/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * * About Marlin * * This firmware is a mashup between Sprinter and grbl. * - https://github.com/kliment/Sprinter * - https://github.com/simen/grbl/tree * * It has preliminary support for Matthew Roberts advance algorithm * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include "Marlin.h" #if ENABLED(AUTO_BED_LEVELING_FEATURE) #include "vector_3.h" #if ENABLED(AUTO_BED_LEVELING_GRID) #include "qr_solve.h" #endif #endif // AUTO_BED_LEVELING_FEATURE #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif #if ENABLED(BEZIER_CURVE_SUPPORT) #include "planner_bezier.h" #endif #include "ultralcd.h" #include "planner.h" #include "stepper.h" #include "endstops.h" #include "temperature.h" #include "cardreader.h" #include "configuration_store.h" #include "language.h" #include "pins_arduino.h" #include "math.h" #if ENABLED(USE_WATCHDOG) #include "watchdog.h" #endif #if ENABLED(BLINKM) #include "blinkm.h" #include "Wire.h" #endif #if HAS_SERVOS #include "servo.h" #endif #if HAS_DIGIPOTSS #include #endif #if ENABLED(DAC_STEPPER_CURRENT) #include "stepper_dac.h" #endif #if ENABLED(EXPERIMENTAL_I2CBUS) #include "twibus.h" #endif /** * Look here for descriptions of G-codes: * - http://linuxcnc.org/handbook/gcode/g-code.html * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes * * Help us document these G-codes online: * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin * - http://reprap.org/wiki/G-code * * ----------------- * Implemented Codes * ----------------- * * "G" Codes * * G0 -> G1 * G1 - Coordinated Movement X Y Z E * G2 - CW ARC * G3 - CCW ARC * G4 - Dwell S or P * G5 - Cubic B-spline with XYZE destination and IJPQ offsets * G10 - retract filament according to settings of M207 * G11 - retract recover filament according to settings of M208 * G20 - Set input units to inches * G21 - Set input units to millimeters * G28 - Home one or more axes * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. * G30 - Single Z probe, probes bed at current XY location. * G31 - Dock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only) * G90 - Use Absolute Coordinates * G91 - Use Relative Coordinates * G92 - Set current position to coordinates given * * "M" Codes * * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) * M1 - Same as M0 * M17 - Enable/Power all stepper motors * M18 - Disable all stepper motors; same as M84 * M20 - List SD card * M21 - Init SD card * M22 - Release SD card * M23 - Select SD file (M23 filename.g) * M24 - Start/resume SD print * M25 - Pause SD print * M26 - Set SD position in bytes (M26 S12345) * M27 - Report SD print status * M28 - Start SD write (M28 filename.g) * M29 - Stop SD write * M30 - Delete file from SD (M30 filename.g) * M31 - Output time since last M109 or SD card start to serial * M32 - Select file and start SD print (Can be used _while_ printing from SD card files): * syntax "M32 /path/filename#", or "M32 S !filename#" * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include). * The '#' is necessary when calling from within sd files, as it stops buffer prereading * M33 - Get the longname version of a path * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel] * M75 - Start the print job timer * M76 - Pause the print job timer * M77 - Stop the print job timer * M78 - Show statistical information about the print jobs * M80 - Turn on Power Supply * M81 - Turn off Power Supply * M82 - Set E codes absolute (default) * M83 - Set E codes relative while in Absolute Coordinates (G90) mode * M84 - Disable steppers until next move, * or use S to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. * M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) * M92 - Set planner.axis_steps_per_mm - same syntax as G92 * M104 - Set extruder target temp * M105 - Read current temp * M106 - Fan on * M107 - Fan off * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling * IF AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F * M110 - Set the current line number * M111 - Set debug flags with S. See flag bits defined in Marlin.h. * M112 - Emergency stop * M113 - Get or set the timeout interval for Host Keepalive "busy" messages * M114 - Output current position to serial port * M115 - Capabilities string * M117 - Display a message on the controller screen * M119 - Output Endstop status to serial port * M120 - Enable endstop detection * M121 - Disable endstop detection * M126 - Solenoid Air Valve Open (BariCUDA support by jmil) * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) * M140 - Set bed target temp * M145 - Set the heatup state H B F for S (0=PLA, 1=ABS) * M149 - Set temperature units * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling * M200 - Set filament diameter, D, setting E axis units to cubic. (Use S0 to revert to linear units.) * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2 * M205 - Set advanced settings. Current units apply: S T minimum speeds B X, Z, E * M206 - Set additional homing offset * M207 - Set Retract Length: S, Feedrate: F, and Z lift: Z * M208 - Set Recover (unretract) Additional (!) Length: S and Feedrate: F * M209 - Turn Automatic Retract Detection on/off: S (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction. * M218 - Set a tool offset: T X Y * M220 - Set Feedrate Percentage: S ("FR" on your LCD) * M221 - Set Flow Percentage: S * M226 - Wait until the specified pin reaches the state required: P S * M240 - Trigger a camera to take a photograph * M250 - Set LCD contrast C (value 0..63) * M280 - Set servo position absolute. P: servo index, S: angle or microseconds * M300 - Play beep sound S P * M301 - Set PID parameters P I and D * M302 - Allow cold extrudes, or set the minimum extrude S. * M303 - PID relay autotune S sets the target temperature. (default target temperature = 150C) * M304 - Set bed PID parameters P I and D * M380 - Activate solenoid on active extruder * M381 - Disable all solenoids * M400 - Finish all moves * M401 - Lower Z probe if present * M402 - Raise Z probe if present * M404 - Display or set the Nominal Filament Width: [ N ] * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D * M406 - Disable Filament Sensor extrusion control * M407 - Display measured filament diameter in millimeters * M410 - Quickstop. Abort all the planned moves * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable * M421 - Set a single Z coordinate in the Mesh Leveling grid. X Y Z * M428 - Set the home_offset logically based on the current_position * M500 - Store parameters in EEPROM * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily). * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] * M665 - Set delta configurations: L R S * M666 - Set delta endstop adjustment * M605 - Set dual x-carriage movement mode: S [ X R ] * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.) * M907 - Set digital trimpot motor current using axis codes. * M908 - Control digital trimpot directly. