/** * Marlin 3D Printer Firmware * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ //todo: add support for multiple encoders on a single axis //todo: add z axis auto-leveling //todo: consolidate some of the related M codes? //todo: add endstop-replacement mode? //todo: try faster I2C speed; tweak TWI_FREQ (400000L, or faster?); or just TWBR = ((CPU_FREQ / 400000L) - 16) / 2; //todo: consider Marlin-optimized Wire library; i.e. MarlinWire, like MarlinSerial #include "../inc/MarlinConfig.h" #if ENABLED(I2C_POSITION_ENCODERS) #include "I2CPositionEncoder.h" #include "../module/temperature.h" #include "../module/stepper.h" #include "../gcode/parser.h" #include void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) { encoderAxis = axis; i2cAddress = address; initialised++; SERIAL_ECHOPAIR("Setting up encoder on ", axis_codes[encoderAxis]); SERIAL_ECHOLNPAIR(" axis, addr = ", address); position = get_position(); } void I2CPositionEncoder::update() { if (!initialised || !homed || !active) return; //check encoder is set up and active position = get_position(); //we don't want to stop things just because the encoder missed a message, //so we only care about responses that indicate bad magnetic strength if (!passes_test(false)) { //check encoder data is good lastErrorTime = millis(); /* if (trusted) { //commented out as part of the note below trusted = false; SERIAL_ECHOPGM("Fault detected on "); SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHOLNPGM(" axis encoder. Disengaging error correction until module is trusted again."); } */ return; } if (!trusted) { /** * This is commented out because it introduces error and can cause bad print quality. * * This code is intended to manage situations where the encoder has reported bad magnetic strength. * This indicates that the magnetic strip was too far away from the sensor to reliably track position. * When this happens, this code resets the offset based on where the printer thinks it is. This has been * shown to introduce errors in actual position which result in drifting prints and poor print quality. * Perhaps a better method would be to disable correction on the axis with a problem, report it to the * user via the status leds on the encoder module and prompt the user to re-home the axis at which point * the encoder would be re-enabled. */ /* // If the magnetic strength has been good for a certain time, start trusting the module again if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) { trusted = true; SERIAL_ECHOPGM("Untrusted encoder module on "); SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHOLNPGM(" axis has been fault-free for set duration, reinstating error correction."); //the encoder likely lost its place when the error occured, so we'll reset and use the printer's //idea of where it the axis is to re-initialise float position = stepper.get_axis_position_mm(encoderAxis); int32_t positionInTicks = position * get_ticks_unit(); //shift position from previous to current position zeroOffset -= (positionInTicks - get_position()); #ifdef I2CPE_DEBUG SERIAL_ECHOPGM("Current position is "); SERIAL_ECHOLN(position); SERIAL_ECHOPGM("Position in encoder ticks is "); SERIAL_ECHOLN(positionInTicks); SERIAL_ECHOPGM("New zero-offset of "); SERIAL_ECHOLN(zeroOffset); SERIAL_ECHOPGM("New position reads as "); SERIAL_ECHO(get_position()); SERIAL_CHAR('('); SERIAL_ECHO(mm_from_count(get_position())); SERIAL_ECHOLNPGM(")"); #endif } */ return; } lastPosition = position; const millis_t positionTime = millis(); //only do error correction if setup and enabled if (ec && ecMethod != I2CPE_ECM_NONE) { #ifdef I2CPE_EC_THRESH_PROPORTIONAL const millis_t deltaTime = positionTime - lastPositionTime; const uint32_t distance = abs(position - lastPosition), speed = distance / deltaTime; const float threshold = constrain((speed / 50), 1, 50) * ecThreshold; #else const float threshold = get_error_correct_threshold(); #endif //check error #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) float sum = 0, diffSum = 0; errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1; err[errIdx] = get_axis_error_steps(false); LOOP_L_N(i, I2CPE_ERR_ARRAY_SIZE) { sum += err[i]; if (i) diffSum += abs(err[i-1] - err[i]); } const int32_t error = int32_t(sum / (I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error #else const int32_t error = get_axis_error_steps(false); #endif //SERIAL_ECHOPGM("Axis error steps: "); //SERIAL_ECHOLN(error); #ifdef I2CPE_ERR_THRESH_ABORT if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) { //kill("Significant Error"); SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!"); SERIAL_ECHOLN(error); safe_delay(5000); } #endif #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) if (errIdx == 0) { // in order to correct for "error" but avoid correcting for noise and non skips // it must be > threshold and have a difference average of < 10 and be < 2000 steps if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] && diffSum < 10 * (I2CPE_ERR_ARRAY_SIZE - 1) && labs(error) < 2000) { //Check for persistent error (skip) SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHOPAIR(" diffSum: ", diffSum / (I2CPE_ERR_ARRAY_SIZE - 1)); SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]); SERIAL_ECHOLNPGM("mm; correcting!"); thermalManager.babystepsTodo[encoderAxis] = -LROUND(error); } } #else if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) { //SERIAL_ECHOLN(error); //SERIAL_ECHOLN(position); thermalManager.babystepsTodo[encoderAxis] = -LROUND(error/2); } #endif if (labs(error) > I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) { const millis_t ms = millis(); if (ELAPSED(ms, nextErrorCountTime)) { SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]); SERIAL_ECHOPAIR(" axis. error: ", (int)error); SERIAL_ECHOLNPAIR("; diffSum: ", diffSum); errorCount++; nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS; } } } lastPositionTime = positionTime; } void I2CPositionEncoder::set_homed() { if (active) { reset(); // Reset module's offset to zero (so current position is homed / zero) delay(10); zeroOffset = get_raw_count(); homed++; trusted++; #ifdef I2CPE_DEBUG SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset); SERIAL_ECHOLNPGM(" ticks."); #endif } } bool I2CPositionEncoder::passes_test(const bool report) { if (report) { if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. "); SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHOPGM(" axis "); serialprintPGM(H == I2CPE_MAG_SIG_BAD ? PSTR("magnetic strip ") : PSTR("encoder ")); switch (H) { case I2CPE_MAG_SIG_GOOD: case I2CPE_MAG_SIG_MID: SERIAL_ECHOLNPGM("passes test; field strength "); serialprintPGM(H == I2CPE_MAG_SIG_GOOD ? PSTR("good.\n") : PSTR("fair.\n")); break; default: SERIAL_ECHOLNPGM("not detected!"); } } return (H == I2CPE_MAG_SIG_GOOD || H == I2CPE_MAG_SIG_MID); } float I2CPositionEncoder::get_axis_error_mm(const bool report) { float target, actual, error; target = stepper.get_axis_position_mm(encoderAxis); actual = mm_from_count(position); error = actual - target; if (labs(error) > 10000) error = 0; // ? if (report) { SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHOPAIR(" axis target: ", target); SERIAL_ECHOPAIR(", actual: ", actual); SERIAL_ECHOLNPAIR(", error : ",error); } return error; } int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) { if (!active) { if (report) { SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHOLNPGM(" axis encoder not active!"); } return 0; } float stepperTicksPerUnit; int32_t encoderTicks = position, encoderCountInStepperTicksScaled; //int32_t stepperTicks = stepper.position(encoderAxis); // With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis]; //convert both 'ticks' into same units / base encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit); int32_t target = stepper.position(encoderAxis), error = (encoderCountInStepperTicksScaled - target); //suppress discontinuities (might be caused by bad I2C readings...?) bool suppressOutput = (labs(error - errorPrev) > 100); if (report) { SERIAL_ECHO(axis_codes[encoderAxis]); SERIAL_ECHOPAIR(" axis target: ", target); SERIAL_ECHOPAIR(", actual: ", encoderCountInStepperTicksScaled); SERIAL_ECHOLNPAIR(", error : ", error); if (suppressOutput) SERIAL_ECHOLNPGM("Discontinuity detected, suppressing error."); } errorPrev = error; return (suppressOutput ? 0 : error); } int32_t I2CPositionEncoder::get_raw_count() { uint8_t index = 0; i2cLong encoderCount; encoderCount.val = 0x00; if (Wire.requestFrom((int)i2cAddress, 3) != 3) { //houston, we have a problem... H = I2CPE_MAG_SIG_NF; return 0; } while (Wire.available()) encoderCount.bval[index++] = (uint8_t)Wire.read(); //extract the magnetic strength H = (B00000011 & (encoderCount.bval[2] >> 6)); //extract sign bit; sign = (encoderCount.bval[2] & B00100000); //set all upper bits to the sign value to overwrite H encoderCount.val = (encoderCount.bval[2] & B00100000) ? (encoderCount.val | 0xFFC00000) : (encoderCount.val & 0x003FFFFF); if (invert) encoderCount.val *= -1; return encoderCount.val; } bool I2CPositionEncoder::test_axis() { //only works on XYZ cartesian machines for the time being if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false; float startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 }; const float startPosition = soft_endstop_min[encoderAxis] + 10, endPosition = soft_endstop_max[encoderAxis] - 10, feedrate = FLOOR(MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY)); ec = false; LOOP_NA(i) { startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i); endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i); } startCoord[encoderAxis] = startPosition; endCoord[encoderAxis] = endPosition; stepper.synchronize(); planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS], stepper.get_axis_position_mm(E_AXIS), feedrate, 0); stepper.synchronize(); // if the module isn't currently trusted, wait until it is (or until it should be if things are working) if (!trusted) { int32_t startWaitingTime = millis(); while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED) safe_delay(500); } if (trusted) { // if trusted, commence test planner.buffer_line(endCoord[X_AXIS], endCoord[Y_AXIS], endCoord[Z_AXIS], stepper.get_axis_position_mm(E_AXIS), feedrate, 0); stepper.synchronize(); } return trusted; } void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) { if (type != I2CPE_ENC_TYPE_LINEAR) { SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders."); return; } if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) { SERIAL_ECHOLNPGM("Automatic steps / mm calibration not supported for this axis."); return; } float old_steps_mm, new_steps_mm, startDistance, endDistance, travelDistance, travelledDistance, total = 0, startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 }; float feedrate; int32_t startCount, stopCount; feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY); bool oldec = ec; ec = false; startDistance = 20; endDistance = soft_endstop_max[encoderAxis] - 20; travelDistance = endDistance - startDistance; LOOP_NA(i) { startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i); endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i); } startCoord[encoderAxis] = startDistance; endCoord[encoderAxis] = endDistance; LOOP_L_N(i, iter) { stepper.synchronize(); planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS], stepper.get_axis_position_mm(E_AXIS), feedrate, 0); stepper.synchronize(); delay(250); startCount = get_position(); //do_blocking_move_to(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS]); planner.buffer_line(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS], stepper.get_axis_position_mm(E_AXIS), feedrate, 0); stepper.synchronize(); //Read encoder distance delay(250); stopCount = get_position(); travelledDistance = mm_from_count(abs(stopCount - startCount)); SERIAL_ECHOPAIR("Attempted to travel: ", travelDistance); SERIAL_ECHOLNPGM("mm."); SERIAL_ECHOPAIR("Actually travelled: ", travelledDistance); SERIAL_ECHOLNPGM("mm."); //Calculate new axis steps per unit old_steps_mm = planner.axis_steps_per_mm[encoderAxis]; new_steps_mm = (old_steps_mm * travelDistance) / travelledDistance; SERIAL_ECHOLNPAIR("Old