/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#pragma once
#include "../inc/MarlinConfigPre.h"
#if ENABLED(EMERGENCY_PARSER)
#include "../feature/e_parser.h"
#endif
// Used in multiple places
// You can build it but not manipulate it.
// There are only few places where it's required to access the underlying member: GCodeQueue, SerialMask and MultiSerial
struct serial_index_t {
// A signed index, where -1 is a special case meaning no action (neither output or input)
int8_t index;
// Check if the index is within the range [a ... b]
constexpr inline bool within(const int8_t a, const int8_t b) const { return WITHIN(index, a, b); }
constexpr inline bool valid() const { return WITHIN(index, 0, 7); } // At most, 8 bits
// Construction is either from an index
constexpr serial_index_t(const int8_t index) : index(index) {}
// Default to "no index"
constexpr serial_index_t() : index(-1) {}
};
// In order to catch usage errors in code, we make the base to encode number explicit
// If given a number (and not this enum), the compiler will reject the overload, falling back to the (double, digit) version
// We don't want hidden conversion of the first parameter to double, so it has to be as hard to do for the compiler as creating this enum
enum class PrintBase {
Dec = 10,
Hex = 16,
Oct = 8,
Bin = 2
};
// A simple feature list enumeration
enum class SerialFeature {
None = 0x00,
MeatPack = 0x01, //!< Enabled when Meatpack is present
BinaryFileTransfer = 0x02, //!< Enabled for BinaryFile transfer support (in the future)
Virtual = 0x04, //!< Enabled for virtual serial port (like Telnet / Websocket / ...)
Hookable = 0x08, //!< Enabled if the serial class supports a setHook method
};
ENUM_FLAGS(SerialFeature);
// flushTX is not implemented in all HAL, so use SFINAE to call the method where it is.
CALL_IF_EXISTS_IMPL(void, flushTX);
CALL_IF_EXISTS_IMPL(bool, connected, true);
CALL_IF_EXISTS_IMPL(SerialFeature, features, SerialFeature::None);
// A simple forward struct to prevent the compiler from selecting print(double, int) as a default overload
// for any type other than double/float. For double/float, a conversion exists so the call will be invisible.
struct EnsureDouble {
double a;
FORCE_INLINE operator double() { return a; }
// If the compiler breaks on ambiguity here, it's likely because print(X, base) is called with X not a double/float, and
// a base that's not a PrintBase value. This code is made to detect the error. You MUST set a base explicitly like this:
// SERIAL_PRINT(v, PrintBase::Hex)
FORCE_INLINE EnsureDouble(double a) : a(a) {}
FORCE_INLINE EnsureDouble(float a) : a(a) {}
};
// Using Curiously-Recurring Template Pattern here to avoid virtual table cost when compiling.
// Since the real serial class is known at compile time, this results in the compiler writing
// a completely efficient code.
template
struct SerialBase {
#if ENABLED(EMERGENCY_PARSER)
const bool ep_enabled;
EmergencyParser::State emergency_state;
inline bool emergency_parser_enabled() { return ep_enabled; }
SerialBase(bool ep_capable) : ep_enabled(ep_capable), emergency_state(EmergencyParser::State::EP_RESET) {}
#else
SerialBase(const bool) {}
#endif
#define SerialChild static_cast(this)
// Static dispatch methods below:
// The most important method here is where it all ends to:
size_t write(uint8_t c) { return SerialChild->write(c); }
// Called when the parser finished processing an instruction, usually build to nothing
void msgDone() const { SerialChild->msgDone(); }
// Called on initialization
void begin(const long baudRate) { SerialChild->begin(baudRate); }
// Called on destruction
void end() { SerialChild->end(); }
/** Check for available data from the port
@param index The port index, usually 0 */
int available(serial_index_t index=0) const { return SerialChild->available(index); }
/** Read a value from the port
@param index The port index, usually 0 */
int read(serial_index_t index=0) { return SerialChild->read(index); }
/** Combine the features of this serial instance and return it
@param index The port index, usually 0 */
SerialFeature features(serial_index_t index=0) const { return static_cast(this)->features(index); }
// Check if the serial port has a feature
bool has_feature(serial_index_t index, SerialFeature flag) const { return (features(index) & flag) != SerialFeature::None; }
// Check if the serial port is connected (usually bypassed)
bool connected() const { return SerialChild->connected(); }
// Redirect flush
void flush() { SerialChild->flush(); }
