axis in (most) G-code commands. * By convention the names and roles are typically: * 'A' : Rotational axis parallel to X * 'B' : Rotational axis parallel to Y * 'C' : Rotational axis parallel to Z * 'U' : Secondary linear axis parallel to X * 'V' : Secondary linear axis parallel to Y * 'W' : Secondary linear axis parallel to Z * * Regardless of these settings the axes are internally named I, J, K, U, V, W. */ #ifdef I_DRIVER_TYPE #define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W'] #define AXIS4_ROTATES #endif #ifdef J_DRIVER_TYPE #define AXIS5_NAME 'B' // :['B', 'C', 'U', 'V', 'W'] #define AXIS5_ROTATES #endif #ifdef K_DRIVER_TYPE #define AXIS6_NAME 'C' // :['C', 'U', 'V', 'W'] #define AXIS6_ROTATES #endif #ifdef U_DRIVER_TYPE #define AXIS7_NAME 'U' // :['U', 'V', 'W'] //#define AXIS7_ROTATES #endif #ifdef V_DRIVER_TYPE #define AXIS8_NAME 'V' // :['V', 'W'] //#define AXIS8_ROTATES #endif #ifdef W_DRIVER_TYPE #define AXIS9_NAME 'W' // :['W'] //#define AXIS9_ROTATES #endif // @section extruder // This defines the number of extruders // :[0, 1, 2, 3, 4, 5, 6, 7, 8] #define EXTRUDERS 1 // Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc. #define DEFAULT_NOMINAL_FILAMENT_DIA 1.75 // For Cyclops or any "multi-extruder" that shares a single nozzle. //#define SINGLENOZZLE // Save and restore temperature and fan speed on tool-change. // Set standby for the unselected tool with M104/106/109 T... #if ENABLED(SINGLENOZZLE) //#define SINGLENOZZLE_STANDBY_TEMP //#define SINGLENOZZLE_STANDBY_FAN #endif /** * Multi-Material Unit * Set to one of these predefined models: * * PRUSA_MMU1 : Průša MMU1 (The "multiplexer" version) * PRUSA_MMU2 : Průša MMU2 * PRUSA_MMU2S : Průša MMU2S (Requires MK3S extruder with motion sensor, EXTRUDERS = 5) * EXTENDABLE_EMU_MMU2 : MMU with configurable number of filaments (ERCF, SMuFF or similar with Průša MMU2 compatible firmware) * EXTENDABLE_EMU_MMU2S : MMUS with configurable number of filaments (ERCF, SMuFF or similar with Průša MMU2 compatible firmware) * * Requires NOZZLE_PARK_FEATURE to park print head in case MMU unit fails. * See additional options in Configuration_adv.h. */ //#define MMU_MODEL PRUSA_MMU2 // A dual extruder that uses a single stepper motor //#define SWITCHING_EXTRUDER #if ENABLED(SWITCHING_EXTRUDER) #define SWITCHING_EXTRUDER_SERVO_NR 0 #define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1[, E2, E3] #if EXTRUDERS > 3 #define SWITCHING_EXTRUDER_E23_SERVO_NR 1 #endif #endif // A dual-nozzle that uses a servomotor to raise/lower one (or both) of the nozzles //#define SWITCHING_NOZZLE #if ENABLED(SWITCHING_NOZZLE) #define SWITCHING_NOZZLE_SERVO_NR 0 //#define SWITCHING_NOZZLE_E1_SERVO_NR 1 // If two servos are used, the index of the second #define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 } // Angles for E0, E1 (single servo) or lowered/raised (dual servo) #endif /** * Two separate X-carriages with extruders that connect to a moving part * via a solenoid docking mechanism. Requires SOL1_PIN and SOL2_PIN. */ //#define PARKING_EXTRUDER /** * Two separate X-carriages with extruders that connect to a moving part * via a magnetic docking mechanism using movements and no solenoid * * project : https://www.thingiverse.com/thing:3080893 * movements : https://youtu.be/0xCEiG9VS3k * https://youtu.be/Bqbcs0CU2FE */ //#define MAGNETIC_PARKING_EXTRUDER #if EITHER(PARKING_EXTRUDER, MAGNETIC_PARKING_EXTRUDER) #define PARKING_EXTRUDER_PARKING_X { -78, 184 } // X positions for parking the extruders #define PARKING_EXTRUDER_GRAB_DISTANCE 1 // (mm) Distance to move beyond the parking point to grab the extruder #if ENABLED(PARKING_EXTRUDER) #define PARKING_EXTRUDER_SOLENOIDS_INVERT // If enabled, the solenoid is NOT magnetized with applied voltage #define PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE LOW // LOW or HIGH pin signal energizes the coil #define PARKING_EXTRUDER_SOLENOIDS_DELAY 250 // (ms) Delay for magnetic field. No delay if 0 or not defined. //#define MANUAL_SOLENOID_CONTROL // Manual control of docking solenoids with M380 S / M381 #elif ENABLED(MAGNETIC_PARKING_EXTRUDER) #define MPE_FAST_SPEED 9000 // (mm/min) Speed for travel before last distance point #define MPE_SLOW_SPEED 4500 // (mm/min) Speed for last distance travel to park and couple #define MPE_TRAVEL_DISTANCE 10 // (mm) Last distance point #define MPE_COMPENSATION 0 // Offset Compensation -1 , 0 , 1 (multiplier) only for coupling #endif #endif /** * Switching Toolhead * * Support for swappable and dockable toolheads, such as * the E3D Tool Changer. Toolheads are locked with a servo. */ //#define SWITCHING_TOOLHEAD /** * Magnetic Switching Toolhead * * Support swappable and dockable toolheads with a magnetic * docking mechanism using movement and no servo. */ //#define MAGNETIC_SWITCHING_TOOLHEAD /** * Electromagnetic Switching Toolhead * * Parking for CoreXY / HBot kinematics. * Toolheads are parked at one edge and held with an electromagnet. * Supports more than 2 Toolheads. See https://youtu.be/JolbsAKTKf4 */ //#define ELECTROMAGNETIC_SWITCHING_TOOLHEAD #if ANY(SWITCHING_TOOLHEAD, MAGNETIC_SWITCHING_TOOLHEAD, ELECTROMAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Y_POS 235 // (mm) Y position of the toolhead dock #define SWITCHING_TOOLHEAD_Y_SECURITY 10 // (mm) Security distance Y axis #define SWITCHING_TOOLHEAD_Y_CLEAR 60 // (mm) Minimum distance from dock for unobstructed X axis #define SWITCHING_TOOLHEAD_X_POS { 215, 0 } // (mm) X positions for parking the extruders #if ENABLED(SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_SERVO_NR 2 // Index of the servo connector #define SWITCHING_TOOLHEAD_SERVO_ANGLES { 0, 180 } // (degrees) Angles for Lock, Unlock #elif ENABLED(MAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Y_RELEASE 5 // (mm) Security distance Y axis #define SWITCHING_TOOLHEAD_X_SECURITY { 90, 150 } // (mm) Security distance X axis (T0,T1) //#define PRIME_BEFORE_REMOVE // Prime the nozzle before release from the dock #if ENABLED(PRIME_BEFORE_REMOVE) #define SWITCHING_TOOLHEAD_PRIME_MM 20 // (mm) Extruder prime length #define SWITCHING_TOOLHEAD_RETRACT_MM 10 // (mm) Retract after priming length #define SWITCHING_TOOLHEAD_PRIME_FEEDRATE 300 // (mm/min) Extruder prime feedrate #define SWITCHING_TOOLHEAD_RETRACT_FEEDRATE 2400 // (mm/min) Extruder retract feedrate #endif #elif ENABLED(ELECTROMAGNETIC_SWITCHING_TOOLHEAD) #define SWITCHING_TOOLHEAD_Z_HOP 2 // (mm) Z raise for switching #endif #endif /** * "Mixing Extruder" * - Adds G-codes M163 and M164 to set and "commit" the current mix factors. * - Extends the stepping routines to move multiple steppers in proportion to the mix. * - Optional support for Repetier Firmware's 'M164 S' supporting virtual tools. * - This implementation supports up to two mixing extruders. * - Enable DIRECT_MIXING_IN_G1 for M165 and mixing in G1 (from Pia Taubert's reference implementation). */ //#define MIXING_EXTRUDER #if ENABLED(MIXING_EXTRUDER) #define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder #define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164 //#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands //#define GRADIENT_MIX // Support for gradient mixing with M166 and LCD //#define MIXING_PRESETS // Assign 8 default V-tool presets for 2 or 3 MIXING_STEPPERS #if ENABLED(GRADIENT_MIX) //#define GRADIENT_VTOOL // Add M166 T to use a V-tool index as a Gradient alias #endif #endif // Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing). // The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder). // For the other hotends it is their distance from the extruder 0 hotend. //#define HOTEND_OFFSET_X { 0.0, 20.00 } // (mm) relative X-offset for each nozzle //#define HOTEND_OFFSET_Y { 0.0, 5.00 } // (mm) relative Y-offset for each nozzle //#define HOTEND_OFFSET_Z { 0.0, 0.00 } // (mm) relative Z-offset for each nozzle // @section machine /** * Power Supply Control * * Enable and connect the power supply to the PS_ON_PIN. * Specify whether the power supply is active HIGH or active LOW. */ //#define PSU_CONTROL //#define PSU_NAME "Power Supply" #if ENABLED(PSU_CONTROL) //#define MKS_PWC // Using the MKS PWC add-on //#define PS_OFF_CONFIRM // Confirm dialog when power off //#define PS_OFF_SOUND // Beep 1s when power off #define PSU_ACTIVE_STATE LOW // Set 'LOW' for ATX, 'HIGH' for X-Box //#define PSU_DEFAULT_OFF // Keep power off until enabled directly with M80 //#define PSU_POWERUP_DELAY 250 // (ms) Delay for the PSU to warm up to full power //#define LED_POWEROFF_TIMEOUT 10000 // (ms) Turn off LEDs after power-off, with this amount of delay //#define POWER_OFF_TIMER // Enable M81 D to power off after a delay //#define POWER_OFF_WAIT_FOR_COOLDOWN // Enable M81 S to power off only after cooldown //#define PSU_POWERUP_GCODE "M355 S1" // G-code to run after power-on (e.g., case light on) //#define PSU_POWEROFF_GCODE "M355 S0" // G-code to run before power-off (e.g., case light off) //#define AUTO_POWER_CONTROL // Enable automatic control of the PS_ON pin #if ENABLED(AUTO_POWER_CONTROL) #define AUTO_POWER_FANS // Turn on PSU if fans need power #define AUTO_POWER_E_FANS #define AUTO_POWER_CONTROLLERFAN #define AUTO_POWER_CHAMBER_FAN #define AUTO_POWER_COOLER_FAN #define POWER_TIMEOUT 30 // (s) Turn off power if the machine is idle for this duration //#define POWER_OFF_DELAY 60 // (s) Delay of poweroff after M81 command. Useful to let fans run for extra time. #endif #if EITHER(AUTO_POWER_CONTROL, POWER_OFF_WAIT_FOR_COOLDOWN) //#define AUTO_POWER_E_TEMP 50 // (°C) PSU on if any extruder is over this temperature //#define AUTO_POWER_CHAMBER_TEMP 30 // (°C) PSU on if the chamber is over this temperature //#define AUTO_POWER_COOLER_TEMP 26 // (°C) PSU on if the cooler is over this temperature #endif #endif //=========================================================================== //============================= Thermal Settings ============================ //=========================================================================== // @section temperature /** * --NORMAL IS 4.7kΩ PULLUP!-- 1kΩ pullup can be used on hotend sensor, using correct resistor and table * * Temperature sensors available: * * SPI RTD/Thermocouple Boards - IMPORTANT: Read the NOTE below! * ------- * -5 : MAX31865 with Pt100/Pt1000, 2, 3, or 4-wire (only for sensors 0-1) * NOTE: You must uncomment/set the MAX31865_*_OHMS_n defines below. * -3 : MAX31855 with Thermocouple, -200°C to +700°C (only for sensors 0-1) * -2 : MAX6675 with Thermocouple, 0°C to +700°C (only for sensors 0-1) * * NOTE: Ensure TEMP_n_CS_PIN is set in your pins file for each TEMP_SENSOR_n using an SPI Thermocouple. By default, * Hardware SPI on the default serial bus is used. If you have also set TEMP_n_SCK_PIN and TEMP_n_MISO_PIN, * Software SPI will be used on those ports instead. You can force Hardware SPI on the default bus in the * Configuration_adv.h file. At this time, separate Hardware SPI buses for sensors are not supported. * * Analog Themocouple Boards * ------- * -4 : AD8495 with Thermocouple * -1 : AD595 with Thermocouple * * Analog Thermistors - 4.7kΩ pullup - Normal * ------- * 1 : 100kΩ EPCOS - Best choice for EPCOS thermistors * 331 : 100kΩ Same as #1, but 3.3V scaled for MEGA * 332 : 100kΩ Same as #1, but 3.3V scaled for DUE * 2 : 200kΩ ATC Semitec 204GT-2 * 202 : 200kΩ Copymaster 3D * 3 : ???Ω Mendel-parts thermistor * 4 : 10kΩ Generic Thermistor !! DO NOT use for a hotend - it gives bad resolution at high temp. !! * 5 : 100kΩ ATC Semitec 104GT-2/104NT-4-R025H42G - Used in ParCan, J-Head, and E3D, SliceEngineering 300°C * 501 : 100kΩ Zonestar - Tronxy X3A * 502 : 100kΩ Zonestar - used by hot bed in Zonestar Průša P802M * 503 : 100kΩ Zonestar (Z8XM2) Heated Bed thermistor * 504 : 100kΩ Zonestar P802QR2 (Part# QWG-104F-B3950) Hotend Thermistor * 505 : 100kΩ Zonestar P802QR2 (Part# QWG-104F-3950) Bed Thermistor * 512 : 100kΩ RPW-Ultra hotend * 6 : 100kΩ EPCOS - Not as accurate as table #1 (created using a fluke thermocouple) * 7 : 100kΩ Honeywell 135-104LAG-J01 * 71 : 100kΩ Honeywell 135-104LAF-J01 * 8 : 100kΩ Vishay 0603 SMD NTCS0603E3104FXT * 9 : 100kΩ GE Sensing AL03006-58.2K-97-G1 * 10 : 100kΩ RS PRO 198-961 * 11 : 100kΩ Keenovo AC silicone mats, most Wanhao i3 machines - beta 3950, 1% * 12 : 100kΩ Vishay 0603 SMD NTCS0603E3104FXT (#8) - calibrated for Makibox hot bed * 13 : 100kΩ Hisens up to 300°C - for "Simple ONE" & "All In ONE" hotend - beta 3950, 1% * 15 : 100kΩ Calibrated for JGAurora A5 hotend * 18 : 200kΩ ATC Semitec 204GT-2 Dagoma.Fr - MKS_Base_DKU001327 * 22 : 100kΩ GTM32 Pro vB - hotend - 4.7kΩ pullup to 3.3V and 220Ω to analog input * 23 : 100kΩ GTM32 Pro vB - bed - 4.7kΩ pullup to 3.3v and 220Ω to analog input * 30 : 100kΩ Kis3d Silicone heating mat 200W/300W with 6mm precision cast plate (EN AW 5083) NTC100K - beta 3950 * 60 : 100kΩ Maker's Tool Works Kapton Bed Thermistor - beta 3950 * 61 : 100kΩ Formbot/Vivedino 350°C Thermistor - beta 3950 * 66 : 4.7MΩ Dyze Design High Temperature Thermistor * 67 : 500kΩ SliceEngineering 450°C Thermistor * 68 : PT100 amplifier board from Dyze Design * 70 : 100kΩ bq Hephestos 2 * 75 : 100kΩ Generic Silicon Heat Pad with NTC100K MGB18-104F39050L32 * 2000 : 100kΩ Ultimachine Rambo TDK NTCG104LH104KT1 NTC100K motherboard Thermistor * * Analog Thermistors - 1kΩ pullup - Atypical, and requires changing out the 4.7kΩ pullup for 1kΩ. * ------- (but gives greater accuracy and more stable PID) * 51 : 100kΩ EPCOS (1kΩ pullup) * 52 : 200kΩ ATC Semitec 204GT-2 (1kΩ pullup) * 55 : 100kΩ ATC Semitec 104GT-2 - Used in ParCan & J-Head (1kΩ pullup) * * Analog Thermistors - 10kΩ pullup - Atypical * ------- * 99 : 100kΩ Found on some Wanhao i3 machines with a 10kΩ pull-up resistor * * Analog RTDs (Pt100/Pt1000) * ------- * 110 : Pt100 with 1kΩ pullup (atypical) * 147 : Pt100 with 4.7kΩ pullup * 1010 : Pt1000 with 1kΩ pullup (atypical) * 1047 : Pt1000 with 4.7kΩ pullup (E3D) * 20 : Pt100 with circuit in the Ultimainboard V2.x with mainboard ADC reference voltage = INA826 amplifier-board supply voltage. * NOTE: (1) Must use an ADC input with no pullup. (2) Some INA826 amplifiers are unreliable at 3.3V so consider using sensor 147, 110, or 21. * 21 : Pt100 with circuit in the Ultimainboard V2.x with 3.3v ADC reference voltage (STM32, LPC176x....) and 5V INA826 amplifier board supply. * NOTE: ADC pins are not 5V tolerant. Not recommended because it's possible to damage the CPU by going over 500°C. * 201 : Pt100 with circuit in Overlord, similar to Ultimainboard V2.x * * Custom/Dummy/Other Thermal Sensors * ------ * 0 : not used * 1000 : Custom - Specify parameters in Configuration_adv.h * * !!! Use these for Testing or Development purposes. NEVER for production machine. !!! * 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below. * 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below. * */ #define TEMP_SENSOR_0 1 #define TEMP_SENSOR_1 0 #define TEMP_SENSOR_2 0 #define TEMP_SENSOR_3 0 #define TEMP_SENSOR_4 0 #define TEMP_SENSOR_5 0 #define TEMP_SENSOR_6 0 #define TEMP_SENSOR_7 0 #define TEMP_SENSOR_BED 0 #define TEMP_SENSOR_PROBE 0 #define TEMP_SENSOR_CHAMBER 0 #define TEMP_SENSOR_COOLER 0 #define TEMP_SENSOR_BOARD 0 #define TEMP_SENSOR_REDUNDANT 0 // Dummy thermistor constant temperature readings, for use with 998 and 999 #define DUMMY_THERMISTOR_998_VALUE 25 #define DUMMY_THERMISTOR_999_VALUE 100 // Resistor values when using MAX31865 sensors (-5) on TEMP_SENSOR_0 / 1 //#define MAX31865_SENSOR_OHMS_0 100 // (Ω) Typically 100 or 1000 (PT100 or PT1000) //#define MAX31865_CALIBRATION_OHMS_0 430 // (Ω) Typically 430 for Adafruit PT100; 4300 for Adafruit PT1000 //#define MAX31865_SENSOR_OHMS_1 100 //#define MAX31865_CALIBRATION_OHMS_1 430 #define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109 #define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target #define TEMP_BED_RESIDENCY_TIME 10 // (seconds) Time to wait for bed to "settle" in M190 #define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target #define TEMP_CHAMBER_RESIDENCY_TIME 10 // (seconds) Time to wait for chamber to "settle" in M191 #define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer #define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target /** * Redundant Temperature Sensor (TEMP_SENSOR_REDUNDANT) * * Use a temp sensor as a redundant sensor for another reading. Select an unused temperature sensor, and another * sensor you'd like it to be redundant for. If the two thermistors differ by TEMP_SENSOR_REDUNDANT_MAX_DIFF (°C), * the print will be aborted. Whichever sensor is selected will have its normal functions disabled; i.e. selecting * the Bed sensor (-1) will disable bed heating/monitoring. * * For selecting source/target use: COOLER, PROBE, BOARD, CHAMBER, BED, E0, E1, E2, E3, E4, E5, E6, E7 */ #if TEMP_SENSOR_REDUNDANT #define TEMP_SENSOR_REDUNDANT_SOURCE E1 // The sensor that will provide the redundant reading. #define TEMP_SENSOR_REDUNDANT_TARGET E0 // The sensor that we are providing a redundant reading for. #define TEMP_SENSOR_REDUNDANT_MAX_DIFF 10 // (°C) Temperature difference that will trigger a print abort. #endif // Below this temperature the heater will be switched off // because it probably indicates a broken thermistor wire. #define HEATER_0_MINTEMP 5 #define HEATER_1_MINTEMP 5 #define HEATER_2_MINTEMP 5 #define HEATER_3_MINTEMP 5 #define HEATER_4_MINTEMP 5 #define HEATER_5_MINTEMP 5 #define HEATER_6_MINTEMP 5 #define HEATER_7_MINTEMP 5 #define BED_MINTEMP 5 #define CHAMBER_MINTEMP 5 // Above this temperature the heater will be switched off. // This can protect components from overheating, but NOT from shorts and failures. // (Use MINTEMP for thermistor short/failure protection.) #define HEATER_0_MAXTEMP 275 #define HEATER_1_MAXTEMP 275 #define HEATER_2_MAXTEMP 275 #define HEATER_3_MAXTEMP 275 #define HEATER_4_MAXTEMP 275 #define HEATER_5_MAXTEMP 275 #define HEATER_6_MAXTEMP 275 #define HEATER_7_MAXTEMP 275 #define BED_MAXTEMP 150 #define CHAMBER_MAXTEMP 60 /** * Thermal Overshoot * During heatup (and printing) the temperature can often "overshoot" the target by many degrees * (especially before PID tuning). Setting the target temperature too close to MAXTEMP guarantees * a MAXTEMP shutdown! Use these values to forbid temperatures being set too close to MAXTEMP. */ #define HOTEND_OVERSHOOT 15 // (°C) Forbid temperatures over MAXTEMP - OVERSHOOT #define BED_OVERSHOOT 10 // (°C) Forbid temperatures over MAXTEMP - OVERSHOOT #define COOLER_OVERSHOOT 2 // (°C) Forbid temperatures closer than OVERSHOOT //=========================================================================== //============================= PID Settings ================================ //=========================================================================== // Enable PIDTEMP for PID control or MPCTEMP for Predictive Model. // temperature control. Disable both for bang-bang heating. #define PIDTEMP // See the PID Tuning Guide at https://reprap.org/wiki/PID_Tuning //#define MPCTEMP // ** EXPERIMENTAL ** #define BANG_MAX 255 // Limits current to nozzle while in bang-bang mode; 255=full current #define PID_MAX BANG_MAX // Limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current #define PID_K1 0.95 // Smoothing factor within any PID loop #if ENABLED(PIDTEMP) //#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders) // Set/get with G-code: M301 E[extruder number, 0-2] #if ENABLED(PID_PARAMS_PER_HOTEND) // Specify up to one value per hotend here, according to your setup. // If there are fewer values, the last one applies to the remaining hotends. #define DEFAULT_Kp_LIST { 22.20, 22.20 } #define DEFAULT_Ki_LIST { 1.08, 1.08 } #define DEFAULT_Kd_LIST { 114.00, 114.00 } #else #define DEFAULT_Kp 22.20 #define DEFAULT_Ki 1.08 #define DEFAULT_Kd 114.00 #endif #endif /** * Model Predictive Control for hotend * * Use a physical model of the hotend to control temperature. When configured correctly * this gives better responsiveness and stability than PID and it also removes the need * for PID_EXTRUSION_SCALING and PID_FAN_SCALING. Use M306 to autotune the model. */ #if ENABLED(MPCTEMP) //#define MPC_EDIT_MENU // Add MPC editing to the "Advanced Settings" menu. (~1300 bytes of flash) //#define MPC_AUTOTUNE_MENU // Add MPC auto-tuning to the "Advanced Settings" menu. (~350 bytes of flash) #define MPC_MAX BANG_MAX // (0..255) Current to nozzle while MPC is active. #define MPC_HEATER_POWER { 40.0f } // (W) Heat cartridge powers. #define MPC_INCLUDE_FAN // Model the fan speed? // Measured physical constants from M306 #define MPC_BLOCK_HEAT_CAPACITY { 16.7f } // (J/K) Heat block heat capacities. #define MPC_SENSOR_RESPONSIVENESS { 0.22f } // (K/s per ∆K) Rate of change of sensor temperature from heat block. #define MPC_AMBIENT_XFER_COEFF { 0.068f } // (W/K) Heat transfer coefficients from heat block to room air with fan off. #if ENABLED(MPC_INCLUDE_FAN) #define MPC_AMBIENT_XFER_COEFF_FAN255 { 0.097f } // (W/K) Heat transfer coefficients from heat block to room air with fan on full. #endif // For one fan and multiple hotends MPC needs to know how to apply the fan cooling effect. #if ENABLED(MPC_INCLUDE_FAN) //#define MPC_FAN_0_ALL_HOTENDS //#define MPC_FAN_0_ACTIVE_HOTEND #endif #define FILAMENT_HEAT_CAPACITY_PERMM { 5.6e-3f } // 0.0056 J/K/mm for 1.75mm PLA (0.0149 J/K/mm for 2.85mm PLA). //#define FILAMENT_HEAT_CAPACITY_PERMM { 3.6e-3f } // 0.0036 J/K/mm for 1.75mm PETG (0.0094 J/K/mm for 2.85mm PETG). // Advanced options #define MPC_SMOOTHING_FACTOR 0.5f // (0.0...1.0) Noisy temperature sensors may need a lower value for stabilization. #define MPC_MIN_AMBIENT_CHANGE 1.0f // (K/s) Modeled ambient temperature rate of change, when correcting model inaccuracies. #define MPC_STEADYSTATE 0.5f // (K/s) Temperature change rate for steady state logic to be enforced. #define MPC_TUNING_POS { X_CENTER, Y_CENTER, 1.0f } // (mm) M306 Autotuning position, ideally bed center at first layer height. #define MPC_TUNING_END_Z 10.0f // (mm) M306 Autotuning final Z position. #endif //=========================================================================== //====================== PID > Bed Temperature Control ====================== //=========================================================================== /** * PID Bed Heating * * If this option is enabled set PID constants below. * If this option is disabled, bang-bang will be used and BED_LIMIT_SWITCHING will enable hysteresis. * * The PID frequency will be the same as the extruder PWM. * If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz, * which is fine for driving a square wave into a resistive load and does not significantly * impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W * heater. If your configuration is significantly different than this and you don't understand * the issues involved, don't use bed PID until someone else verifies that your hardware works. */ //#define PIDTEMPBED //#define BED_LIMIT_SWITCHING /** * Max Bed Power * Applies to all forms of bed control (PID, bang-bang, and bang-bang with hysteresis). * When set to any value below 255, enables a form of PWM to the bed that acts like a divider * so don't use it unless you are OK with PWM on your bed. (See the comment on enabling PIDTEMPBED) */ #define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current #if ENABLED(PIDTEMPBED) //#define MIN_BED_POWER 0 //#define PID_BED_DEBUG // Sends debug data to the serial port. // 120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+) // from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10) #define DEFAULT_bedKp 10.00 #define DEFAULT_bedKi .023 #define DEFAULT_bedKd 305.4 // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles. #endif // PIDTEMPBED //=========================================================================== //==================== PID > Chamber Temperature Control ==================== //=========================================================================== /** * PID Chamber Heating * * If this option is enabled set PID constants below. * If this option is disabled, bang-bang will be used and CHAMBER_LIMIT_SWITCHING will enable * hysteresis. * * The PID frequency will be the same as the extruder PWM. * If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz, * which is fine for driving a square wave into a resistive load and does not significantly * impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 200W * heater. If your configuration is significantly different than this and you don't understand * the issues involved, don't use chamber PID until someone else verifies that your hardware works. */ //#define PIDTEMPCHAMBER //#define CHAMBER_LIMIT_SWITCHING /** * Max Chamber Power * Applies to all forms of chamber control (PID, bang-bang, and bang-bang with hysteresis). * When set to any value below 255, enables a form of PWM to the chamber heater that acts like a divider * so don't use it unless you are OK with PWM on your heater. (See the comment on enabling PIDTEMPCHAMBER) */ #define MAX_CHAMBER_POWER 255 // limits duty cycle to chamber heater; 255=full current #if ENABLED(PIDTEMPCHAMBER) #define MIN_CHAMBER_POWER 0 //#define PID_CHAMBER_DEBUG // Sends debug data to the serial port. // Lasko "MyHeat Personal Heater" (200w) modified with a Fotek SSR-10DA to control only the heating element // and placed inside the small Creality printer enclosure tent. // #define DEFAULT_chamberKp 37.04 #define DEFAULT_chamberKi 1.40 #define DEFAULT_chamberKd 655.17 // M309 P37.04 I1.04 D655.17 // FIND YOUR OWN: "M303 E-2 C8 S50" to run autotune on the chamber at 50 degreesC for 8 cycles. #endif // PIDTEMPCHAMBER #if ANY(PIDTEMP, PIDTEMPBED, PIDTEMPCHAMBER) //#define PID_DEBUG // Sends debug data to the serial port. Use 'M303 D' to toggle activation. //#define PID_OPENLOOP // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX //#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature // is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. //#define PID_EDIT_MENU // Add PID editing to the "Advanced Settings" menu. (~700 bytes of flash) //#define PID_AUTOTUNE_MENU // Add PID auto-tuning to the "Advanced Settings" menu. (~250 bytes of flash) #endif // @section extruder /** * Prevent extrusion if the temperature is below EXTRUDE_MINTEMP. * Add M302 to set the minimum extrusion temperature and/or turn * cold extrusion prevention on and off. * * *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! *** */ #define PREVENT_COLD_EXTRUSION #define EXTRUDE_MINTEMP 170 /** * Prevent a single extrusion longer than EXTRUDE_MAXLENGTH. * Note: For Bowden Extruders make this large enough to allow load/unload. */ #define PREVENT_LENGTHY_EXTRUDE #define EXTRUDE_MAXLENGTH 200 //=========================================================================== //======================== Thermal Runaway Protection ======================= //=========================================================================== /** * Thermal