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C * M350 - Set microstepping mode. * M351 - Toggle MS1 MS2 pins directly. * * ************ SCARA Specific - This can change to suit future G-code regulations * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration) * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration) * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree) * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position) * M365 - SCARA calibration: Scaling factor, X, Y, Z axis * ************* SCARA End *************** * * ************ Custom codes - This can change to suit future G-code regulations * M100 - Watch Free Memory (For Debugging Only) * M928 - Start SD logging (M928 filename.g) - ended by M29 * M999 - Restart after being stopped by error * * "T" Codes * * T0-T3 - Select a tool by index (usually an extruder) [ F ] * */ #if ENABLED(M100_FREE_MEMORY_WATCHER) void gcode_M100(); #endif #if ENABLED(SDSUPPORT) CardReader card; #endif #if ENABLED(EXPERIMENTAL_I2CBUS) TWIBus i2c; #endif bool Running = true; uint8_t marlin_debug_flags = DEBUG_NONE; static float feedrate = 1500.0, saved_feedrate; float current_position[NUM_AXIS] = { 0.0 }; static float destination[NUM_AXIS] = { 0.0 }; bool axis_known_position[3] = { false }; bool axis_homed[3] = { false }; static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0; static char command_queue[BUFSIZE][MAX_CMD_SIZE]; static char* current_command, *current_command_args; static uint8_t cmd_queue_index_r = 0, cmd_queue_index_w = 0, commands_in_queue = 0; #if ENABLED(INCH_MODE_SUPPORT) float linear_unit_factor = 1.0; float volumetric_unit_factor = 1.0; #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) TempUnit input_temp_units = TEMPUNIT_C; #endif const float homing_feedrate[] = HOMING_FEEDRATE; bool axis_relative_modes[] = AXIS_RELATIVE_MODES; int feedrate_multiplier = 100; //100->1 200->2 int saved_feedrate_multiplier; int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); bool volumetric_enabled = false; float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA); float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0); // The distance that XYZ has been offset by G92. Reset by G28. float position_shift[3] = { 0 }; // This offset is added to the configured home position. // Set by M206, M428, or menu item. Saved to EEPROM. float home_offset[3] = { 0 }; #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS)) // Software Endstops. Default to configured limits. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; #if FAN_COUNT > 0 int fanSpeeds[FAN_COUNT] = { 0 }; #endif // The active extruder (tool). Set with T command. uint8_t active_extruder = 0; // Relative Mode. Enable with G91, disable with G90. static bool relative_mode = false; volatile bool wait_for_heatup = true; const char errormagic[] PROGMEM = "Error:"; const char echomagic[] PROGMEM = "echo:"; const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; static int serial_count = 0; // GCode parameter pointer used by code_seen(), code_value_float(), etc. static char* seen_pointer; // Next Immediate GCode Command pointer. NULL if none. const char* queued_commands_P = NULL; const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42 // Inactivity shutdown millis_t previous_cmd_ms = 0; static millis_t max_inactive_time = 0; static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL; // Print Job Timer #if ENABLED(PRINTCOUNTER) PrintCounter print_job_timer = PrintCounter(); #else Stopwatch print_job_timer = Stopwatch(); #endif // Buzzer #if HAS_BUZZER #if ENABLED(SPEAKER) Speaker buzzer; #else Buzzer buzzer; #endif #endif static uint8_t target_extruder; #if HAS_BED_PROBE float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS])) #if ENABLED(AUTO_BED_LEVELING_FEATURE) int xy_probe_speed = XY_PROBE_SPEED; bool bed_leveling_in_progress = false; #define XY_PROBE_FEEDRATE xy_probe_speed #elif defined(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE XY_PROBE_SPEED #else #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60) #endif #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA) float z_endstop_adj = 0; #endif // Extruder offsets #if HOTENDS > 1 #ifndef HOTEND_OFFSET_X #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder #endif #ifndef HOTEND_OFFSET_Y #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder #endif float hotend_offset[][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y #if ENABLED(DUAL_X_CARRIAGE) , { 0 } // Z offsets for each extruder #endif }; #endif #if HAS_Z_SERVO_ENDSTOP const int z_servo_angle[2] = Z_SERVO_ANGLES; #endif #if ENABLED(BARICUDA) int baricuda_valve_pressure = 0; int baricuda_e_to_p_pressure = 0; #endif #if ENABLED(FWRETRACT) bool autoretract_enabled = false; bool retracted[EXTRUDERS] = { false }; bool retracted_swap[EXTRUDERS] = { false }; float retract_length = RETRACT_LENGTH; float retract_length_swap = RETRACT_LENGTH_SWAP; float retract_feedrate_mm_s = RETRACT_FEEDRATE; float retract_zlift = RETRACT_ZLIFT; float retract_recover_length = RETRACT_RECOVER_LENGTH; float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif // FWRETRACT #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH bool powersupply = #if ENABLED(PS_DEFAULT_OFF) false #else true #endif ; #endif #if ENABLED(DELTA) #define TOWER_1 X_AXIS #define TOWER_2 Y_AXIS #define TOWER_3 Z_AXIS float delta[3] = { 0 }; #define SIN_60 0.8660254037844386 #define COS_60 0.5 float endstop_adj[3] = { 0 }; // these are the default values, can be overriden with M665 float delta_radius = DELTA_RADIUS; float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); float delta_tower3_x = 0; // back middle tower float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3); float delta_diagonal_rod = DELTA_DIAGONAL_ROD; float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1; float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2; float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3; float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1); float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2); float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3); //float delta_diagonal_rod_2 = sq(delta_diagonal_rod); float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; #if ENABLED(AUTO_BED_LEVELING_FEATURE) int delta_grid_spacing[2] = { 0, 0 }; float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS]; #endif #else static bool home_all_axis = true; #endif #if ENABLED(SCARA) float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND; static float delta[3] = { 0 }; float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1 #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) //Variables for Filament Sensor input float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404 bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100 int filwidth_delay_index1 = 0; //index into ring buffer int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) static bool filament_ran_out = false; #endif #if ENABLED(FILAMENT_CHANGE_FEATURE) FilamentChangeMenuResponse filament_change_menu_response; #endif static bool send_ok[BUFSIZE]; #if HAS_SERVOS Servo servo[NUM_SERVOS]; #define MOVE_SERVO(I, P) servo[I].move(P) #if HAS_Z_SERVO_ENDSTOP #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0]) #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1]) #endif #endif #ifdef CHDK millis_t chdkHigh = 0; boolean chdkActive = false; #endif #if ENABLED(PID_ADD_EXTRUSION_RATE) int lpq_len = 20; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) // States for managing Marlin and host communication // Marlin sends messages if blocked or busy enum MarlinBusyState { NOT_BUSY, // Not in a handler IN_HANDLER, // Processing a GCode IN_PROCESS, // Known to be blocking command input (as in G29) PAUSED_FOR_USER, // Blocking pending any input PAUSED_FOR_INPUT // Blocking pending text input (concept) }; static MarlinBusyState busy_state = NOT_BUSY; static millis_t next_busy_signal_ms = 0; uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL; #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0) #else #define host_keepalive() ; #define KEEPALIVE_STATE(n) ; #endif // HOST_KEEPALIVE_FEATURE /** * *************************************************************************** * ******************************** FUNCTIONS ******************************** * *************************************************************************** */ void stop(); void get_available_commands(); void process_next_command(); void prepare_move_to_destination(); #if ENABLED(ARC_SUPPORT) void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise); #endif #if ENABLED(BEZIER_CURVE_SUPPORT) void plan_cubic_move(const float offset[4]); #endif void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } static void report_current_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) { serialprintPGM(prefix); SERIAL_ECHOPAIR("(", x); SERIAL_ECHOPAIR(", ", y); SERIAL_ECHOPAIR(", ", z); SERIAL_ECHOPGM(")"); serialprintPGM(suffix); } void print_xyz(const char* prefix,const char* suffix, const float xyz[]) { print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]); } #if ENABLED(AUTO_BED_LEVELING_FEATURE) void print_xyz(const char* prefix,const char* suffix, const vector_3 &xyz) { print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z); } #endif #define DEBUG_POS(SUFFIX,VAR) do{ print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0) #endif #if ENABLED(DELTA) || ENABLED(SCARA) inline void sync_plan_position_delta() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position); #endif calculate_delta(current_position); planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); } #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta() #else #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position() #endif #if ENABLED(SDSUPPORT) #include "SdFatUtil.h" int freeMemory() { return SdFatUtil::FreeRam(); } #else extern "C" { extern unsigned int __bss_end; extern unsigned int __heap_start; extern void* __brkval; int freeMemory() { int free_memory; if ((int)__brkval == 0) free_memory = ((int)&free_memory) - ((int)&__bss_end); else free_memory = ((int)&free_memory) - ((int)__brkval); return free_memory; } } #endif //!SDSUPPORT #if ENABLED(DIGIPOT_I2C) extern void digipot_i2c_set_current(int channel, float current); extern void digipot_i2c_init(); #endif /** * Inject the next "immediate" command, when possible. * Return true if any immediate commands remain to inject. */ static bool drain_queued_commands_P() { if (queued_commands_P != NULL) { size_t i = 0; char c, cmd[30]; strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1); cmd[sizeof(cmd) - 1] = '\0'; while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command cmd[i] = '\0'; if (enqueue_and_echo_command(cmd)) { // success? if (c) // newline char? queued_commands_P += i + 1; // advance to the next command else queued_commands_P = NULL; // nul char? no more commands } } return (queued_commands_P != NULL); // return whether any more remain } /** * Record one or many commands to run from program memory. * Aborts the current queue, if any. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards */ void enqueue_and_echo_commands_P(const char* pgcode) { queued_commands_P = pgcode; drain_queued_commands_P(); // first command executed asap (when possible) } void clear_command_queue() { cmd_queue_index_r = cmd_queue_index_w; commands_in_queue = 0; } /** * Once a new command is in the ring buffer, call this to commit it */ inline void _commit_command(bool say_ok) { send_ok[cmd_queue_index_w] = say_ok; cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE; commands_in_queue++; } /** * Copy a command directly into the main command buffer, from RAM. * Returns true if successfully adds the command */ inline bool _enqueuecommand(const char* cmd, bool say_ok=false) { if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false; strcpy(command_queue[cmd_queue_index_w], cmd); _commit_command(say_ok); return true; } void enqueue_and_echo_command_now(const char* cmd) { while (!enqueue_and_echo_command(cmd)) idle(); } /** * Enqueue with Serial Echo */ bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) { if (_enqueuecommand(cmd, say_ok)) { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_Enqueueing); SERIAL_ECHO(cmd); SERIAL_ECHOLNPGM("\""); return true; } return false; } void setup_killpin() { #if HAS_KILL SET_INPUT(KILL_PIN); WRITE(KILL_PIN, HIGH); #endif } #if ENABLED(FILAMENT_RUNOUT_SENSOR) void setup_filrunoutpin() { pinMode(FIL_RUNOUT_PIN, INPUT); #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT) WRITE(FIL_RUNOUT_PIN, HIGH); #endif } #endif // Set home pin void setup_homepin(void) { #if HAS_HOME SET_INPUT(HOME_PIN); WRITE(HOME_PIN, HIGH); #endif } void setup_photpin() { #if HAS_PHOTOGRAPH OUT_WRITE(PHOTOGRAPH_PIN, LOW); #endif } void setup_powerhold() { #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, HIGH); #endif #if HAS_POWER_SWITCH #if ENABLED(PS_DEFAULT_OFF) OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); #else OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); #endif #endif } void suicide() { #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, LOW); #endif } void servo_init() { #if NUM_SERVOS >= 1 && HAS_SERVO_0 servo[0].attach(SERVO0_PIN); servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position. #endif #if NUM_SERVOS >= 2 && HAS_SERVO_1 servo[1].attach(SERVO1_PIN); servo[1].detach(); #endif #if NUM_SERVOS >= 3 && HAS_SERVO_2 servo[2].attach(SERVO2_PIN); servo[2].detach(); #endif #if NUM_SERVOS >= 4 && HAS_SERVO_3 servo[3].attach(SERVO3_PIN); servo[3].detach(); #endif #if HAS_Z_SERVO_ENDSTOP /** * Set position of Z Servo Endstop * * The servo might be deployed and positioned too low to stow * when starting up the machine or rebooting the board. * There's no way to know where the nozzle is positioned until * homing has been done - no homing with z-probe without init! * */ STOW_Z_SERVO(); #endif #if HAS_BED_PROBE endstops.enable_z_probe(false); #endif } /** * Stepper Reset (RigidBoard, et.al.) */ #if HAS_STEPPER_RESET void disableStepperDrivers() { pinMode(STEPPER_RESET_PIN, OUTPUT); digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips } void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups #endif /** * Marlin entry-point: Set up before the program loop * - Set up the kill pin, filament runout, power hold * - Start the serial port * - Print startup messages and diagnostics * - Get EEPROM or default settings * - Initialize managers for: * • temperature * • planner * • watchdog * • stepper * • photo pin * • servos * • LCD controller * • Digipot I2C * • Z probe sled * • status LEDs */ void setup() { #ifdef DISABLE_JTAG // Disable JTAG on AT90USB chips to free up pins for IO MCUCR = 0x80; MCUCR = 0x80; #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) setup_filrunoutpin(); #endif setup_killpin(); setup_powerhold(); #if HAS_STEPPER_RESET disableStepperDrivers(); #endif MYSERIAL.begin(BAUDRATE); SERIAL_PROTOCOLLNPGM("start"); SERIAL_ECHO_START; // Check startup - does nothing if bootloader sets MCUSR to 0 byte mcu = MCUSR; if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP); if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET); if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET); if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET); if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET); MCUSR = 0; SERIAL_ECHOPGM(MSG_MARLIN); SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION); #ifdef STRING_DISTRIBUTION_DATE #ifdef STRING_CONFIG_H_AUTHOR SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_CONFIGURATION_VER); SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE); SERIAL_ECHOPGM(MSG_AUTHOR); SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR); SERIAL_ECHOPGM("Compiled: "); SERIAL_ECHOLNPGM(__DATE__); #endif // STRING_CONFIG_H_AUTHOR #endif // STRING_DISTRIBUTION_DATE SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_FREE_MEMORY); SERIAL_ECHO(freeMemory()); SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES); SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); // Send "ok" after commands by default for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true; // loads data from EEPROM if available else uses defaults (and resets step acceleration rate) Config_RetrieveSettings(); // Initialize current position based on home_offset memcpy(current_position, home_offset, sizeof(home_offset)); #if ENABLED(DELTA) || ENABLED(SCARA) // Vital to init kinematic equivalent for X0 Y0 Z0 SYNC_PLAN_POSITION_KINEMATIC(); #endif thermalManager.init(); // Initialize temperature loop #if ENABLED(USE_WATCHDOG) watchdog_init(); #endif stepper.init(); // Initialize stepper, this enables interrupts! setup_photpin(); servo_init(); #if HAS_CONTROLLERFAN SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan #endif #if HAS_STEPPER_RESET enableStepperDrivers(); #endif #if ENABLED(DIGIPOT_I2C) digipot_i2c_init(); #endif #if ENABLED(DAC_STEPPER_CURRENT) dac_init(); #endif #if ENABLED(Z_PROBE_SLED) pinMode(SLED_PIN, OUTPUT); digitalWrite(SLED_PIN, LOW); // turn it off #endif // Z_PROBE_SLED setup_homepin(); #ifdef STAT_LED_RED