// Not all implementation have a flushTX, so let's call them only if the child has the implementation
void flushTX() { CALL_IF_EXISTS(void, SerialChild, flushTX); }
// Glue code here
FORCE_INLINE void write(const char *str) { while (*str) write(*str++); }
FORCE_INLINE void write(const uint8_t *buffer, size_t size) { while (size--) write(*buffer++); }
FORCE_INLINE void print(const char *str) { write(str); }
// No default argument to avoid ambiguity
NO_INLINE void print(char c, PrintBase base) { printNumber((signed long)c, (uint8_t)base); }
NO_INLINE void print(unsigned char c, PrintBase base) { printNumber((unsigned long)c, (uint8_t)base); }
NO_INLINE void print(int c, PrintBase base) { printNumber((signed long)c, (uint8_t)base); }
NO_INLINE void print(unsigned int c, PrintBase base) { printNumber((unsigned long)c, (uint8_t)base); }
void print(unsigned long c, PrintBase base) { printNumber((unsigned long)c, (uint8_t)base); }
void print(long c, PrintBase base) { printNumber((signed long)c, (uint8_t)base); }
void print(EnsureDouble c, int digits) { printFloat(c, digits); }
// Forward the call to the former's method
FORCE_INLINE void print(char c) { print(c, PrintBase::Dec); }
FORCE_INLINE void print(unsigned char c) { print(c, PrintBase::Dec); }
FORCE_INLINE void print(int c) { print(c, PrintBase::Dec); }
FORCE_INLINE void print(unsigned int c) { print(c, PrintBase::Dec); }
FORCE_INLINE void print(unsigned long c) { print(c, PrintBase::Dec); }
FORCE_INLINE void print(long c) { print(c, PrintBase::Dec); }
FORCE_INLINE void print(double c) { print(c, 2); }
FORCE_INLINE void println(const char s[]) { print(s); println(); }
FORCE_INLINE void println(char c, PrintBase base) { print(c, base); println(); }
FORCE_INLINE void println(unsigned char c, PrintBase base) { print(c, base); println(); }
FORCE_INLINE void println(int c, PrintBase base) { print(c, base); println(); }
FORCE_INLINE void println(unsigned int c, PrintBase base) { print(c, base); println(); }
FORCE_INLINE void println(long c, PrintBase base) { print(c, base); println(); }
FORCE_INLINE void println(unsigned long c, PrintBase base) { print(c, base); println(); }
FORCE_INLINE void println(double c, int digits) { print(c, digits); println(); }
FORCE_INLINE void println() { write('\r'); write('\n'); }
// Forward the call to the former's method
FORCE_INLINE void println(char c) { println(c, PrintBase::Dec); }
FORCE_INLINE void println(unsigned char c) { println(c, PrintBase::Dec); }
FORCE_INLINE void println(int c) { println(c, PrintBase::Dec); }
FORCE_INLINE void println(unsigned int c) { println(c, PrintBase::Dec); }
FORCE_INLINE void println(unsigned long c) { println(c, PrintBase::Dec); }
FORCE_INLINE void println(long c) { println(c, PrintBase::Dec); }
FORCE_INLINE void println(double c) { println(c, 2); }
// Print a number with the given base
NO_INLINE void printNumber(unsigned long n, const uint8_t base) {
if (!base) return; // Hopefully, this should raise visible bug immediately
if (n) {
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
int8_t i = 0;
while (n) {
buf[i++] = n % base;
n /= base;
}
while (i--) write((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
}
else write('0');
}
void printNumber(signed long n, const uint8_t base) {
if (base == 10 && n < 0) {
n = -n; // This works because all platforms Marlin's builds on are using 2-complement encoding for negative number
// On such CPU, changing the sign of a number is done by inverting the bits and adding one, so if n = 0x80000000 = -2147483648 then
// -n = 0x7FFFFFFF + 1 => 0x80000000 = 2147483648 (if interpreted as unsigned) or -2147483648 if interpreted as signed.
// On non 2-complement CPU, there would be no possible representation for 2147483648.
write('-');
}
printNumber((unsigned long)n , base);
}
// Print a decimal number
NO_INLINE void printFloat(double number, uint8_t digits) {
// Handle negative numbers
if (number < 0.0) {
write('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
LOOP_L_N(i, digits) rounding *= 0.1;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
printNumber(int_part, 10);
// Print the decimal point, but only if there are digits beyond
if (digits) {
write('.');
// Extract digits from the remainder one at a time
while (digits--) {
remainder *= 10.0;
unsigned long toPrint = (unsigned long)remainder;
printNumber(toPrint, 10);
remainder -= toPrint;
}
}
}
};
// All serial instances will be built by chaining the features required
// for the function in the form of a template type definition.