Protection provides additional protection to your printer from damage * and fire. Marlin always includes safe min and max temperature ranges which * protect against a broken or disconnected thermistor wire. * * The issue: If a thermistor falls out, it will report the much lower * temperature of the air in the room, and the the firmware will keep * the heater on. * * If you get "Thermal Runaway" or "Heating failed" errors the * details can be tuned in Configuration_adv.h */ #define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders #define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed #define THERMAL_PROTECTION_CHAMBER // Enable thermal protection for the heated chamber #define THERMAL_PROTECTION_COOLER // Enable thermal protection for the laser cooling //=========================================================================== //============================= Mechanical Settings ========================= //=========================================================================== // @section machine // Enable one of the options below for CoreXY, CoreXZ, or CoreYZ kinematics, // either in the usual order or reversed //#define COREXY //#define COREXZ //#define COREYZ //#define COREYX //#define COREZX //#define COREZY //#define MARKFORGED_XY // MarkForged. See https://reprap.org/forum/read.php?152,504042 //#define MARKFORGED_YX // Enable for a belt style printer with endless "Z" motion //#define BELTPRINTER // Enable for Polargraph Kinematics //#define POLARGRAPH #if ENABLED(POLARGRAPH) #define POLARGRAPH_MAX_BELT_LEN 1035.0 #define POLAR_SEGMENTS_PER_SECOND 5 #endif // Enable for DELTA kinematics and configure below //#define DELTA #if ENABLED(DELTA) // Make delta curves from many straight lines (linear interpolation). // This is a trade-off between visible corners (not enough segments) // and processor overload (too many expensive sqrt calls). #define DELTA_SEGMENTS_PER_SECOND 200 // After homing move down to a height where XY movement is unconstrained //#define DELTA_HOME_TO_SAFE_ZONE // Delta calibration menu // uncomment to add three points calibration menu option. // See http://minow.blogspot.com/index.html#4918805519571907051 //#define DELTA_CALIBRATION_MENU // uncomment to add G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) //#define DELTA_AUTO_CALIBRATION // NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them #if ENABLED(DELTA_AUTO_CALIBRATION) // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 #endif #if EITHER(DELTA_AUTO_CALIBRATION, DELTA_CALIBRATION_MENU) // Set the steprate for papertest probing #define PROBE_MANUALLY_STEP 0.05 // (mm) #endif // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). #define DELTA_PRINTABLE_RADIUS 140.0 // (mm) // Maximum reachable area #define DELTA_MAX_RADIUS 140.0 // (mm) // Center-to-center distance of the holes in the diagonal push rods. #define DELTA_DIAGONAL_ROD 250.0 // (mm) // Distance between bed and nozzle Z home position #define DELTA_HEIGHT 250.00 // (mm) Get this value from G33 auto calibrate #define DELTA_ENDSTOP_ADJ { 0.0, 0.0, 0.0 } // Get these values from G33 auto calibrate // Horizontal distance bridged by diagonal push rods when effector is centered. #define DELTA_RADIUS 124.0 // (mm) Get this value from G33 auto calibrate // Trim adjustments for individual towers // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0 // measured in degrees anticlockwise looking from above the printer #define DELTA_TOWER_ANGLE_TRIM { 0.0, 0.0, 0.0 } // Get these values from G33 auto calibrate // Delta radius and diagonal rod adjustments (mm) //#define DELTA_RADIUS_TRIM_TOWER { 0.0, 0.0, 0.0 } //#define DELTA_DIAGONAL_ROD_TRIM_TOWER { 0.0, 0.0, 0.0 } #endif /** * MORGAN_SCARA was developed by QHARLEY in South Africa in 2012-2013. * Implemented and slightly reworked by JCERNY in June, 2014. * * Mostly Printed SCARA is an open source design by Tyler Williams. See: * https://www.thingiverse.com/thing:2487048 * https://www.thingiverse.com/thing:1241491 */ //#define MORGAN_SCARA //#define MP_SCARA #if EITHER(MORGAN_SCARA, MP_SCARA) // If movement is choppy try lowering this value #define SCARA_SEGMENTS_PER_SECOND 200 // Length of inner and outer support arms. Measure arm lengths precisely. #define SCARA_LINKAGE_1 150 // (mm) #define SCARA_LINKAGE_2 150 // (mm) // SCARA tower offset (position of Tower relative to bed zero position) // This needs to be reasonably accurate as it defines the printbed position in the SCARA space. #define SCARA_OFFSET_X 100 // (mm) #define SCARA_OFFSET_Y -56 // (mm) #if ENABLED(MORGAN_SCARA) //#define DEBUG_SCARA_KINEMATICS #define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly // Radius around the center where the arm cannot reach #define MIDDLE_DEAD_ZONE_R 0 // (mm) #define THETA_HOMING_OFFSET 0 // Calculated from Calibration Guide and M360 / M114. See http://reprap.harleystudio.co.za/?page_id=1073 #define PSI_HOMING_OFFSET 0 // Calculated from Calibration Guide and M364 / M114. See http://reprap.harleystudio.co.za/?page_id=1073 #elif ENABLED(MP_SCARA) #define SCARA_OFFSET_THETA1 12 // degrees #define SCARA_OFFSET_THETA2 131 // degrees #endif #endif // Enable for TPARA kinematics and configure below //#define AXEL_TPARA #if ENABLED(AXEL_TPARA) #define DEBUG_ROBOT_KINEMATICS #define ROBOT_SEGMENTS_PER_SECOND 200 // Length of inner and outer support arms. Measure arm lengths precisely. #define ROBOT_LINKAGE_1 120 // (mm) #define ROBOT_LINKAGE_2 120 // (mm) // SCARA tower offset (position of Tower relative to bed zero position) // This needs to be reasonably accurate as it defines the printbed position in the SCARA space. #define ROBOT_OFFSET_X 0 // (mm) #define ROBOT_OFFSET_Y 0 // (mm) #define ROBOT_OFFSET_Z 0 // (mm) #define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly // Radius around the center where the arm cannot reach #define MIDDLE_DEAD_ZONE_R 0 // (mm) // Calculated from Calibration Guide and M360 / M114. See http://reprap.harleystudio.co.za/?page_id=1073 #define THETA_HOMING_OFFSET 0 #define PSI_HOMING_OFFSET 0 #endif // Articulated robot (arm). Joints are directly mapped to axes with no kinematics. //#define ARTICULATED_ROBOT_ARM // For a hot wire cutter with parallel horizontal axes (X, I) where the heights of the two wire // ends are controlled by parallel axes (Y, J). Joints are directly mapped to axes (no kinematics). //#define FOAMCUTTER_XYUV //=========================================================================== //============================== Endstop Settings =========================== //=========================================================================== // @section homing // Specify here all the endstop connectors that are connected to any endstop or probe. // Almost all printers will be using one per axis. Probes will use one or more of the // extra connectors. Leave undefined any used for non-endstop and non-probe purposes. #define USE_XMIN_PLUG #define USE_YMIN_PLUG #define USE_ZMIN_PLUG //#define USE_IMIN_PLUG //#define USE_JMIN_PLUG //#define USE_KMIN_PLUG //#define USE_UMIN_PLUG //#define USE_VMIN_PLUG //#define USE_WMIN_PLUG //#define USE_XMAX_PLUG //#define USE_YMAX_PLUG //#define USE_ZMAX_PLUG //#define USE_IMAX_PLUG //#define USE_JMAX_PLUG //#define USE_KMAX_PLUG //#define USE_UMAX_PLUG //#define USE_VMAX_PLUG //#define USE_WMAX_PLUG // Enable pullup for all endstops to prevent a floating state #define ENDSTOPPULLUPS #if DISABLED(ENDSTOPPULLUPS) // Disable ENDSTOPPULLUPS to set pullups individually //#define ENDSTOPPULLUP_XMIN //#define ENDSTOPPULLUP_YMIN //#define ENDSTOPPULLUP_ZMIN //#define ENDSTOPPULLUP_IMIN //#define ENDSTOPPULLUP_JMIN //#define ENDSTOPPULLUP_KMIN //#define ENDSTOPPULLUP_UMIN //#define ENDSTOPPULLUP_VMIN //#define ENDSTOPPULLUP_WMIN //#define ENDSTOPPULLUP_XMAX //#define ENDSTOPPULLUP_YMAX //#define ENDSTOPPULLUP_ZMAX //#define ENDSTOPPULLUP_IMAX //#define ENDSTOPPULLUP_JMAX //#define ENDSTOPPULLUP_KMAX //#define ENDSTOPPULLUP_UMAX //#define ENDSTOPPULLUP_VMAX //#define ENDSTOPPULLUP_WMAX //#define ENDSTOPPULLUP_ZMIN_PROBE #endif // Enable pulldown for all endstops to prevent a floating state //#define ENDSTOPPULLDOWNS #if DISABLED(ENDSTOPPULLDOWNS) // Disable ENDSTOPPULLDOWNS to set pulldowns individually //#define ENDSTOPPULLDOWN_XMIN //#define ENDSTOPPULLDOWN_YMIN //#define ENDSTOPPULLDOWN_ZMIN //#define ENDSTOPPULLDOWN_IMIN //#define ENDSTOPPULLDOWN_JMIN //#define ENDSTOPPULLDOWN_KMIN //#define ENDSTOPPULLDOWN_UMIN //#define ENDSTOPPULLDOWN_VMIN //#define ENDSTOPPULLDOWN_WMIN //#define ENDSTOPPULLDOWN_XMAX //#define ENDSTOPPULLDOWN_YMAX //#define ENDSTOPPULLDOWN_ZMAX //#define ENDSTOPPULLDOWN_IMAX //#define ENDSTOPPULLDOWN_JMAX //#define ENDSTOPPULLDOWN_KMAX //#define ENDSTOPPULLDOWN_UMAX //#define ENDSTOPPULLDOWN_VMAX //#define ENDSTOPPULLDOWN_WMAX //#define ENDSTOPPULLDOWN_ZMIN_PROBE #endif // Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup). #define X_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define Y_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define Z_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define I_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define J_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define K_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define U_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define V_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define W_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define X_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define Y_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define Z_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define I_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define J_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define K_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define U_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define V_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define W_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop. #define Z_MIN_PROBE_ENDSTOP_INVERTING false // Set to true to invert the logic of the probe. // Enable this feature if all enabled endstop pins are interrupt-capable. // This will remove the need to poll the interrupt pins, saving many CPU cycles. //#define ENDSTOP_INTERRUPTS_FEATURE /** * Endstop Noise Threshold * * Enable if your probe or endstops falsely trigger due to noise. * * - Higher values may affect repeatability or accuracy of some bed probes. * - To fix noise install a 100nF ceramic capacitor in parallel with the switch. * - This feature is not required for common micro-switches mounted on PCBs * based on the Makerbot design, which already have the 100nF capacitor. * * :[2,3,4,5,6,7] */ //#define ENDSTOP_NOISE_THRESHOLD 2 // Check for stuck or disconnected endstops during homing moves. //#define DETECT_BROKEN_ENDSTOP //============================================================================= //============================== Movement Settings ============================ //============================================================================= // @section motion /** * Default Settings * * These settings can be reset by M502 * * Note that if EEPROM is enabled, saved values will override these. */ /** * With this option each E stepper can have its own factors for the * following movement settings. If fewer factors are given than the * total number of extruders, the last value applies to the rest. */ //#define DISTINCT_E_FACTORS /** * Default Axis Steps Per Unit (linear=steps/mm, rotational=steps/°) * Override with M92 * X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]] */ #define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 500 } /** * Default Max Feed Rate (linear=mm/s, rotational=°/s) * Override with M203 * X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]] */ #define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 } //#define LIMITED_MAX_FR_EDITING // Limit edit via M203 or LCD to DEFAULT_MAX_FEEDRATE * 2 #if ENABLED(LIMITED_MAX_FR_EDITING) #define MAX_FEEDRATE_EDIT_VALUES { 600, 600, 10, 50 } // ...or, set your own edit limits #endif /** * Default Max Acceleration (speed change with time) (linear=mm/(s^2), rotational=°/(s^2)) * (Maximum start speed for accelerated moves) * Override with M201 * X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]] */ #define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 } //#define LIMITED_MAX_ACCEL_EDITING // Limit edit via M201 or LCD to DEFAULT_MAX_ACCELERATION * 2 #if ENABLED(LIMITED_MAX_ACCEL_EDITING) #define MAX_ACCEL_EDIT_VALUES { 6000, 6000, 200, 20000 } // ...or, set your own edit limits #endif /** * Default Acceleration (speed change with time) (linear=mm/(s^2), rotational=°/(s^2)) * Override with M204 * * M204 P Acceleration * M204 R Retract Acceleration * M204 T Travel Acceleration */ #define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves #define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts #define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves /** * Default Jerk limits (mm/s) * Override with M205 X Y Z . . . E * * "Jerk" specifies the minimum speed change that requires acceleration. * When changing speed and direction, if the difference is less than the * value set here, it may happen instantaneously. */ //#define CLASSIC_JERK #if ENABLED(CLASSIC_JERK) #define DEFAULT_XJERK 10.0 #define DEFAULT_YJERK 10.0 #define DEFAULT_ZJERK 0.3 //#define