pinMode(STAT_LED_RED, OUTPUT); digitalWrite(STAT_LED_RED, LOW); // turn it off #endif #ifdef STAT_LED_BLUE pinMode(STAT_LED_BLUE, OUTPUT); digitalWrite(STAT_LED_BLUE, LOW); // turn it off #endif lcd_init(); #if ENABLED(SHOW_BOOTSCREEN) #if ENABLED(DOGLCD) delay(1000); #elif ENABLED(ULTRA_LCD) bootscreen(); lcd_init(); #endif #endif } /** * The main Marlin program loop * * - Save or log commands to SD * - Process available commands (if not saving) * - Call heater manager * - Call inactivity manager * - Call endstop manager * - Call LCD update */ void loop() { if (commands_in_queue < BUFSIZE) get_available_commands(); #if ENABLED(SDSUPPORT) card.checkautostart(false); #endif if (commands_in_queue) { #if ENABLED(SDSUPPORT) if (card.saving) { char* command = command_queue[cmd_queue_index_r]; if (strstr_P(command, PSTR("M29"))) { // M29 closes the file card.closefile(); SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED); ok_to_send(); } else { // Write the string from the read buffer to SD card.write_command(command); if (card.logging) process_next_command(); // The card is saving because it's logging else ok_to_send(); } } else process_next_command(); #else process_next_command(); #endif // SDSUPPORT // The queue may be reset by a command handler or by code invoked by idle() within a handler if (commands_in_queue) { --commands_in_queue; cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE; } } endstops.report_state(); idle(); } void gcode_line_error(const char* err, bool doFlush = true) { SERIAL_ERROR_START; serialprintPGM(err); SERIAL_ERRORLN(gcode_LastN); //Serial.println(gcode_N); if (doFlush) FlushSerialRequestResend(); serial_count = 0; } inline void get_serial_commands() { static char serial_line_buffer[MAX_CMD_SIZE]; static boolean serial_comment_mode = false; // If the command buffer is empty for too long, // send "wait" to indicate Marlin is still waiting. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 static millis_t last_command_time = 0; millis_t ms = millis(); if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) { SERIAL_ECHOLNPGM(MSG_WAIT); last_command_time = ms; } #endif /** * Loop while serial characters are incoming and the queue is not full */ while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) { char serial_char = MYSERIAL.read(); /** * If the character ends the line */ if (serial_char == '\n' || serial_char == '\r') { serial_comment_mode = false; // end of line == end of comment if (!serial_count) continue; // skip empty lines serial_line_buffer[serial_count] = 0; // terminate string serial_count = 0; //reset buffer char* command = serial_line_buffer; while (*command == ' ') command++; // skip any leading spaces char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line char* apos = strchr(command, '*'); if (npos) { boolean M110 = strstr_P(command, PSTR("M110")) != NULL; if (M110) { char* n2pos = strchr(command + 4, 'N'); if (n2pos) npos = n2pos; } gcode_N = strtol(npos + 1, NULL, 10); if (gcode_N != gcode_LastN + 1 && !M110) { gcode_line_error(PSTR(MSG_ERR_LINE_NO)); return; } if (apos) { byte checksum = 0, count = 0; while (command[count] != '*') checksum ^= command[count++]; if (strtol(apos + 1, NULL, 10) != checksum) { gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH)); return; } // if no errors, continue parsing } else { gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM)); return; } gcode_LastN = gcode_N; // if no errors, continue parsing } else if (apos) { // No '*' without 'N' gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false); return; } // Movement commands alert when stopped if (IsStopped()) { char* gpos = strchr(command, 'G'); if (gpos) { int codenum = strtol(gpos + 1, NULL, 10); switch (codenum) { case 0: case 1: case 2: case 3: SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); LCD_MESSAGEPGM(MSG_STOPPED); break; } } } #if DISABLED(EMERGENCY_PARSER) // If command was e-stop process now if (strcmp(command, "M108") == 0) wait_for_heatup = false; if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED)); if (strcmp(command, "M410") == 0) { quickstop_stepper(); } #endif #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 last_command_time = ms; #endif // Add the command to the queue _enqueuecommand(serial_line_buffer, true); } else if (serial_count >= MAX_CMD_SIZE - 1) { // Keep fetching, but ignore normal characters beyond the max length // The command will be injected when EOL is reached } else if (serial_char == '\\') { // Handle escapes if (MYSERIAL.available() > 0) { // if we have one more character, copy it over serial_char = MYSERIAL.read(); if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; } // otherwise do nothing } else { // it's not a newline, carriage return or escape char if (serial_char == ';') serial_comment_mode = true; if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; } } // queue has space, serial has data } #if ENABLED(SDSUPPORT) inline void get_sdcard_commands() { static bool stop_buffering = false, sd_comment_mode = false; if (!card.sdprinting) return; /** * '#' stops reading from SD to the buffer prematurely, so procedural * macro calls are possible. If it occurs, stop_buffering is triggered * and the buffer is run dry; this character _can_ occur in serial com * due to checksums, however, no checksums are used in SD printing. */ if (commands_in_queue == 0) stop_buffering = false; uint16_t sd_count = 0; bool card_eof = card.eof(); while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) { int16_t n = card.get(); char sd_char = (char)n; card_eof = card.eof(); if (card_eof || n == -1 || sd_char == '\n' || sd_char == '\r' || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode) ) { if (card_eof) { SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED); print_job_timer.stop(); char time[30]; millis_t t = print_job_timer.duration(); int hours = t / 60 / 60, minutes = (t / 60) % 60; sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes); SERIAL_ECHO_START; SERIAL_ECHOLN(time); lcd_setstatus(time, true); card.printingHasFinished(); card.checkautostart(true); } else