steps per mm: ", old_steps_mm); SERIAL_ECHOLNPAIR("New steps per mm: ", new_steps_mm); //Save new value planner.axis_steps_per_mm[encoderAxis] = new_steps_mm; if (iter > 1) { total += new_steps_mm; // swap start and end points so next loop runs from current position float tempCoord = startCoord[encoderAxis]; startCoord[encoderAxis] = endCoord[encoderAxis]; endCoord[encoderAxis] = tempCoord; } } if (iter > 1) { total /= (float)iter; SERIAL_ECHOLNPAIR("Average steps per mm: ", total); } ec = oldec; SERIAL_ECHOLNPGM("Calculated steps per mm has been set. Please save to EEPROM (M500) if you wish to keep these values."); } void I2CPositionEncoder::reset() { Wire.beginTransmission(i2cAddress); Wire.write(I2CPE_RESET_COUNT); Wire.endTransmission(); #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) ZERO(err); #endif } bool I2CPositionEncodersMgr::I2CPE_anyaxis; uint8_t I2CPositionEncodersMgr::I2CPE_addr, I2CPositionEncodersMgr::I2CPE_idx; I2CPositionEncoder I2CPositionEncodersMgr::encoders[I2CPE_ENCODER_CNT]; void I2CPositionEncodersMgr::init() { Wire.begin(); #if I2CPE_ENCODER_CNT > 0 uint8_t i = 0; encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS); #ifdef I2CPE_ENC_1_TYPE encoders[i].set_type(I2CPE_ENC_1_TYPE); #endif #ifdef I2CPE_ENC_1_TICKS_UNIT encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT); #endif #ifdef I2CPE_ENC_1_TICKS_REV encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV); #endif #ifdef I2CPE_ENC_1_INVERT encoders[i].set_inverted(I2CPE_ENC_1_INVERT); #endif #ifdef I2CPE_ENC_1_EC_METHOD encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD); #endif #ifdef I2CPE_ENC_1_EC_THRESH encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH); #endif encoders[i].set_active(encoders[i].passes_test(true)); #if I2CPE_ENC_1_AXIS == E_AXIS encoders[i].set_homed(); #endif #endif #if I2CPE_ENCODER_CNT > 1 i++; encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS); #ifdef I2CPE_ENC_2_TYPE encoders[i].set_type(I2CPE_ENC_2_TYPE); #endif #ifdef I2CPE_ENC_2_TICKS_UNIT encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT); #endif #ifdef I2CPE_ENC_2_TICKS_REV encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV); #endif #ifdef I2CPE_ENC_2_INVERT encoders[i].set_inverted(I2CPE_ENC_2_INVERT); #endif #ifdef I2CPE_ENC_2_EC_METHOD encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD); #endif #ifdef I2CPE_ENC_2_EC_THRESH encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH); #endif encoders[i].set_active(encoders[i].passes_test(true)); #if I2CPE_ENC_2_AXIS == E_AXIS encoders[i].set_homed(); #endif #endif #if I2CPE_ENCODER_CNT > 2 i++; encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS); #ifdef I2CPE_ENC_3_TYPE encoders[i].set_type(I2CPE_ENC_3_TYPE); #endif #ifdef I2CPE_ENC_3_TICKS_UNIT encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT); #endif #ifdef I2CPE_ENC_3_TICKS_REV encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV); #endif #ifdef I2CPE_ENC_3_INVERT encoders[i].set_inverted(I2CPE_ENC_3_INVERT); #endif #ifdef I2CPE_ENC_3_EC_METHOD encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD); #endif #ifdef I2CPE_ENC_3_EC_THRESH encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH); #endif encoders[i].set_active(encoders[i].passes_test(true)); #if I2CPE_ENC_3_AXIS == E_AXIS encoders[i].set_homed(); #endif #endif #if I2CPE_ENCODER_CNT > 3 i++; encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS); #ifdef I2CPE_ENC_4_TYPE encoders[i].set_type(I2CPE_ENC_4_TYPE); #endif #ifdef I2CPE_ENC_4_TICKS_UNIT encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT); #endif #ifdef I2CPE_ENC_4_TICKS_REV encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV); #endif #ifdef I2CPE_ENC_4_INVERT encoders[i].set_inverted(I2CPE_ENC_4_INVERT); #endif #ifdef I2CPE_ENC_4_EC_METHOD encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD); #endif #ifdef I2CPE_ENC_4_EC_THRESH encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH); #endif encoders[i].set_active(encoders[i].passes_test(true)); #if I2CPE_ENC_4_AXIS == E_AXIS