DEFAULT_IJERK 0.3 //#define DEFAULT_JJERK 0.3 //#define DEFAULT_KJERK 0.3 //#define DEFAULT_UJERK 0.3 //#define DEFAULT_VJERK 0.3 //#define DEFAULT_WJERK 0.3 //#define TRAVEL_EXTRA_XYJERK 0.0 // Additional jerk allowance for all travel moves //#define LIMITED_JERK_EDITING // Limit edit via M205 or LCD to DEFAULT_aJERK * 2 #if ENABLED(LIMITED_JERK_EDITING) #define MAX_JERK_EDIT_VALUES { 20, 20, 0.6, 10 } // ...or, set your own edit limits #endif #endif #define DEFAULT_EJERK 5.0 // May be used by Linear Advance /** * Junction Deviation Factor * * See: * https://reprap.org/forum/read.php?1,739819 * https://blog.kyneticcnc.com/2018/10/computing-junction-deviation-for-marlin.html */ #if DISABLED(CLASSIC_JERK) #define JUNCTION_DEVIATION_MM 0.013 // (mm) Distance from real junction edge #define JD_HANDLE_SMALL_SEGMENTS // Use curvature estimation instead of just the junction angle // for small segments (< 1mm) with large junction angles (> 135°). #endif /** * S-Curve Acceleration * * This option eliminates vibration during printing by fitting a Bézier * curve to move acceleration, producing much smoother direction changes. * * See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained */ //#define S_CURVE_ACCELERATION //=========================================================================== //============================= Z Probe Options ============================= //=========================================================================== // @section probes // // See https://marlinfw.org/docs/configuration/probes.html // /** * Enable this option for a probe connected to the Z-MIN pin. * The probe replaces the Z-MIN endstop and is used for Z homing. * (Automatically enables USE_PROBE_FOR_Z_HOMING.) */ #define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN // Force the use of the probe for Z-axis homing //#define USE_PROBE_FOR_Z_HOMING /** * Z_MIN_PROBE_PIN * * Define this pin if the probe is not connected to Z_MIN_PIN. * If not defined the default pin for the selected MOTHERBOARD * will be used. Most of the time the default is what you want. * * - The simplest option is to use a free endstop connector. * - Use 5V for powered (usually inductive) sensors. * * - RAMPS 1.3/1.4 boards may use the 5V, GND, and Aux4->D32 pin: * - For simple switches connect... * - normally-closed switches to GND and D32. * - normally-open switches to 5V and D32. */ //#define Z_MIN_PROBE_PIN 32 // Pin 32 is the RAMPS default /** * Probe Type * * Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc. * Activate one of these to use Auto Bed Leveling below. */ /** * The "Manual Probe" provides a means to do "Auto" Bed Leveling without a probe. * Use G29 repeatedly, adjusting the Z height at each point with movement commands * or (with LCD_BED_LEVELING) the LCD controller. */ //#define PROBE_MANUALLY /** * A Fix-Mounted Probe either doesn't deploy or needs manual deployment. * (e.g., an inductive probe or a nozzle-based probe-switch.) */ //#define FIX_MOUNTED_PROBE /** * Use the nozzle as the probe, as with a conductive * nozzle system or a piezo-electric smart effector. */ //#define NOZZLE_AS_PROBE /** * Z Servo Probe, such as an endstop switch on a rotating arm. */ //#define Z_PROBE_SERVO_NR 0 // Defaults to SERVO 0 connector. //#define Z_SERVO_ANGLES { 70, 0 } // Z Servo Deploy and Stow angles /** * The BLTouch probe uses a Hall effect sensor and emulates a servo. */ //#define BLTOUCH /** * MagLev V4 probe by MDD * * This probe is deployed and activated by powering a built-in electromagnet. */ //#define MAGLEV4 #if ENABLED(MAGLEV4) //#define MAGLEV_TRIGGER_PIN 11 // Set to the connected digital output #define MAGLEV_TRIGGER_DELAY 15 // Changing this risks overheating the coil #endif /** * Touch-MI Probe by hotends.fr * * This probe is deployed and activated by moving the X-axis to a magnet at the edge of the bed. * By default, the magnet is assumed to be on the left and activated by a home. If the magnet is * on the right, enable and set TOUCH_MI_DEPLOY_XPOS to the deploy position. * * Also requires: BABYSTEPPING, BABYSTEP_ZPROBE_OFFSET, Z_SAFE_HOMING, * and a minimum Z_HOMING_HEIGHT of 10. */ //#define TOUCH_MI_PROBE #if ENABLED(TOUCH_MI_PROBE) #define TOUCH_MI_RETRACT_Z 0.5 // Height at which the probe retracts //#define TOUCH_MI_DEPLOY_XPOS (X_MAX_BED + 2) // For a magnet on the right side of the bed //#define TOUCH_MI_MANUAL_DEPLOY // For manual deploy (LCD menu) #endif // A probe that is deployed and stowed with a solenoid pin (SOL1_PIN) //#define SOLENOID_PROBE // A sled-mounted probe like those designed by Charles Bell. //#define Z_PROBE_SLED //#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like. // A probe deployed by moving the x-axis, such as the Wilson II's rack-and-pinion probe designed by Marty Rice. //#define RACK_AND_PINION_PROBE #if ENABLED(RACK_AND_PINION_PROBE) #define Z_PROBE_DEPLOY_X X_MIN_POS #define Z_PROBE_RETRACT_X X_MAX_POS #endif /** * Magnetically Mounted Probe * For probes such as Euclid, Klicky, Klackender, etc. */ //#define MAG_MOUNTED_PROBE #if ENABLED(MAG_MOUNTED_PROBE) #define PROBE_DEPLOY_FEEDRATE (133*60) // (mm/min) Probe deploy speed #define PROBE_STOW_FEEDRATE (133*60) // (mm/min) Probe stow speed #define MAG_MOUNTED_DEPLOY_1 { PROBE_DEPLOY_FEEDRATE, { 245, 114, 30 } } // Move to side Dock & Attach probe #define MAG_MOUNTED_DEPLOY_2 { PROBE_DEPLOY_FEEDRATE, { 210, 114, 30 } } // Move probe off dock #define MAG_MOUNTED_DEPLOY_3 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed #define MAG_MOUNTED_DEPLOY_4 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed #define MAG_MOUNTED_DEPLOY_5 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed #define MAG_MOUNTED_STOW_1 { PROBE_STOW_FEEDRATE, { 245, 114, 20 } } // Move to dock #define MAG_MOUNTED_STOW_2 { PROBE_STOW_FEEDRATE, { 245, 114, 0 } } // Place probe beside remover #define MAG_MOUNTED_STOW_3 { PROBE_STOW_FEEDRATE, { 230, 114, 0 } } // Side move to remove probe #define MAG_MOUNTED_STOW_4 { PROBE_STOW_FEEDRATE, { 210, 114, 20 } } // Side move to remove probe #define MAG_MOUNTED_STOW_5 { PROBE_STOW_FEEDRATE, { 0, 0, 0 } } // Extra move if needed #endif // Duet Smart Effector (for delta printers) - https://bit.ly/2ul5U7J // When the pin is defined you can use M672 to set/reset the probe sensitivity. //#define DUET_SMART_EFFECTOR #if ENABLED(DUET_SMART_EFFECTOR) #define SMART_EFFECTOR_MOD_PIN -1 // Connect a GPIO pin to the Smart Effector MOD pin #endif /** * Use StallGuard2 to probe the bed with the nozzle. * Requires stallGuard-capable Trinamic stepper drivers. * CAUTION: This can damage machines with Z lead screws. * Take extreme care when setting up this feature. */ //#define SENSORLESS_PROBING /** * Allen key retractable z-probe as seen on many Kossel delta printers - https://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe * Deploys by touching z-axis belt. Retracts by pushing the probe down. */ //#define Z_PROBE_ALLEN_KEY #if ENABLED(Z_PROBE_ALLEN_KEY) // 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29, // if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe. #define Z_PROBE_ALLEN_KEY_DEPLOY_1 { 30.0, DELTA_PRINTABLE_RADIUS, 100.0 } #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_2 { 0.0, DELTA_PRINTABLE_RADIUS, 100.0 } #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_PROBE_FEEDRATE)/10 #define Z_PROBE_ALLEN_KEY_DEPLOY_3 { 0.0, (DELTA_PRINTABLE_RADIUS) * 0.75, 100.0 } #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE XY_PROBE_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_1 { -64.0, 56.0, 23.0 } // Move the probe into position #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_2 { -64.0, 56.0, 3.0 } // Push it down #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_FEEDRATE)/10 #define Z_PROBE_ALLEN_KEY_STOW_3 { -64.0, 56.0, 50.0 } // Move it up to clear #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE XY_PROBE_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_4 { 0.0, 0.0, 50.0 } #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE XY_PROBE_FEEDRATE #endif // Z_PROBE_ALLEN_KEY /** * Nozzle-to-Probe offsets { X, Y, Z } * * X and Y offset * Use a caliper or ruler to measure the distance from the tip of * the Nozzle to the center-point of the Probe in the X and Y axes. * * Z offset * - For the Z offset use your best known value and adjust at runtime. * - Common probes trigger below the nozzle and have negative values for Z offset. * - Probes triggering above the nozzle height are uncommon but do exist. When using * probes such as this, carefully set Z_CLEARANCE_DEPLOY_PROBE and Z_CLEARANCE_BETWEEN_PROBES * to avoid collisions during probing. * * Tune and Adjust * - Probe Offsets can be tuned at runtime with 'M851', LCD menus, babystepping, etc. * - PROBE_OFFSET_WIZARD (configuration_adv.h) can be used for setting the Z offset. * * Assuming the typical work area orientation: * - Probe to RIGHT of the Nozzle has a Positive X offset * - Probe to LEFT of the Nozzle has a Negative X offset * - Probe in BACK of the Nozzle has a Positive Y offset * - Probe in FRONT of the Nozzle has a Negative Y offset * * Some examples: * #define NOZZLE_TO_PROBE_OFFSET { 10, 10, -1 } // Example "1" * #define NOZZLE_TO_PROBE_OFFSET {-10, 5, -1 } // Example "2" * #define NOZZLE_TO_PROBE_OFFSET { 5, -5, -1 } // Example "3" * #define NOZZLE_TO_PROBE_OFFSET {-15,-10, -1 } // Example "4" * * +-- BACK ---+ * | [+] | * L | 1 | R <-- Example "1" (right+, back+) * E | 2 | I <-- Example "2" ( left-, back+) * F |[-] N [+]| G <-- Nozzle * T | 3 | H <-- Example "3" (right+, front-) * | 4 | T <-- Example "4" ( left-, front-) * | [-] | * O-- FRONT --+ */ #define NOZZLE_TO_PROBE_OFFSET { 10, 10, 0 } // Most probes should stay away from the edges of the bed, but // with NOZZLE_AS_PROBE this can be negative for a wider probing area. #define PROBING_MARGIN 10 // X and Y axis travel speed (mm/min) between probes #define XY_PROBE_FEEDRATE (133*60) // Feedrate (mm/min) for the first approach when double-probing (MULTIPLE_PROBING == 2) #define Z_PROBE_FEEDRATE_FAST (4*60) // Feedrate (mm/min) for the "accurate" probe of each point #define Z_PROBE_FEEDRATE_SLOW (Z_PROBE_FEEDRATE_FAST / 2) /** * Probe Activation Switch * A switch indicating proper deployment, or an optical * switch triggered when the carriage is near the bed. */ //#define PROBE_ACTIVATION_SWITCH #if ENABLED(PROBE_ACTIVATION_SWITCH) #define PROBE_ACTIVATION_SWITCH_STATE LOW // State indicating probe is active //#define PROBE_ACTIVATION_SWITCH_PIN PC6 // Override default pin #endif /** * Tare Probe (determine zero-point) prior to each probe. * Useful for a strain gauge or piezo sensor that needs to factor out * elements such as cables pulling on the carriage. */ //#define PROBE_TARE #if ENABLED(PROBE_TARE) #define PROBE_TARE_TIME 200 // (ms) Time to hold tare pin #define PROBE_TARE_DELAY 200 // (ms) Delay after tare before #define PROBE_TARE_STATE HIGH // State to write pin for tare //#define PROBE_TARE_PIN PA5 // Override default pin #if ENABLED(PROBE_ACTIVATION_SWITCH) //#define PROBE_TARE_ONLY_WHILE_INACTIVE // Fail to tare/probe if PROBE_ACTIVATION_SWITCH is active #endif #endif /** * Probe Enable / Disable * The probe only provides a triggered signal when enabled. */ //#define PROBE_ENABLE_DISABLE #if ENABLED(PROBE_ENABLE_DISABLE) //#define PROBE_ENABLE_PIN -1 // Override the default pin here #endif /** * Multiple Probing * * You may get improved results by probing 2 or more times. * With EXTRA_PROBING the more atypical reading(s) will be disregarded. * * A total of 2 does fast/slow probes with a weighted average. * A total of 3 or more adds more slow probes, taking the average. */ //#define MULTIPLE_PROBING 2 //#define EXTRA_PROBING 1 /** * Z probes require clearance when deploying, stowing, and moving between * probe points to avoid hitting the bed and other hardware. * Servo-mounted probes require extra space for the arm to rotate. * Inductive probes need space to keep from triggering early. * * Use these settings to specify the distance (mm) to raise the probe (or * lower the bed). The values set here apply over and above any (negative) * probe Z Offset set with NOZZLE_TO_PROBE_OFFSET, M851, or the LCD. * Only integer values >= 1 are valid here. * * Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle. * But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle. */ #define Z_CLEARANCE_DEPLOY_PROBE 10 // Z Clearance for Deploy/Stow #define Z_CLEARANCE_BETWEEN_PROBES 5 // Z Clearance between probe points #define Z_CLEARANCE_MULTI_PROBE 5 // Z Clearance between multiple probes //#define Z_AFTER_PROBING 5 // Z position after probing is done #define Z_PROBE_LOW_POINT -2 // Farthest distance below the trigger-point to go before stopping // For M851 give a range for adjusting the Z probe offset #define Z_PROBE_OFFSET_RANGE_MIN -20 #define Z_PROBE_OFFSET_RANGE_MAX 20 // Enable the M48 repeatability test to test probe accuracy //#define Z_MIN_PROBE_REPEATABILITY_TEST // Before deploy/stow pause for user confirmation //#define PAUSE_BEFORE_DEPLOY_STOW #if ENABLED(PAUSE_BEFORE_DEPLOY_STOW) //#define PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED // For Manual Deploy Allenkey Probe #endif /** * Enable one or more of the following if probing seems unreliable. * Heaters and/or fans can be disabled during probing to minimize electrical * noise. A delay can also be added to allow noise and vibration to settle. * These options are most useful for the