if (n == -1) { SERIAL_ERROR_START; SERIAL_ECHOLNPGM(MSG_SD_ERR_READ); } if (sd_char == '#') stop_buffering = true; sd_comment_mode = false; //for new command if (!sd_count) continue; //skip empty lines command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string sd_count = 0; //clear buffer _commit_command(false); } else if (sd_count >= MAX_CMD_SIZE - 1) { /** * Keep fetching, but ignore normal characters beyond the max length * The command will be injected when EOL is reached */ } else { if (sd_char == ';') sd_comment_mode = true; if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char; } } } #endif // SDSUPPORT /** * Add to the circular command queue the next command from: * - The command-injection queue (queued_commands_P) * - The active serial input (usually USB) * - The SD card file being actively printed */ void get_available_commands() { // if any immediate commands remain, don't get other commands yet if (drain_queued_commands_P()) return; get_serial_commands(); #if ENABLED(SDSUPPORT) get_sdcard_commands(); #endif } inline bool code_has_value() { int i = 1; char c = seen_pointer[i]; while (c == ' ') c = seen_pointer[++i]; if (c == '-' || c == '+') c = seen_pointer[++i]; if (c == '.') c = seen_pointer[++i]; return NUMERIC(c); } inline float code_value_float() { float ret; char* e = strchr(seen_pointer, 'E'); if (e) { *e = 0; ret = strtod(seen_pointer + 1, NULL); *e = 'E'; } else ret = strtod(seen_pointer + 1, NULL); return ret; } inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); } inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); } inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); } inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); } inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); } inline bool code_value_bool() { return code_value_byte() > 0; } #if ENABLED(INCH_MODE_SUPPORT) inline void set_input_linear_units(LinearUnit units) { switch (units) { case LINEARUNIT_INCH: linear_unit_factor = 25.4; break; case LINEARUNIT_MM: default: linear_unit_factor = 1.0; break; } volumetric_unit_factor = pow(linear_unit_factor, 3.0); } inline float axis_unit_factor(int axis) { return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor); } inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; } inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); } inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); } #else inline float code_value_linear_units() { return code_value_float(); } inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); } inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); } #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) inline void set_input_temp_units(TempUnit units) { input_temp_units = units; } float code_value_temp_abs() { switch (input_temp_units) { case TEMPUNIT_C: return code_value_float(); case TEMPUNIT_F: return (code_value_float() - 32) / 1.8; case TEMPUNIT_K: return code_value_float() - 272.15; default: return code_value_float(); } } float code_value_temp_diff() { switch (input_temp_units) { case TEMPUNIT_C: case TEMPUNIT_K: return code_value_float(); case TEMPUNIT_F: return code_value_float() / 1.8; default: return code_value_float(); } } #else float code_value_temp_abs() { return code_value_float(); } float code_value_temp_diff() { return code_value_float(); } #endif FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); } inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; } bool code_seen(char code) { seen_pointer = strchr(current_command_args, code); return (seen_pointer != NULL); // Return TRUE if the code-letter was found } /** * Set target_extruder from the T parameter or the active_extruder * * Returns TRUE if the target is invalid */ bool get_target_extruder_from_command(int code) { if (code_seen('T')) { if (code_value_byte() >= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_CHAR('M'); SERIAL_ECHO(code); SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte()); SERIAL_EOL; return true; } target_extruder = code_value_byte(); } else target_extruder = active_extruder; return false; } #define DEFINE_PGM_READ_ANY(type, reader) \ static inline type pgm_read_any(const type *p) \ { return pgm_read_##reader##_near(p); } DEFINE_PGM_READ_ANY(float, float); DEFINE_PGM_READ_ANY(signed char, byte); #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ static const PROGMEM type array##_P[3] = \ { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ static inline type array(int axis) \ { return pgm_read_any(&array##_P[axis]); } XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM); XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); #if ENABLED(DUAL_X_CARRIAGE) #define DXC_FULL_CONTROL_MODE 0 #define DXC_AUTO_PARK_MODE 1 #define DXC_DUPLICATION_MODE 2 static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; static float x_home_pos(int extruder) { if (extruder == 0) return base_home_pos(X_AXIS) + home_offset[X_AXIS]; else /** * In dual carriage mode the extruder offset provides an override of the * second X-carriage offset when homed - otherwise X2_HOME_POS is used. * This allow soft recalibration of the second extruder offset position * without firmware reflash (through the M218 command). */ return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS; } static int x_home_dir(int extruder) { return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR; } static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1 static bool active_extruder_parked = false; // used in mode 1 & 2 static float raised_parked_position[NUM_AXIS]; // used in mode 1 static millis_t delayed_move_time = 0; // used in mode 1 static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 static float duplicate_extruder_temp_offset = 0; // used in mode 2 bool extruder_duplication_enabled = false; // used in mode 2 #endif //DUAL_X_CARRIAGE /** * Software endstops can be used to monitor the open end of * an axis that has a hardware endstop on the other end. Or * they can prevent axes from moving