encoders[i].set_homed(); #endif #endif #if I2CPE_ENCODER_CNT > 4 i++; encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS); #ifdef I2CPE_ENC_5_TYPE encoders[i].set_type(I2CPE_ENC_5_TYPE); #endif #ifdef I2CPE_ENC_5_TICKS_UNIT encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT); #endif #ifdef I2CPE_ENC_5_TICKS_REV encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV); #endif #ifdef I2CPE_ENC_5_INVERT encoders[i].set_inverted(I2CPE_ENC_5_INVERT); #endif #ifdef I2CPE_ENC_5_EC_METHOD encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD); #endif #ifdef I2CPE_ENC_5_EC_THRESH encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH); #endif encoders[i].set_active(encoders[i].passes_test(true)); #if I2CPE_ENC_5_AXIS == E_AXIS encoders[i].set_homed(); #endif #endif } void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units, const bool noOffset) { CHECK_IDX(); if (units) SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm()); else { if (noOffset) { const int32_t raw_count = encoders[idx].get_raw_count(); SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]); SERIAL_CHAR(' '); for (uint8_t j = 31; j > 0; j--) SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j))); SERIAL_ECHO((bool)(0x00000001 & raw_count)); SERIAL_CHAR(' '); SERIAL_ECHOLN(raw_count); } else SERIAL_ECHOLN(encoders[idx].get_position()); } } void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const uint8_t newaddr) { // First check 'new' address is not in use Wire.beginTransmission(newaddr); if (!Wire.endTransmission()) { SERIAL_ECHOPAIR("?There is already a device with that address on the I2C bus! (", newaddr); SERIAL_ECHOLNPGM(")"); return; } // Now check that we can find the module on the oldaddr address Wire.beginTransmission(oldaddr); if (Wire.endTransmission()) { SERIAL_ECHOPAIR("?No module detected at this address! (", oldaddr); SERIAL_ECHOLNPGM(")"); return; } SERIAL_ECHOPAIR("Module found at ", oldaddr); SERIAL_ECHOLNPAIR(", changing address to ", newaddr); // Change the modules address Wire.beginTransmission(oldaddr); Wire.write(I2CPE_SET_ADDR); Wire.write(newaddr); Wire.endTransmission(); SERIAL_ECHOLNPGM("Address changed, resetting and waiting for confirmation.."); // Wait for the module to reset (can probably be improved by polling address with a timeout). safe_delay(I2CPE_REBOOT_TIME); // Look for the module at the new address. Wire.beginTransmission(newaddr); if (Wire.endTransmission()) { SERIAL_ECHOLNPGM("Address change failed! Check encoder module."); return; } SERIAL_ECHOLNPGM("Address change successful!"); // Now, if this module is configured, find which encoder instance it's supposed to correspond to // and enable it (it will likely have failed initialisation on power-up, before the address change). const int8_t idx = idx_from_addr(newaddr); if (idx >= 0 && !encoders[idx].get_active()) { SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]); SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again."); encoders[idx].set_active(encoders[idx].passes_test(true)); } } void I2CPositionEncodersMgr::report_module_firmware(const uint8_t address) { // First check there is a module Wire.beginTransmission(address); if (Wire.endTransmission()) { SERIAL_ECHOPAIR("?No module detected at this address! (", address); SERIAL_ECHOLNPGM(")"); return; } SERIAL_ECHOPAIR("Requesting version info from module at address ", address); SERIAL_ECHOLNPGM(":"); Wire.beginTransmission(address); Wire.write(I2CPE_SET_REPORT_MODE); Wire.write(I2CPE_REPORT_VERSION); Wire.endTransmission(); // Read value if (Wire.requestFrom((int)address, 32)) { char c; while (Wire.available() > 0 && (c = (char)Wire.read()) > 0) SERIAL_ECHO(c); SERIAL_EOL(); } // Set module back to normal (distance) mode Wire.beginTransmission(address); Wire.write(I2CPE_SET_REPORT_MODE); Wire.write(I2CPE_REPORT_DISTANCE); Wire.endTransmission(); } int8_t I2CPositionEncodersMgr::parse() { I2CPE_addr = 0; if (parser.seen('A')) { if (!parser.has_value()) { SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]"); return I2CPE_PARSE_ERR; }; I2CPE_addr = parser.value_byte(); if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55 SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]"); return I2CPE_PARSE_ERR; } I2CPE_idx = idx_from_addr(I2CPE_addr); if (I2CPE_idx >= I2CPE_ENCODER_CNT) { SERIAL_PROTOCOLLNPGM("?No device with this address!"); return I2CPE_PARSE_ERR; } } else if (parser.seenval('I')) { if (!parser.has_value()) { SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1); SERIAL_PROTOCOLLNPGM("]"); return I2CPE_PARSE_ERR; }; I2CPE_idx = parser.value_byte(); if (I2CPE_idx >= I2CPE_ENCODER_CNT) { SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1); SERIAL_ECHOLNPGM("]"); return I2CPE_PARSE_ERR; } I2CPE_addr = encoders[I2CPE_idx].get_address(); } else I2CPE_idx = 0xFF; I2CPE_anyaxis = parser.seen_axis(); return I2CPE_PARSE_OK; }; /** * M860: Report the position(s) of position encoder module(s). * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1] * O Include homed zero-offset in returned position. * U Units in mm or raw step count. * * If A or I not specified: * X Report on X axis encoder, if present. * Y Report on Y axis encoder, if present. * Z Report on Z axis encoder, if present. * E Report on E axis encoder, if present. * */ void I2CPositionEncodersMgr::M860() { if (parse()) return; const bool hasU = parser.seen('U'), hasO = parser.seen('O'); if (I2CPE_idx == 0xFF) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) report_position(idx, hasU, hasO); } } } else report_position(I2CPE_idx, hasU, hasO); } /** * M861: Report the status of position encoder modules. * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1] * * If A or I not specified: * X Report on X axis encoder, if present. * Y Report on Y axis encoder, if present. * Z Report on Z axis encoder, if present. * E Report on E axis encoder, if present. * */ void I2CPositionEncodersMgr::M861() { if (parse()) return; if (I2CPE_idx == 0xFF) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) report_status(idx); } } } else report_status(I2CPE_idx); } /** * M862: Perform an axis continuity test for position encoder * modules. * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1] * * If A or I not specified: * X Report on X axis encoder, if present. * Y Report on Y axis encoder, if present. * Z Report on Z axis encoder, if present. * E Report on E axis encoder, if present. * */ void I2CPositionEncodersMgr::M862() { if (parse()) return; if (I2CPE_idx == 0xFF) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) test_axis(idx); } } } else test_axis(I2CPE_idx); } /** * M863: Perform steps-per-mm calibration for * position encoder modules. * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1] * P Number of rePeats/iterations. * * If A or I not specified: * X Report on X axis encoder, if present. * Y Report on Y axis encoder, if present. * Z Report on Z axis encoder, if present. * E Report on E axis encoder, if present. * */ void I2CPositionEncodersMgr::M863() { if (parse()) return; const uint8_t iterations = constrain(parser.byteval('P', 1), 1, 10); if (I2CPE_idx == 0xFF) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations); } } } else calibrate_steps_mm(I2CPE_idx, iterations); } /** * M864: Change position encoder module I2C address. * * A Module current/old I2C address. If not present, * assumes default address (030). [30, 200]. * S Module new I2C address. [30, 200]. * * If S is not specified: * X Use I2CPE_PRESET_ADDR_X (030). * Y Use I2CPE_PRESET_ADDR_Y (031). * Z Use I2CPE_PRESET_ADDR_Z (032). * E Use I2CPE_PRESET_ADDR_E (033). */ void I2CPositionEncodersMgr::M864() { uint8_t newAddress; if (parse()) return; if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X; if (parser.seen('S')) { if (!parser.has_value()) { SERIAL_PROTOCOLLNPGM("?S seen, but no address specified! [30-200]"); return; }; newAddress = parser.value_byte(); if (!WITHIN(newAddress, 30, 200)) { SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]"); return; } } else if (!I2CPE_anyaxis) { SERIAL_PROTOCOLLNPGM("?You must specify S or [XYZE]."); return; } else { if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X; else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y; else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z; else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E; else return; } SERIAL_ECHOPAIR("Changing module at address ", I2CPE_addr); SERIAL_ECHOLNPAIR(" to address ", newAddress); change_module_address(I2CPE_addr, newAddress); } /** * M865: Check position encoder module firmware version. * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1]. * * If A or I not specified: * X Check X axis encoder, if present. * Y Check Y axis encoder, if present. * Z Check Z axis encoder, if present. * E Check E axis encoder, if present. */ void I2CPositionEncodersMgr::M865() { if (parse()) return; if (!I2CPE_addr) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address()); } } } else report_module_firmware(I2CPE_addr); } /** * M866: Report or reset position encoder module error * count. * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1]. * R Reset error counter. * * If A or I not specified: * X Act on X axis encoder, if present. * Y Act on Y axis encoder, if present. * Z Act on Z axis encoder, if present. * E Act on E axis encoder, if present. */ void I2CPositionEncodersMgr::M866() { if (parse()) return; const bool hasR = parser.seen('R'); if (I2CPE_idx == 0xFF) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) { if (hasR) reset_error_count(idx, AxisEnum(i)); else report_error_count(idx, AxisEnum(i)); } } } } else if (hasR) reset_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis()); else report_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis()); } /** * M867: Enable/disable or toggle error correction for position encoder modules. * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1]. * S<1|0> Enable/disable error correction. 1 enables, 0 disables. If not * supplied, toggle. * * If A or I not specified: * X Act on X axis encoder, if present. * Y Act on Y axis encoder, if present. * Z Act on Z axis encoder, if present. * E Act on E axis encoder, if present. */ void I2CPositionEncodersMgr::M867() { if (parse()) return; const int8_t onoff = parser.seenval('S') ? parser.value_int() : -1; if (I2CPE_idx == 0xFF) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) { const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff; enable_ec(idx, ena, AxisEnum(i)); } } } } else { const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff; enable_ec(I2CPE_idx, ena, encoders[I2CPE_idx].get_axis()); } } /** * M868: Report or set position encoder module error correction * threshold. * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1]. * T New error correction threshold. * * If A not specified: * X Act on X axis encoder, if present. * Y Act on Y axis encoder, if present. * Z Act on Z axis encoder, if present. * E Act on E axis encoder, if present. */ void I2CPositionEncodersMgr::M868() { if (parse()) return; const float newThreshold = parser.seenval('T') ? parser.value_float() : -9999; if (I2CPE_idx == 0xFF) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) { if (newThreshold != -9999) set_ec_threshold(idx, newThreshold, encoders[idx].get_axis()); else get_ec_threshold(idx, encoders[idx].get_axis()); } } } } else if (newThreshold != -9999) set_ec_threshold(I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis()); else get_ec_threshold(I2CPE_idx, encoders[I2CPE_idx].get_axis()); } /** * M869: Report position encoder module error. * * A Module I2C address. [30, 200]. * I Module index. [0, I2CPE_ENCODER_CNT - 1]. * * If A not specified: * X Act on X axis encoder, if present. * Y Act on Y axis encoder, if present. * Z Act on Z axis encoder, if present. * E Act on E axis encoder, if present. */ void I2CPositionEncodersMgr::M869() { if (parse()) return; if (I2CPE_idx == 0xFF) { LOOP_XYZE(i) { if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) { const uint8_t idx = idx_from_axis(AxisEnum(i)); if ((int8_t)idx >= 0) report_error(idx); } } } else report_error(I2CPE_idx); } #endif // I2C_POSITION_ENCODERS