BLTouch probe, but may also improve * readings with inductive probes and piezo sensors. */ //#define PROBING_HEATERS_OFF // Turn heaters off when probing #if ENABLED(PROBING_HEATERS_OFF) //#define WAIT_FOR_BED_HEATER // Wait for bed to heat back up between probes (to improve accuracy) //#define WAIT_FOR_HOTEND // Wait for hotend to heat back up between probes (to improve accuracy & prevent cold extrude) #endif //#define PROBING_FANS_OFF // Turn fans off when probing //#define PROBING_ESTEPPERS_OFF // Turn all extruder steppers off when probing //#define PROBING_STEPPERS_OFF // Turn all steppers off (unless needed to hold position) when probing (including extruders) //#define DELAY_BEFORE_PROBING 200 // (ms) To prevent vibrations from triggering piezo sensors // Require minimum nozzle and/or bed temperature for probing //#define PREHEAT_BEFORE_PROBING #if ENABLED(PREHEAT_BEFORE_PROBING) #define PROBING_NOZZLE_TEMP 120 // (°C) Only applies to E0 at this time #define PROBING_BED_TEMP 50 #endif // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 // :{ 0:'Low', 1:'High' } #define X_ENABLE_ON 0 #define Y_ENABLE_ON 0 #define Z_ENABLE_ON 0 #define E_ENABLE_ON 0 // For all extruders //#define I_ENABLE_ON 0 //#define J_ENABLE_ON 0 //#define K_ENABLE_ON 0 //#define U_ENABLE_ON 0 //#define V_ENABLE_ON 0 //#define W_ENABLE_ON 0 // Disable axis steppers immediately when they're not being stepped. // WARNING: When motors turn off there is a chance of losing position accuracy! #define DISABLE_X false #define DISABLE_Y false #define DISABLE_Z false //#define DISABLE_I false //#define DISABLE_J false //#define DISABLE_K false //#define DISABLE_U false //#define DISABLE_V false //#define DISABLE_W false // Turn off the display blinking that warns about possible accuracy reduction //#define DISABLE_REDUCED_ACCURACY_WARNING // @section extruder #define DISABLE_E false // Disable the extruder when not stepping #define DISABLE_INACTIVE_EXTRUDER // Keep only the active extruder enabled // @section machine // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. #define INVERT_X_DIR false #define INVERT_Y_DIR true #define INVERT_Z_DIR false //#define INVERT_I_DIR false //#define INVERT_J_DIR false //#define INVERT_K_DIR false //#define INVERT_U_DIR false //#define INVERT_V_DIR false //#define INVERT_W_DIR false // @section extruder // For direct drive extruder v9 set to true, for geared extruder set to false. #define INVERT_E0_DIR false #define INVERT_E1_DIR false #define INVERT_E2_DIR false #define INVERT_E3_DIR false #define INVERT_E4_DIR false #define INVERT_E5_DIR false #define INVERT_E6_DIR false #define INVERT_E7_DIR false // @section homing //#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed. Also enable HOME_AFTER_DEACTIVATE for extra safety. //#define HOME_AFTER_DEACTIVATE // Require rehoming after steppers are deactivated. Also enable NO_MOTION_BEFORE_HOMING for extra safety. /** * Set Z_IDLE_HEIGHT if the Z-Axis moves on its own when steppers are disabled. * - Use a low value (i.e., Z_MIN_POS) if the nozzle falls down to the bed. * - Use a large value (i.e., Z_MAX_POS) if the bed falls down, away from the nozzle. */ //#define Z_IDLE_HEIGHT Z_HOME_POS //#define Z_HOMING_HEIGHT 4 // (mm) Minimal Z height before homing (G28) for Z clearance above the bed, clamps, ... // Be sure to have this much clearance over your Z_MAX_POS to prevent grinding. //#define Z_AFTER_HOMING 10 // (mm) Height to move to after homing Z // Direction of endstops when homing; 1=MAX, -1=MIN // :[-1,1] #define X_HOME_DIR -1 #define Y_HOME_DIR -1 #define Z_HOME_DIR -1 //#define I_HOME_DIR -1 //#define J_HOME_DIR -1 //#define K_HOME_DIR -1 //#define U_HOME_DIR -1 //#define V_HOME_DIR -1 //#define W_HOME_DIR -1 // @section machine // The size of the printable area #define X_BED_SIZE 200 #define Y_BED_SIZE 200 // Travel limits (linear=mm, rotational=°) after homing, corresponding to endstop positions. #define X_MIN_POS 0 #define Y_MIN_POS 0 #define Z_MIN_POS 0 #define X_MAX_POS X_BED_SIZE #define Y_MAX_POS Y_BED_SIZE #define Z_MAX_POS 200 //#define I_MIN_POS 0 //#define I_MAX_POS 50 //#define J_MIN_POS 0 //#define J_MAX_POS 50 //#define K_MIN_POS 0 //#define K_MAX_POS 50 //#define U_MIN_POS 0 //#define U_MAX_POS 50 //#define V_MIN_POS 0 //#define V_MAX_POS 50 //#define W_MIN_POS 0 //#define W_MAX_POS 50 /** * Software Endstops * * - Prevent moves outside the set machine bounds. * - Individual axes can be disabled, if desired. * - X and Y only apply to Cartesian robots. * - Use 'M211' to set software endstops on/off or report current state */ // Min software endstops constrain movement within minimum coordinate bounds #define MIN_SOFTWARE_ENDSTOPS #if ENABLED(MIN_SOFTWARE_ENDSTOPS) #define MIN_SOFTWARE_ENDSTOP_X #define MIN_SOFTWARE_ENDSTOP_Y #define MIN_SOFTWARE_ENDSTOP_Z #define MIN_SOFTWARE_ENDSTOP_I #define MIN_SOFTWARE_ENDSTOP_J #define MIN_SOFTWARE_ENDSTOP_K #define MIN_SOFTWARE_ENDSTOP_U #define MIN_SOFTWARE_ENDSTOP_V #define MIN_SOFTWARE_ENDSTOP_W #endif // Max software endstops constrain movement within maximum coordinate bounds #define MAX_SOFTWARE_ENDSTOPS #if ENABLED(MAX_SOFTWARE_ENDSTOPS) #define MAX_SOFTWARE_ENDSTOP_X #define MAX_SOFTWARE_ENDSTOP_Y #define MAX_SOFTWARE_ENDSTOP_Z #define MAX_SOFTWARE_ENDSTOP_I #define MAX_SOFTWARE_ENDSTOP_J #define MAX_SOFTWARE_ENDSTOP_K #define MAX_SOFTWARE_ENDSTOP_U #define MAX_SOFTWARE_ENDSTOP_V #define MAX_SOFTWARE_ENDSTOP_W #endif #if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS) //#define SOFT_ENDSTOPS_MENU_ITEM // Enable/Disable software endstops from the LCD #endif /** * Filament Runout Sensors * Mechanical or opto endstops are used to check for the presence of filament. * * IMPORTANT: Runout will only trigger if Marlin is aware that a print job is running. * Marlin knows a print job is running when: * 1. Running a print job from media started with M24. * 2. The Print Job Timer has been started with M75. * 3. The heaters were turned on and PRINTJOB_TIMER_AUTOSTART is enabled. * * RAMPS-based boards use SERVO3_PIN for the first runout sensor. * For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc. */ //#define FILAMENT_RUNOUT_SENSOR #if ENABLED(FILAMENT_RUNOUT_SENSOR) #define FIL_RUNOUT_ENABLED_DEFAULT true // Enable the sensor on startup. Override with M412 followed by M500. #define NUM_RUNOUT_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each. #define FIL_RUNOUT_STATE LOW // Pin state indicating that filament is NOT present. #define FIL_RUNOUT_PULLUP // Use internal pullup for filament runout pins. //#define FIL_RUNOUT_PULLDOWN // Use internal pulldown for filament runout pins. //#define WATCH_ALL_RUNOUT_SENSORS // Execute runout script on any triggering sensor, not only for the active extruder. // This is automatically enabled for MIXING_EXTRUDERs. // Override individually if the runout sensors vary //#define FIL_RUNOUT1_STATE LOW //#define FIL_RUNOUT1_PULLUP //#define FIL_RUNOUT1_PULLDOWN //#define FIL_RUNOUT2_STATE LOW //#define FIL_RUNOUT2_PULLUP //#define FIL_RUNOUT2_PULLDOWN //#define FIL_RUNOUT3_STATE LOW //#define FIL_RUNOUT3_PULLUP //#define FIL_RUNOUT3_PULLDOWN //#define FIL_RUNOUT4_STATE LOW //#define FIL_RUNOUT4_PULLUP //#define FIL_RUNOUT4_PULLDOWN //#define FIL_RUNOUT5_STATE LOW //#define FIL_RUNOUT5_PULLUP //#define FIL_RUNOUT5_PULLDOWN //#define FIL_RUNOUT6_STATE LOW //#define FIL_RUNOUT6_PULLUP //#define FIL_RUNOUT6_PULLDOWN //#define FIL_RUNOUT7_STATE LOW //#define FIL_RUNOUT7_PULLUP //#define FIL_RUNOUT7_PULLDOWN //#define FIL_RUNOUT8_STATE LOW //#define FIL_RUNOUT8_PULLUP //#define FIL_RUNOUT8_PULLDOWN // Commands to execute on filament runout. // With multiple runout sensors use the %c placeholder for the current tool in commands (e.g., "M600 T%c") // NOTE: After 'M412 H1' the host handles filament runout and this script does not apply. #define FILAMENT_RUNOUT_SCRIPT "M600" // After a runout is detected, continue printing this length of filament // before executing the runout script. Useful for a sensor at the end of // a feed tube. Requires 4 bytes SRAM per sensor, plus 4 bytes overhead. //#define FILAMENT_RUNOUT_DISTANCE_MM 25 #ifdef FILAMENT_RUNOUT_DISTANCE_MM // Enable this option to use an encoder disc that toggles the runout pin // as the filament moves. (Be sure to set FILAMENT_RUNOUT_DISTANCE_MM // large enough to avoid false positives.) //#define FILAMENT_MOTION_SENSOR #endif #endif //=========================================================================== //=============================== Bed Leveling ============================== //=========================================================================== // @section calibrate /** * Choose one of the options below to enable G29 Bed Leveling. The parameters * and behavior of G29 will change depending on your selection. * * If using a Probe for Z Homing, enable Z_SAFE_HOMING also! * * - AUTO_BED_LEVELING_3POINT * Probe 3 arbitrary points on the bed (that aren't collinear) * You specify the XY coordinates of all 3 points. * The result is a single tilted plane. Best for a flat bed. * * - AUTO_BED_LEVELING_LINEAR * Probe several points in a grid. * You specify the rectangle and the density of sample points. * The result is a single tilted plane. Best for a flat bed. * * - AUTO_BED_LEVELING_BILINEAR * Probe several points in a grid. * You specify the rectangle and the density of sample points. * The result is a mesh, best for large or uneven beds. * * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling) * A comprehensive bed leveling system combining the features and benefits * of other systems. UBL also includes integrated Mesh Generation, Mesh * Validation and Mesh Editing systems. * * - MESH_BED_LEVELING * Probe a grid manually * The result is a mesh, suitable for large or uneven beds. (See BILINEAR.) * For machines without a probe, Mesh Bed Leveling provides a method to perform * leveling in steps so you can manually adjust the Z height at each grid-point. * With an LCD controller the process is guided step-by-step. */ //#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_UBL //#define MESH_BED_LEVELING /** * Normally G28 leaves leveling disabled on completion. Enable one of * these options to restore the prior leveling state or to always enable * leveling immediately after G28. */ //#define RESTORE_LEVELING_AFTER_G28 //#define ENABLE_LEVELING_AFTER_G28 /** * Auto-leveling needs preheating */ //#define PREHEAT_BEFORE_LEVELING #if ENABLED(PREHEAT_BEFORE_LEVELING) #define LEVELING_NOZZLE_TEMP 120 // (°C) Only applies to E0 at this time #define LEVELING_BED_TEMP 50 #endif /** * Enable detailed logging of G28, G29, M48, etc. * Turn on with the command 'M111 S32'. * NOTE: Requires a lot of PROGMEM! */ //#define DEBUG_LEVELING_FEATURE #if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_UBL, PROBE_MANUALLY) // Set a height for the start of manual adjustment #define MANUAL_PROBE_START_Z 0.2 // (mm) Comment out to use the last-measured height #endif #if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_UBL) // Gradually reduce leveling correction until a set height is reached, // at which point movement will be level to the machine's XY plane. // The height can be set with M420 Z #define ENABLE_LEVELING_FADE_HEIGHT #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #define DEFAULT_LEVELING_FADE_HEIGHT 10.0 // (mm) Default fade height. #endif // For Cartesian machines, instead of dividing moves on mesh boundaries, // split up moves into short segments like a Delta. This follows the // contours of the bed more closely than edge-to-edge straight moves. #define SEGMENT_LEVELED_MOVES #define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one) /** * Enable the G26 Mesh Validation Pattern tool. */ //#define G26_MESH_VALIDATION #if ENABLED(G26_MESH_VALIDATION) #define MESH_TEST_NOZZLE_SIZE 0.4 // (mm) Diameter of primary nozzle. #define MESH_TEST_LAYER_HEIGHT 0.2 // (mm) Default layer height for G26. #define MESH_TEST_HOTEND_TEMP 205 // (°C) Default nozzle temperature for G26. #define MESH_TEST_BED_TEMP 60 // (°C) Default bed temperature for G26. #define G26_XY_FEEDRATE 20 // (mm/s) Feedrate for G26 XY moves. #define G26_XY_FEEDRATE_TRAVEL 100 // (mm/s) Feedrate for G26 XY travel moves. #define G26_RETRACT_MULTIPLIER 1.0 // G26 Q (retraction) used by default between mesh test elements. #endif #endif #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR) // Set the number of grid points per dimension. #define GRID_MAX_POINTS_X 3 #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X // Probe along the Y axis, advancing X after each column //#define PROBE_Y_FIRST #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Beyond the probed grid, continue the implied tilt? // Default is to maintain the height of the nearest edge. //#define EXTRAPOLATE_BEYOND_GRID // // Experimental Subdivision of the grid by Catmull-Rom method. // Synthesizes intermediate points to produce a more detailed mesh. // //#define ABL_BILINEAR_SUBDIVISION #if ENABLED(ABL_BILINEAR_SUBDIVISION) // Number of subdivisions between probe points #define BILINEAR_SUBDIVISIONS 3 #endif #endif #elif ENABLED(AUTO_BED_LEVELING_UBL) //=========================================================================== //========================= Unified Bed Leveling ============================ //=========================================================================== //#define MESH_EDIT_GFX_OVERLAY // Display a graphics overlay while editing the mesh #define MESH_INSET 1 // Set Mesh bounds as an inset region of the bed #define GRID_MAX_POINTS_X 10 // Don't use more than 15 points per axis, implementation limited. #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X //#define UBL_HILBERT_CURVE // Use Hilbert distribution for less travel when probing multiple points #define UBL_MESH_EDIT_MOVES_Z // Sophisticated users prefer no movement of nozzle #define UBL_SAVE_ACTIVE_ON_M500 // Save the currently active mesh in the current slot on M500 //#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used // as the Z-Height correction value. //#define UBL_MESH_WIZARD // Run several commands in a row to get a complete mesh #elif ENABLED(MESH_BED_LEVELING) //=========================================================================== //=================================== Mesh ================================== //=========================================================================== #define MESH_INSET 10 // Set Mesh bounds as an inset region of the bed #define GRID_MAX_POINTS_X 3 // Don't use more than 7 points per axis, implementation limited. #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS #endif // BED_LEVELING /** * Add a bed leveling sub-menu for ABL or MBL. * Include a guided procedure if manual probing is enabled. */ //#define LCD_BED_LEVELING #if ENABLED(LCD_BED_LEVELING) #define MESH_EDIT_Z_STEP 0.025 // (mm) Step size while manually probing Z axis. #define LCD_PROBE_Z_RANGE 4 // (mm) Z Range centered on Z_MIN_POS for LCD Z adjustment //#define MESH_EDIT_MENU // Add a menu to edit mesh points #endif // Add a menu item to move between bed corners for manual bed adjustment //#define LCD_BED_TRAMMING #if ENABLED(LCD_BED_TRAMMING) #define BED_TRAMMING_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets #define BED_TRAMMING_HEIGHT 0.0 // (mm) Z height of nozzle at leveling points #define BED_TRAMMING_Z_HOP 4.0 // (mm) Z height of nozzle between leveling points //#define BED_TRAMMING_INCLUDE_CENTER // Move to the center after the last corner //#define BED_TRAMMING_USE_PROBE #if ENABLED(BED_TRAMMING_USE_PROBE) #define BED_TRAMMING_PROBE_TOLERANCE 0.1 // (mm) #define BED_TRAMMING_VERIFY_RAISED // After adjustment triggers the probe, re-probe to verify //#define BED_TRAMMING_AUDIO_FEEDBACK #endif /** * Corner Leveling Order * * Set 2 or 4 points. When 2 points are given, the 3rd is the center of the opposite edge. * * LF Left-Front RF Right-Front * LB Left-Back RB Right-Back * * Examples: * * Default {LF,RB,LB,RF} {LF,RF} {LB,LF} * LB --------- RB LB --------- RB LB --------- RB LB --------- RB * | 4 3 | | 3 2 | | <3> | | 1 | * | | | | | | | <3>| * | 1 2 | | 1 4 | | 1 2 | | 2 | * LF --------- RF LF --------- RF LF --------- RF LF --------- RF */ #define BED_TRAMMING_LEVELING_ORDER { LF, RF, RB, LB } #endif /** * Commands to execute at the end of G29 probing. * Useful to retract or move the Z probe out of the way. */ //#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10" // @section homing // The center of the bed is at (X=0, Y=0) //#define BED_CENTER_AT_0_0 // Manually set the home position. Leave these undefined for automatic settings. // For DELTA this is the top-center of the Cartesian print volume. //#define MANUAL_X_HOME_POS 0 //#define MANUAL_Y_HOME_POS 0 //#define MANUAL_Z_HOME_POS 0 //#define MANUAL_I_HOME_POS 0 //#define MANUAL_J_HOME_POS 0 //#define MANUAL_K_HOME_POS 0 //#define MANUAL_U_HOME_POS 0 //#define MANUAL_V_HOME_POS 0 //#define MANUAL_W_HOME_POS 0 /** * Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area. * * - Moves the Z probe (or nozzle) to a defined XY point before Z homing. * - Allows Z homing only when XY positions are known and trusted. * - If stepper drivers sleep, XY homing may be required again before Z homing. */ //#define Z_SAFE_HOMING #if ENABLED(Z_SAFE_HOMING) #define Z_SAFE_HOMING_X_POINT X_CENTER // X point for Z homing #define Z_SAFE_HOMING_Y_POINT Y_CENTER // Y point for Z homing #endif // Homing speeds (linear=mm/min, rotational=°/min) #define HOMING_FEEDRATE_MM_M { (50*60), (50*60), (4*60) } // Validate that endstops are triggered on homing moves #define VALIDATE_HOMING_ENDSTOPS // @section calibrate /** * Bed Skew Compensation * * This feature corrects for misalignment in the XYZ axes. * * Take the following steps to get the bed skew in the XY plane: * 1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185) * 2. For XY_DIAG_AC measure the diagonal A to C * 3. For XY_DIAG_BD measure the diagonal B to D * 4. For XY_SIDE_AD measure the edge A to D * * Marlin automatically computes skew factors from these measurements. * Skew factors may also be computed and set manually: * * - Compute AB : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2 * - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD))) * * If desired, follow the same procedure for XZ and YZ. * Use these diagrams for reference: * * Y Z Z * ^ B-------C ^ B-------C ^ B-------C * | / / | / / | / / * | / / | / / | / / * | A-------D | A-------D | A-------D * +-------------->X +-------------->X +-------------->Y * XY_SKEW_FACTOR XZ_SKEW_FACTOR YZ_SKEW_FACTOR */ //#define SKEW_CORRECTION #if ENABLED(SKEW_CORRECTION) // Input all length measurements here: #define XY_DIAG_AC 282.8427124746 #define XY_DIAG_BD 282.8427124746 #define XY_SIDE_AD 200 // Or, set the default skew factors directly here // to override the above measurements: #define XY_SKEW_FACTOR 0.0 //#define SKEW_CORRECTION_FOR_Z #if ENABLED(SKEW_CORRECTION_FOR_Z) #define XZ_DIAG_AC 282.8427124746 #define XZ_DIAG_BD 282.8427124746 #define YZ_DIAG_AC 282.8427124746 #define YZ_DIAG_BD 282.8427124746 #define YZ_SIDE_AD 200 #define XZ_SKEW_FACTOR 0.0 #define YZ_SKEW_FACTOR 0.0 #endif // Enable this option for M852 to set skew at runtime //#define SKEW_CORRECTION_GCODE #endif //============================================================================= //============================= Additional Features =========================== //============================================================================= // @section extras /** * EEPROM * * Persistent storage to preserve configurable settings across reboots. * * M500 - Store settings to EEPROM. * M501 - Read settings from EEPROM. (i.e., Throw away unsaved changes) * M502 - Revert settings to "factory" defaults. (Follow with M500 to init the EEPROM.) */ //#define EEPROM_SETTINGS // Persistent storage with M500 and M501 //#define DISABLE_M503 // Saves ~2700 bytes of flash. Disable for release! #define EEPROM_CHITCHAT // Give feedback on EEPROM commands. Disable to save PROGMEM. #define EEPROM_BOOT_SILENT // Keep M503 quiet and only give errors during first load #if ENABLED(EEPROM_SETTINGS) //#define EEPROM_AUTO_INIT // Init EEPROM automatically on any errors. //#define EEPROM_INIT_NOW // Init EEPROM on first boot after a new build. #endif // // Host Keepalive // // When enabled Marlin will send a busy status message to the host // every couple of seconds when it can't accept commands. // #define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages #define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113. #define BUSY_WHILE_HEATING // Some hosts require "busy" messages even during heating // // G20/G21 Inch mode support // //#define INCH_MODE_SUPPORT // // M149 Set temperature units support // //#define TEMPERATURE_UNITS_SUPPORT // @section temperature // // Preheat Constants - Up to 6 are supported without changes // #define PREHEAT_1_LABEL "PLA" #define PREHEAT_1_TEMP_HOTEND 180 #define PREHEAT_1_TEMP_BED 70 #define PREHEAT_1_TEMP_CHAMBER 35 #define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255 #define PREHEAT_2_LABEL "ABS" #define PREHEAT_2_TEMP_HOTEND 240 #define PREHEAT_2_TEMP_BED 110 #define PREHEAT_2_TEMP_CHAMBER 35 #define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255 /** * Nozzle Park * * Park the nozzle at the given XYZ position on idle or G27. * * The "P" parameter controls the action applied to the Z axis: * * P0 (Default) If Z is below park Z raise the nozzle. * P1 Raise the nozzle always to Z-park height. * P2 Raise the nozzle by Z-park amount, limited to Z_MAX_POS. */ //#define NOZZLE_PARK_FEATURE #if ENABLED(NOZZLE_PARK_FEATURE) // Specify a park position as { X, Y, Z_raise } #define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 } #define NOZZLE_PARK_MOVE 0 // Park motion: 0 = XY Move, 1 = X Only, 2 = Y Only, 3 = X before Y, 4 = Y before X #define NOZZLE_PARK_Z_RAISE_MIN 2 // (mm) Always raise Z by at least this distance #define NOZZLE_PARK_XY_FEEDRATE 100 // (mm/s) X and Y axes feedrate (also used for delta Z axis) #define NOZZLE_PARK_Z_FEEDRATE 5 // (mm/s) Z axis feedrate (not used for delta printers) #endif /** * Clean Nozzle Feature -- EXPERIMENTAL * * Adds the G12 command to perform a nozzle cleaning process. * * Parameters: * P Pattern * S Strokes / Repetitions * T Triangles (P1 only) * * Patterns: * P0 Straight line (default). This process requires a sponge type material * at a fixed bed location. "S" specifies strokes (i.e. back-forth motions) * between the start / end points. * * P1 Zig-zag pattern between (X0, Y0) and (X1, Y1), "T" specifies the * number of zig-zag triangles to do. "S" defines the number of strokes. * Zig-zags are done in whichever is the narrower dimension. * For example, "G12 P1 S1 T3" will execute: * * -- * | (X0, Y1) | /\ /\ /\ | (X1, Y1) * | | / \ / \ / \ | * A | | / \ / \ / \ | * | | / \ / \ / \ | * | (X0, Y0) | / \/ \/ \ | (X1, Y0) * -- +--------------------------------+ * |________|_________|_________| * T1 T2 T3 * * P2 Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE. * "R" specifies the radius. "S" specifies the stroke count. * Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT. * * Caveats: The ending Z should be the same as starting Z. * Attention: EXPERIMENTAL. G-code arguments may change. */ //#define NOZZLE_CLEAN_FEATURE #if ENABLED(NOZZLE_CLEAN_FEATURE) // Default number of pattern repetitions #define NOZZLE_CLEAN_STROKES 12 // Default number of triangles #define NOZZLE_CLEAN_TRIANGLES 3 // Specify positions for each tool as { { X, Y, Z }, { X, Y, Z } } // Dual hotend system may use { { -20, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }, { 420, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }} #define NOZZLE_CLEAN_START_POINT { { 30, 30, (Z_MIN_POS + 1) } } #define NOZZLE_CLEAN_END_POINT { { 100, 60, (Z_MIN_POS + 1) } } // Circular pattern radius #define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5 // Circular pattern circle fragments number #define NOZZLE_CLEAN_CIRCLE_FN 10 // Middle point of circle #define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT // Move the nozzle to the initial position after cleaning #define NOZZLE_CLEAN_GOBACK // For a purge/clean station that's always at the gantry height (thus no Z move) //#define NOZZLE_CLEAN_NO_Z // For a purge/clean station mounted on the X axis //#define NOZZLE_CLEAN_NO_Y // Require a minimum hotend temperature for cleaning #define NOZZLE_CLEAN_MIN_TEMP 170 //#define NOZZLE_CLEAN_HEATUP // Heat up the nozzle instead of skipping wipe // Explicit wipe G-code script applies to a G12 with no arguments. //#define WIPE_SEQUENCE_COMMANDS "G1 X-17 Y25 Z10 F4000\nG1 Z1\nM114\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 Z15\nM400\nG0 X-10.0 Y-9.0" #endif /** * Print Job Timer * * Automatically start and stop the print job timer on M104/M109/M140/M190/M141/M191. * The print job timer will only be stopped if the bed/chamber target temp is * below BED_MINTEMP/CHAMBER_MINTEMP. * * M104 (hotend, no wait) - high temp = none, low temp = stop timer * M109 (hotend, wait) - high temp = start timer, low temp = stop timer * M140 (bed, no wait) - high temp = none, low temp = stop timer * M190 (bed, wait) - high temp = start timer, low temp = none * M141 (chamber, no wait) - high temp = none, low temp = stop timer * M191 (chamber, wait) - high temp = start timer, low temp = none * * For M104/M109, high temp is anything over EXTRUDE_MINTEMP / 2. * For M140/M190, high temp is anything over BED_MINTEMP. * For M141/M191, high temp is anything over CHAMBER_MINTEMP. * * The timer can also be controlled with the following commands: * * M75 - Start the print job timer * M76 - Pause the print job timer * M77 - Stop the print job timer */ #define PRINTJOB_TIMER_AUTOSTART /** * Print Counter * * Track statistical data such as: * * - Total print jobs * - Total successful print jobs * - Total failed print jobs * - Total time printing * * View the current statistics with M78. */ //#define PRINTCOUNTER #if ENABLED(PRINTCOUNTER) #define PRINTCOUNTER_SAVE_INTERVAL 60 // (minutes) EEPROM save interval during print #endif /** * Password * * Set a numerical password for the printer which can be requested: * * - When the printer boots up * - Upon opening the 'Print from Media' Menu * - When SD printing is completed or aborted * * The following G-codes can be used: * * M510 - Lock Printer. Blocks all commands except M511. * M511 - Unlock Printer. * M512 - Set, Change and Remove Password. * * If you forget the password and get locked out you'll need to re-flash * the firmware with the feature disabled, reset EEPROM, and (optionally) * re-flash the firmware again with this feature enabled. */ //#define PASSWORD_FEATURE #if ENABLED(PASSWORD_FEATURE) #define PASSWORD_LENGTH 4 // (#) Number of digits (1-9). 3 or 4 is recommended #define PASSWORD_ON_STARTUP #define PASSWORD_UNLOCK_GCODE // Unlock with the M511 P command. Disable to prevent brute-force attack. #define PASSWORD_CHANGE_GCODE // Change the password with M512 P S. //#define PASSWORD_ON_SD_PRINT_MENU // This does not prevent gcodes from running //#define PASSWORD_AFTER_SD_PRINT_END //#define PASSWORD_AFTER_SD_PRINT_ABORT //#include "Configuration_Secure.h" // External file with PASSWORD_DEFAULT_VALUE #endif //============================================================================= //============================= LCD and SD support ============================ //============================================================================= // @section lcd /** * LCD LANGUAGE * * Select the language to display on the LCD. These languages are available: * * en, an, bg, ca, cz, da, de, el, el_CY, es, eu, fi, fr, gl, hr, hu, it, * jp_kana, ko_KR, nl, pl, pt, pt_br, ro, ru, sk, sv, tr, uk, vi, zh_CN, zh_TW * * :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cz':'Czech', 'da':'Danish', 'de':'German', 'el':'Greek (Greece)', 'el_CY':'Greek (Cyprus)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'hu':'Hungarian', 'it':'Italian', 'jp_kana':'Japanese', 'ko_KR':'Korean (South Korea)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt_br':'Portuguese (Brazilian)', 'ro':'Romanian', 'ru':'Russian', 'sk':'Slovak', 'sv':'Swedish', 'tr':'Turkish', 'uk':'Ukrainian', 'vi':'Vietnamese', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Traditional)' } */ #define LCD_LANGUAGE en /** * LCD Character Set * * Note: This option is NOT applicable to Graphical Displays. * * All character-based LCDs provide ASCII plus one of these * language extensions: * * - JAPANESE ... the most common * - WESTERN ... with more accented characters * - CYRILLIC ... for the Russian language * * To determine the language extension installed on your controller: * * - Compile and upload with LCD_LANGUAGE set to 'test' * - Click the controller to view the LCD menu * - The LCD will display Japanese, Western, or Cyrillic text * * See https://marlinfw.org/docs/development/lcd_language.html * * :['JAPANESE', 'WESTERN', 'CYRILLIC'] */ #define DISPLAY_CHARSET_HD44780 JAPANESE /** * Info Screen Style (0:Classic, 1:Průša) * * :[0:'Classic', 1:'Průša'] */ #define LCD_INFO_SCREEN_STYLE 0 /** * SD CARD * * SD Card support is disabled by default. If your controller has an SD slot, * you must uncomment the following option or it won't work. */ //#define SDSUPPORT /** * SD CARD: ENABLE CRC * * Use CRC checks and retries on the SD communication. */ //#define SD_CHECK_AND_RETRY /** * LCD Menu Items * * Disable all menus and only display the Status Screen, or * just remove some extraneous menu items to recover space. */ //#define NO_LCD_MENUS //#define SLIM_LCD_MENUS // // ENCODER SETTINGS // // This option overrides the default number of encoder pulses needed to // produce one step. Should be increased for high-resolution encoders. // //#define ENCODER_PULSES_PER_STEP 4 // // Use this option to override the number of step signals required to // move between next/prev menu items. // //#define ENCODER_STEPS_PER_MENU_ITEM 1 /** * Encoder Direction Options * * Test your encoder's behavior first with both options disabled. * * Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION. * Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION. * Reversed Value Editing only? Enable BOTH options. */ // // This option reverses the encoder direction everywhere. // // Set this option if CLOCKWISE causes values to DECREASE // //#define REVERSE_ENCODER_DIRECTION // // This option reverses the encoder direction for navigating LCD menus. // // If CLOCKWISE normally moves DOWN this makes it go UP. // If CLOCKWISE normally moves UP this makes it go DOWN. // //#define REVERSE_MENU_DIRECTION // // This option reverses the encoder direction for Select Screen. // // If CLOCKWISE normally moves LEFT this makes it go RIGHT. // If CLOCKWISE normally moves RIGHT this makes it go LEFT. // //#define REVERSE_SELECT_DIRECTION // // Individual Axis Homing // // Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu. // //#define INDIVIDUAL_AXIS_HOMING_MENU //#define INDIVIDUAL_AXIS_HOMING_SUBMENU // // SPEAKER/BUZZER // // If you have a speaker that can produce tones, enable it here. // By default Marlin assumes you have a buzzer with a fixed frequency. // //#define SPEAKER // // The duration and frequency for the UI feedback sound. // Set these to 0 to disable audio feedback in the LCD menus. // // Note: Test audio output with the G-Code: // M300 S P // //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2 //#define LCD_FEEDBACK_FREQUENCY_HZ 5000 //============================================================================= //======================== LCD / Controller Selection ========================= //======================== (Character-based LCDs) ========================= //============================================================================= // // RepRapDiscount Smart Controller. // https://reprap.org/wiki/RepRapDiscount_Smart_Controller // // Note: Usually sold with a white PCB. // //#define REPRAP_DISCOUNT_SMART_CONTROLLER // // GT2560 (YHCB2004) LCD Display // // Requires Testato, Koepel softwarewire library and // Andriy Golovnya's LiquidCrystal_AIP31068 library. // //#define YHCB2004 // // Original RADDS LCD Display+Encoder+SDCardReader // http://doku.radds.org/dokumentation/lcd-display/ // //#define RADDS_DISPLAY // // ULTIMAKER Controller. // //#define ULTIMAKERCONTROLLER // // ULTIPANEL as seen on Thingiverse. // //#define ULTIPANEL // // PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3) // https://reprap.org/wiki/PanelOne // //#define PANEL_ONE // // GADGETS3D G3D LCD/SD Controller // https://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel // // Note: Usually sold with a blue PCB. // //#define G3D_PANEL // // RigidBot Panel V1.0 // http://www.inventapart.com/ // //#define RIGIDBOT_PANEL // // Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller // https://www.aliexpress.com/item/32765887917.html // //#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602 // // ANET and Tronxy 20x4 Controller // //#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin. // This LCD is known to be susceptible to electrical interference // which scrambles the display. Pressing any button clears it up. // This is a LCD2004 display with 5 analog buttons. // // Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD. // //#define ULTRA_LCD //============================================================================= //======================== LCD / Controller Selection ========================= //===================== (I2C and Shift-Register LCDs) ===================== //============================================================================= // // CONTROLLER TYPE: I2C // // Note: These controllers require the installation of Arduino's LiquidCrystal_I2C // library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C // // // Elefu RA Board Control Panel // http://www.elefu.com/index.php?route=product/product&product_id=53 // //#define RA_CONTROL_PANEL // // Sainsmart (YwRobot) LCD Displays // // These require F.Malpartida's LiquidCrystal_I2C library // https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home // //#define LCD_SAINSMART_I2C_1602 //#define LCD_SAINSMART_I2C_2004 // // Generic LCM1602 LCD adapter // //#define LCM1602 // // PANELOLU2 LCD with status LEDs, // separate encoder and click inputs. // // Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later. // For more info: https://github.com/lincomatic/LiquidTWI2 // // Note: The PANELOLU2 encoder click input can either be directly connected to // a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1). // //#define LCD_I2C_PANELOLU2 // // Panucatt VIKI LCD with status LEDs, // integrated click & L/R/U/D buttons, separate encoder inputs. // //#define LCD_I2C_VIKI // // CONTROLLER TYPE: Shift register panels // // // 2-wire Non-latching LCD SR from https://goo.gl/aJJ4sH // LCD configuration: https://reprap.org/wiki/SAV_3D_LCD // //#define SAV_3DLCD // // 3-wire SR LCD with strobe using 74HC4094 // https://github.com/mikeshub/SailfishLCD // Uses the code directly from Sailfish // //#define FF_INTERFACEBOARD // // TFT GLCD Panel with Marlin UI // Panel connected to main board by SPI or I2C interface. // See https://github.com/Serhiy-K/TFTGLCDAdapter // //#define TFTGLCD_PANEL_SPI //#define TFTGLCD_PANEL_I2C //============================================================================= //======================= LCD / Controller Selection ======================= //========================= (Graphical LCDs) ======================== //============================================================================= // // CONTROLLER TYPE: Graphical 128x64 (DOGM) // // IMPORTANT: The U8glib library is required for Graphical Display! // https://github.com/olikraus/U8glib_Arduino // // NOTE: If the LCD is unresponsive you may need to reverse the plugs. // // // RepRapDiscount FULL GRAPHIC Smart Controller // https://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller // //#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER // // K.3D Full Graphic Smart Controller // //#define K3D_FULL_GRAPHIC_SMART_CONTROLLER // // ReprapWorld Graphical LCD // https://reprapworld.com/?products_details&products_id/1218 // //#define REPRAPWORLD_GRAPHICAL_LCD // // Activate one of these if you have a Panucatt Devices // Viki 2.0 or mini Viki with Graphic LCD // https://www.panucatt.com // //#define VIKI2 //#define miniVIKI // // Alfawise Ex8 printer LCD marked as WYH L12864 COG // //#define WYH_L12864 // // MakerLab Mini Panel with graphic // controller and SD support - https://reprap.org/wiki/Mini_panel // //#define MINIPANEL // // MaKr3d Makr-Panel with graphic controller and SD support. // https://reprap.org/wiki/MaKr3d_MaKrPanel // //#define MAKRPANEL // // Adafruit ST7565 Full Graphic Controller. // https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/ // //#define ELB_FULL_GRAPHIC_CONTROLLER // // BQ LCD Smart Controller shipped by // default with the BQ Hephestos 2 and Witbox 2. // //#define BQ_LCD_SMART_CONTROLLER // // Cartesio UI // http://mauk.cc/webshop/cartesio-shop/electronics/user-interface // //#define CARTESIO_UI // // LCD for Melzi Card with Graphical LCD // //#define LCD_FOR_MELZI // // Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder // https://github.com/Ultimaker/Ultimaker2/tree/master/1249_Ulticontroller_Board_(x1) // //#define ULTI_CONTROLLER // // MKS MINI12864 with graphic controller and SD support // https://reprap.org/wiki/MKS_MINI_12864 // //#define MKS_MINI_12864 // // MKS MINI12864 V3 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight. // //#define MKS_MINI_12864_V3 // // MKS LCD12864A/B with graphic controller and SD support. Follows MKS_MINI_12864 pinout. // https://www.aliexpress.com/item/33018110072.html // //#define MKS_LCD12864A //#define MKS_LCD12864B // // FYSETC variant of the MINI12864 graphic controller with SD support // https://wiki.fysetc.com/Mini12864_Panel/ // //#define FYSETC_MINI_12864_X_X // Type C/D/E/F. No tunable RGB Backlight by default //#define FYSETC_MINI_12864_1_2 // Type C/D/E/F. Simple RGB Backlight (always on) //#define FYSETC_MINI_12864_2_0 // Type A/B. Discreet RGB Backlight //#define FYSETC_MINI_12864_2_1 // Type A/B. NeoPixel RGB Backlight //#define FYSETC_GENERIC_12864_1_1 // Larger display with basic ON/OFF backlight. // // BigTreeTech Mini 12864 V1.0 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight. // //#define BTT_MINI_12864_V1 // // Factory display for Creality CR-10 // https://www.aliexpress.com/item/32833148327.html // // This is RAMPS-compatible using a single 10-pin connector. // (For CR-10 owners who want to replace the Melzi Creality board but retain the display) // //#define CR10_STOCKDISPLAY // // Ender-2 OEM display, a variant of the MKS_MINI_12864 // //#define ENDER2_STOCKDISPLAY // // ANET and Tronxy Graphical Controller // // Anet 128x64 full graphics lcd with rotary encoder as used on Anet A6 // A clone of the RepRapDiscount full graphics display but with // different pins/wiring (see pins_ANET_10.h). Enable one of these. // //#define ANET_FULL_GRAPHICS_LCD //#define ANET_FULL_GRAPHICS_LCD_ALT_WIRING // // AZSMZ 12864 LCD with SD // https://www.aliexpress.com/item/32837222770.html // //#define AZSMZ_12864 // // Silvergate GLCD controller // https://github.com/android444/Silvergate // //#define SILVER_GATE_GLCD_CONTROLLER // // eMotion Tech LCD with SD // https://www.reprap-france.com/produit/1234568748-ecran-graphique-128-x-64-points-2-1 // //#define EMOTION_TECH_LCD //============================================================================= //============================== OLED Displays ============================== //============================================================================= // // SSD1306 OLED full graphics generic display // //#define U8GLIB_SSD1306 // // SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules // //#define SAV_3DGLCD #if ENABLED(SAV_3DGLCD) #define U8GLIB_SSD1306 //#define U8GLIB_SH1106 #endif // // TinyBoy2 128x64 OLED / Encoder Panel // //#define OLED_PANEL_TINYBOY2 // // MKS OLED 1.3" 128×64 Full Graphics Controller // https://reprap.org/wiki/MKS_12864OLED // // Tiny, but very sharp OLED display // //#define MKS_12864OLED // Uses the SH1106 controller (default) //#define MKS_12864OLED_SSD1306 // Uses the SSD1306 controller // // Zonestar OLED 128×64 Full Graphics Controller // //#define ZONESTAR_12864LCD // Graphical (DOGM) with ST7920 controller //#define ZONESTAR_12864OLED // 1.3" OLED with SH1106 controller (default) //#define ZONESTAR_12864OLED_SSD1306 // 0.96" OLED with SSD1306 controller // // Einstart S OLED SSD1306 // //#define U8GLIB_SH1106_EINSTART // // Overlord OLED display/controller with i2c buzzer and LEDs // //#define OVERLORD_OLED // // FYSETC OLED 2.42" 128×64 Full Graphics Controller with WS2812 RGB // Where to find : https://www.aliexpress.com/item/4000345255731.html //#define FYSETC_242_OLED_12864 // Uses the SSD1309 controller // // K.3D SSD1309 OLED 2.42" 128×64 Full Graphics Controller // //#define K3D_242_OLED_CONTROLLER // Software SPI //============================================================================= //========================== Extensible UI Displays =========================== //============================================================================= /** * DGUS Touch Display with DWIN OS. (Choose one.) * ORIGIN : https://www.aliexpress.com/item/32993409517.html * FYSETC : https://www.aliexpress.com/item/32961471929.html * MKS : https://www.aliexpress.com/item/1005002008179262.html * * Flash display with DGUS Displays for Marlin: * - Format the SD card to FAT32 with an allocation size of 4kb. * - Download files as specified for your type of display. * - Plug the microSD card into the back of the display. * - Boot the display and wait for the update to complete. * * ORIGIN (Marlin DWIN_SET) * - Download https://github.com/coldtobi/Marlin_DGUS_Resources * - Copy the downloaded DWIN_SET folder to the SD card. * * FYSETC (Supplier default) * - Download https://github.com/FYSETC/FYSTLCD-2.0 * - Copy the downloaded SCREEN folder to the SD card. * * HIPRECY (Supplier default) * - Download https://github.com/HiPrecy/Touch-Lcd-LEO * - Copy the downloaded DWIN_SET folder to the SD card. * * MKS (MKS-H43) (Supplier default) * - Download https://github.com/makerbase-mks/MKS-H43 * - Copy the downloaded DWIN_SET folder to the SD card. * * RELOADED (T5UID1) * - Download https://github.com/Desuuuu/DGUS-reloaded/releases * - Copy the downloaded DWIN_SET folder to the SD card. */ //#define DGUS_LCD_UI_ORIGIN //#define DGUS_LCD_UI_FYSETC //#define DGUS_LCD_UI_HIPRECY //#define DGUS_LCD_UI_MKS //#define DGUS_LCD_UI_RELOADED #if ENABLED(DGUS_LCD_UI_MKS) #define USE_MKS_GREEN_UI #endif // // Touch-screen LCD for Malyan M200/M300 printers // //#define MALYAN_LCD // // Touch UI for FTDI EVE (FT800/FT810) displays // See Configuration_adv.h for all configuration options. // //#define TOUCH_UI_FTDI_EVE // // Touch-screen LCD for Anycubic printers // //#define ANYCUBIC_LCD_I3MEGA //#define ANYCUBIC_LCD_CHIRON #if EITHER(ANYCUBIC_LCD_I3MEGA, ANYCUBIC_LCD_CHIRON) //#define ANYCUBIC_LCD_DEBUG #endif // // 320x240 Nextion 2.8" serial TFT Resistive Touch Screen NX3224T028 // //#define NEXTION_TFT // // Third-party or vendor-customized controller interfaces. // Sources should be installed in 'src/lcd/extui'. // //#define EXTENSIBLE_UI #if ENABLED(EXTENSIBLE_UI) //#define EXTUI_LOCAL_BEEPER // Enables use of local Beeper pin with external display #endif //============================================================================= //=============================== Graphical TFTs ============================== //============================================================================= /** * Specific TFT Model Presets. Enable one of the following options * or enable TFT_GENERIC and set sub-options. */ // // 480x320, 3.5", SPI Display with Rotary Encoder from MKS // Usually paired with MKS Robin Nano V2 & V3 // //#define MKS_TS35_V2_0 // // 320x240, 2.4", FSMC Display From MKS // Usually paired with MKS Robin Nano V1.2 // //#define MKS_ROBIN_TFT24 // // 320x240, 2.8", FSMC Display From MKS // Usually paired with MKS Robin Nano V1.2 // //#define MKS_ROBIN_TFT28 // // 320x240, 3.2", FSMC Display From MKS // Usually paired with MKS Robin Nano V1.2 // //#define MKS_ROBIN_TFT32 // // 480x320, 3.5", FSMC Display From MKS // Usually paired with MKS Robin Nano V1.2 // //#define MKS_ROBIN_TFT35 // // 480x272, 4.3", FSMC Display From MKS // //#define MKS_ROBIN_TFT43 // // 320x240, 3.2", FSMC Display From MKS // Usually paired with MKS Robin // //#define MKS_ROBIN_TFT_V1_1R // // 480x320, 3.5", FSMC Stock Display from TronxXY // //#define TFT_TRONXY_X5SA // // 480x320, 3.5", FSMC Stock Display from AnyCubic // //#define ANYCUBIC_TFT35 // // 320x240, 2.8", FSMC Stock Display from Longer/Alfawise // //#define LONGER_LK_TFT28 // // 320x240, 2.8", FSMC Stock Display from ET4 // //#define ANET_ET4_TFT28 // // 480x320, 3.5", FSMC Stock Display from ET5 // //#define ANET_ET5_TFT35 // // 1024x600, 7", RGB Stock Display with Rotary Encoder from BIQU-BX // //#define BIQU_BX_TFT70 // // 480x320, 3.5", SPI Stock Display with Rotary Encoder from BIQU B1 SE Series // //#define BTT_TFT35_SPI_V1_0 // // Generic TFT with detailed options // //#define TFT_GENERIC #if ENABLED(TFT_GENERIC) // :[ 'AUTO', 'ST7735', 'ST7789', 'ST7796', 'R61505', 'ILI9328', 'ILI9341', 'ILI9488' ] #define TFT_DRIVER AUTO // Interface. Enable one of the following options: //#define TFT_INTERFACE_FSMC //#define TFT_INTERFACE_SPI // TFT Resolution. Enable one of the following options: //#define TFT_RES_320x240 //#define TFT_RES_480x272 //#define TFT_RES_480x320 //#define TFT_RES_1024x600 #endif /** * TFT UI - User Interface Selection. Enable one of the following options: * * TFT_CLASSIC_UI - Emulated DOGM - 128x64 Upscaled * TFT_COLOR_UI - Marlin Default Menus, Touch Friendly, using full TFT capabilities * TFT_LVGL_UI - A Modern UI using LVGL * * For LVGL_UI also copy the 'assets' folder from the build directory to the * root of your SD card, together with the compiled firmware. */ //#define TFT_CLASSIC_UI //#define TFT_COLOR_UI //#define TFT_LVGL_UI #if ENABLED(TFT_LVGL_UI) //#define MKS_WIFI_MODULE // MKS WiFi module #endif /** * TFT Rotation. Set to one of the following values: * * TFT_ROTATE_90, TFT_ROTATE_90_MIRROR_X, TFT_ROTATE_90_MIRROR_Y, * TFT_ROTATE_180, TFT_ROTATE_180_MIRROR_X, TFT_ROTATE_180_MIRROR_Y, * TFT_ROTATE_270, TFT_ROTATE_270_MIRROR_X, TFT_ROTATE_270_MIRROR_Y, * TFT_MIRROR_X, TFT_MIRROR_Y, TFT_NO_ROTATION */ //#define TFT_ROTATION TFT_NO_ROTATION //============================================================================= //============================ Other Controllers ============================ //============================================================================= // // Ender-3 v2 OEM display. A DWIN display with Rotary Encoder. // //#define DWIN_CREALITY_LCD // Creality UI //#define DWIN_LCD_PROUI // Pro UI by MRiscoC //#define DWIN_CREALITY_LCD_JYERSUI // Jyers UI by Jacob Myers //#define DWIN_MARLINUI_PORTRAIT // MarlinUI (portrait orientation) //#define DWIN_MARLINUI_LANDSCAPE // MarlinUI (landscape orientation) // // Touch Screen Settings // //#define TOUCH_SCREEN #if ENABLED(TOUCH_SCREEN) #define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens #define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus //#define TOUCH_IDLE_SLEEP 300 // (s) Turn off the TFT backlight if set (5mn) #define TOUCH_SCREEN_CALIBRATION //#define TOUCH_CALIBRATION_X 12316 //#define TOUCH_CALIBRATION_Y -8981 //#define TOUCH_OFFSET_X -43 //#define TOUCH_OFFSET_Y 257 //#define TOUCH_ORIENTATION TOUCH_LANDSCAPE #if BOTH(TOUCH_SCREEN_CALIBRATION, EEPROM_SETTINGS) #define TOUCH_CALIBRATION_AUTO_SAVE // Auto save successful calibration values to EEPROM #endif #if ENABLED(TFT_COLOR_UI) //#define SINGLE_TOUCH_NAVIGATION #endif #endif // // RepRapWorld REPRAPWORLD_KEYPAD v1.1 // https://reprapworld.com/products/electronics/ramps/keypad_v1_0_fully_assembled/ // //#define REPRAPWORLD_KEYPAD //#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // (mm) Distance to move per key-press // // EasyThreeD ET-4000+ with button input and status LED // //#define EASYTHREED_UI //============================================================================= //=============================== Extra Features ============================== //============================================================================= // @section extras // Set number of user-controlled fans. Disable to use all board-defined fans. // :[1,2,3,4,5,6,7,8] //#define NUM_M106_FANS 1 // Use software PWM to drive the fan, as for the heaters. This uses a very low frequency // which is not as annoying as with the hardware PWM. On the other hand, if this frequency // is too low, you should also increment SOFT_PWM_SCALE. //#define FAN_SOFT_PWM // Incrementing this by 1 will double the software PWM frequency, // affecting heaters, and the fan if FAN_SOFT_PWM is enabled. // However, control resolution will be halved for each increment; // at zero value, there are 128 effective control positions. // :[0,1,2,3,4,5,6,7] #define SOFT_PWM_SCALE 0 // If SOFT_PWM_SCALE is set to a value higher than 0, dithering can // be used to mitigate the associated resolution loss. If enabled, // some of the PWM cycles are stretched so on average the desired // duty cycle is attained. //#define SOFT_PWM_DITHER // Temperature status LEDs that display the hotend and bed temperature. // If all hotends, bed temperature, and target temperature are under 54C // then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis) //#define TEMP_STAT_LEDS // Support for the BariCUDA Paste Extruder //#define BARICUDA // Support for BlinkM/CyzRgb //#define BLINKM // Support for PCA9632 PWM LED driver //#define PCA9632 // Support for PCA9533 PWM LED driver //#define PCA9533 /** * RGB LED / LED Strip Control * * Enable support for an RGB LED connected to 5V digital pins, or * an RGB Strip connected to MOSFETs controlled by digital pins. * * Adds the M150 command to set the LED (or LED strip) color. * If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of * luminance values can be set from 0 to 255. * For NeoPixel LED an overall brightness parameter is also available. * * *** CAUTION *** * LED Strips require a MOSFET Chip between PWM lines and LEDs, * as the Arduino cannot handle the current the LEDs will require. * Failure to follow this precaution can destroy your Arduino! * NOTE: A separate 5V power supply is required! The NeoPixel LED needs * more current than the Arduino 5V linear regulator can produce. * *** CAUTION *** * * LED Type. Enable only one of the following two options. */ //#define RGB_LED //#define RGBW_LED #if EITHER(RGB_LED, RGBW_LED) //#define RGB_LED_R_PIN 34 //#define RGB_LED_G_PIN 43 //#define RGB_LED_B_PIN 35 //#define RGB_LED_W_PIN -1 #endif // Support for Adafruit NeoPixel LED driver //#define NEOPIXEL_LED #if ENABLED(NEOPIXEL_LED) #define NEOPIXEL_TYPE NEO_GRBW // NEO_GRBW, NEO_RGBW, NEO_GRB, NEO_RBG, etc. // See https://github.com/adafruit/Adafruit_NeoPixel/blob/master/Adafruit_NeoPixel.h //#define NEOPIXEL_PIN 4 // LED driving pin //#define NEOPIXEL2_TYPE NEOPIXEL_TYPE //#define NEOPIXEL2_PIN 5 #define NEOPIXEL_PIXELS 30 // Number of LEDs in the strip. (Longest strip when NEOPIXEL2_SEPARATE is disabled.) #define NEOPIXEL_IS_SEQUENTIAL // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once. #define NEOPIXEL_BRIGHTNESS 127 // Initial brightness (0-255) //#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup // Support for second Adafruit NeoPixel LED driver controlled with M150 S1 ... //#define NEOPIXEL2_SEPARATE #if ENABLED(NEOPIXEL2_SEPARATE) #define NEOPIXEL2_PIXELS 15 // Number of LEDs in the second strip #define NEOPIXEL2_BRIGHTNESS 127 // Initial brightness (0-255) #define NEOPIXEL2_STARTUP_TEST // Cycle through colors at startup #else //#define NEOPIXEL2_INSERIES // Default behavior is NeoPixel 2 in parallel #endif // Use some of the NeoPixel LEDs for static (background) lighting //#define NEOPIXEL_BKGD_INDEX_FIRST 0 // Index of the first background LED //#define NEOPIXEL_BKGD_INDEX_LAST 5 // Index of the last background LED //#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W //#define NEOPIXEL_BKGD_ALWAYS_ON // Keep the backlight on when other NeoPixels are off #endif /** * Printer Event LEDs * * During printing, the LEDs will reflect the printer status: * * - Gradually change from blue to violet as the heated bed gets to target temp * - Gradually change from violet to red as the hotend gets to temperature * - Change to white to illuminate work surface * - Change to green once print has finished * - Turn off after the print has finished and the user has pushed a button */ #if ANY(BLINKM, RGB_LED, RGBW_LED, PCA9632, PCA9533, NEOPIXEL_LED) #define PRINTER_EVENT_LEDS #endif /** * Number of servos * * For some servo-related options NUM_SERVOS will be set automatically. * Set this manually if there are extra servos needing manual control. * Set to 0 to turn off servo support. */ //#define NUM_SERVOS 3 // Note: Servo index starts with 0 for M280-M282 commands // (ms) Delay before the next move will start, to give the servo time to reach its target angle. // 300ms is a good value but you can try less delay. // If the servo can't reach the requested position, increase it. #define SERVO_DELAY { 300 } // Only power servos during movement, otherwise leave off to prevent jitter //#define DEACTIVATE_SERVOS_AFTER_MOVE // Edit servo angles with M281 and save to EEPROM with M500 //#define EDITABLE_SERVO_ANGLES // Disable servo with M282 to reduce power consumption, noise, and heat when not in use //#define SERVO_DETACH_GCODE