past endstops and grinding. * * To keep doing their job as the coordinate system changes, * the software endstop positions must be refreshed to remain * at the same positions relative to the machine. */ static void update_software_endstops(AxisEnum axis) { float offs = home_offset[axis] + position_shift[axis]; #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS); if (active_extruder != 0) { sw_endstop_min[X_AXIS] = X2_MIN_POS + offs; sw_endstop_max[X_AXIS] = dual_max_x + offs; return; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs; sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs; return; } } else #endif { sw_endstop_min[axis] = base_min_pos(axis) + offs; sw_endstop_max[axis] = base_max_pos(axis) + offs; } } /** * Change the home offset for an axis, update the current * position and the software endstops to retain the same * relative distance to the new home. * * Since this changes the current_position, code should * call sync_plan_position soon after this. */ static void set_home_offset(AxisEnum axis, float v) { current_position[axis] += v - home_offset[axis]; home_offset[axis] = v; update_software_endstops(axis); } static void set_axis_is_at_home(AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis); SERIAL_ECHOLNPGM(")"); } #endif position_shift[axis] = 0; #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { if (active_extruder != 0) current_position[X_AXIS] = x_home_pos(active_extruder); else current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; update_software_endstops(X_AXIS); return; } #endif #if ENABLED(SCARA) if (axis == X_AXIS || axis == Y_AXIS) { float homeposition[3]; for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i); // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]); // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]); /** * Works out real Homeposition angles using inverse kinematics, * and calculates homing offset using forward kinematics */ calculate_delta(homeposition); // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); for (int i = 0; i < 2; i++) delta[i] -= home_offset[i]; // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]); // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]); // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); calculate_SCARA_forward_Transform(delta); // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]); current_position[axis] = delta[axis]; /** * SCARA home positions are based on configuration since the actual * limits are determined by the inverse kinematic transform. */ sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis)); sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis)); } else #endif { current_position[axis] = base_home_pos(axis) + home_offset[axis]; update_software_endstops(axis); #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP) if (axis == Z_AXIS) { current_position[Z_AXIS] -= zprobe_zoffset; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset); SERIAL_EOL; } #endif } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]); SERIAL_EOL; DEBUG_POS("", current_position); } #endif } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis); SERIAL_ECHOLNPGM(")"); } #endif } /** * Some planner shorthand inline functions */ inline void set_homing_bump_feedrate(AxisEnum axis) { const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR; int hbd = homing_bump_divisor[axis]; if (hbd < 1) { hbd = 10; SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1"); } feedrate = homing_feedrate[axis] / hbd; } // // line_to_current_position // Move the planner to the current position from wherever it last moved // (or from wherever it has been told it is located). // inline void line_to_current_position() { planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); } inline void line_to_z(float zPosition) { planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder); } // // line_to_destination // Move the planner, not necessarily synced with current_position // inline void line_to_destination(float mm_m) { planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder); } inline void line_to_destination() { line_to_destination(feedrate); } /** * sync_plan_position * Set planner / stepper positions to the cartesian current_position. * The stepper code translates these coordinates into step units. * Allows translation between steps and millimeters for cartesian & core robots */ inline void sync_plan_position() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); #endif planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } // // Prepare to do endstop or probe moves // with custom feedrates. // // - Save current feedrates // - Reset the rate multiplier // - Reset the command timeout // - Enable the endstops (for endstop moves) // static void setup_for_endstop_or_probe_move() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position); #endif saved_feedrate = feedrate; saved_feedrate_multiplier = feedrate_multiplier; feedrate_multiplier = 100; refresh_cmd_timeout(); } static void clean_up_after_endstop_or_probe_move() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position); #endif feedrate = saved_feedrate; feedrate_multiplier = saved_feedrate_multiplier; refresh_cmd_timeout(); } #if HAS_BED_PROBE #if ENABLED(DELTA) /** * Calculate delta, start a line, and set current_position to destination */ void prepare_move_to_destination_raw() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination); #endif refresh_cmd_timeout(); calculate_delta(destination); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); set_current_to_destination(); } #endif /** * Plan a move to (X, Y, Z) and set the current_position * The final current_position may not be the one that was requested */ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) { float old_feedrate = feedrate; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), "", x, y, z); #endif #if ENABLED(DELTA) feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE; destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[Z_AXIS] = z; if (x == current_position[X_AXIS] && y == current_position[Y_AXIS]) prepare_move_to_destination_raw(); // this will also set_current_to_destination else prepare_move_to_destination(); // this will also set_current_to_destination #else // If Z needs to raise, do it before moving XY if (current_position[Z_AXIS] < z) { feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS]; current_position[Z_AXIS] = z; line_to_current_position(); } feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE; current_position[X_AXIS] = x; current_position[Y_AXIS] = y; line_to_current_position(); // If Z needs to lower, do it after moving XY if (current_position[Z_AXIS] > z) { feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS]; current_position[Z_AXIS] = z; line_to_current_position(); } #endif stepper.synchronize(); feedrate = old_feedrate; } inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate); } inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate); } /** * Raise Z to a minimum height to make room for a probe to move * * zprobe_zoffset: Negative of the Z height where the probe engages * z_raise: The probing raise distance * * The zprobe_zoffset is negative for a switch below the nozzle, so * multiply by Z_HOME_DIR (-1) to move enough away from the bed. */ inline void do_probe_raise(float z_raise) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("do_probe_raise(", z_raise); SERIAL_ECHOLNPGM(")"); } #endif float z_dest = home_offset[Z_AXIS] + z_raise; if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0) z_dest -= zprobe_zoffset; if (z_dest > current_position[Z_AXIS]) do_blocking_move_to_z(z_dest); } #endif //HAS_BED_PROBE #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE static bool axis_unhomed_error(const bool x, const bool y, const bool z) { const bool xx = x && !axis_homed[X_AXIS], yy = y && !axis_homed[Y_AXIS], zz = z && !axis_homed[Z_AXIS]; if (xx || yy || zz) { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_HOME " "); if (xx) SERIAL_ECHOPGM(MSG_X); if (yy) SERIAL_ECHOPGM(MSG_Y); if (zz) SERIAL_ECHOPGM(MSG_Z); SERIAL_ECHOLNPGM(" " MSG_FIRST); #if ENABLED(ULTRA_LCD) char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1 strcat_P(message, PSTR(MSG_HOME " ")); if (xx) strcat_P(message, PSTR(MSG_X)); if (yy) strcat_P(message, PSTR(MSG_Y)); if (zz) strcat_P(message, PSTR(MSG_Z)); strcat_P(message, PSTR(" " MSG_FIRST)); lcd_setstatus(message); #endif return true; } return false; } #endif #if ENABLED(Z_PROBE_SLED) #ifndef SLED_DOCKING_OFFSET #define SLED_DOCKING_OFFSET 0 #endif /** * Method to dock/undock a sled designed by Charles Bell. * * stow[in] If false, move to MAX_X and engage the solenoid * If true, move to MAX_X and release the solenoid */ static void dock_sled(bool stow) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("dock_sled(", stow); SERIAL_ECHOLNPGM(")"); } #endif // Dock sled a bit closer to ensure proper capturing do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0)); digitalWrite(SLED_PIN, !stow); // switch solenoid } #endif // Z_PROBE_SLED #if ENABLED(Z_PROBE_ALLEN_KEY) void run_deploy_moves_script() { #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE); #endif } void run_stow_moves_script() { #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0 #endif do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE); #endif } #endif #if HAS_BED_PROBE // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST) #if ENABLED(Z_MIN_PROBE_ENDSTOP) #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING) #else #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) #endif #endif #define DEPLOY_PROBE() set_probe_deployed( true ) #define STOW_PROBE() set_probe_deployed( false ) // returns false for ok and true for failure static bool set_probe_deployed(bool deploy) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { DEBUG_POS("set_probe_deployed", current_position); SERIAL_ECHOPAIR("deploy: ", deploy); } #endif if (endstops.z_probe_enabled == deploy) return false; // Make room for probe do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW); #if ENABLED(Z_PROBE_SLED) if (axis_unhomed_error(true, false, false)) { stop(); return true; } #elif ENABLED(Z_PROBE_ALLEN_KEY) if (axis_unhomed_error(true, true, true )) { stop(); return true; } #endif float oldXpos = current_position[X_AXIS]; // save x position float oldYpos = current_position[Y_AXIS]; // save y position #ifdef _TRIGGERED_WHEN_STOWED_TEST // If endstop is already false, the Z probe is deployed if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions. // Would a goto be less ugly? //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity // for a triggered when stowed manual probe. #endif #if ENABLED(Z_PROBE_SLED) dock_sled(!deploy); #elif HAS_Z_SERVO_ENDSTOP servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]); #elif ENABLED(Z_PROBE_ALLEN_KEY) if (!deploy) run_stow_moves_script(); else run_deploy_moves_script(); #else // Nothing to be done. Just enable_z_probe below... #endif #ifdef _TRIGGERED_WHEN_STOWED_TEST }; // opened before the probe specific actions if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { if (IsRunning()) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Z-Probe failed"); LCD_ALERTMESSAGEPGM("Err: ZPROBE"); } stop(); return true; } #endif do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy endstops.enable_z_probe( deploy ); return false; } // Do a single Z probe and return with current_position[Z_AXIS] // at the height where the probe triggered. static float run_z_probe() { float old_feedrate = feedrate; // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding refresh_cmd_timeout(); #if ENABLED(DELTA) float start_z = current_position[Z_AXIS]; long start_steps = stepper.position(Z_AXIS); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position); #endif // move down slowly until you find the bed feedrate = homing_feedrate[Z_AXIS] / 4; destination[Z_AXIS] = -10; prepare_move_to_destination_raw(); // this will also set_current_to_destination stepper.synchronize(); endstops.hit_on_purpose(); // clear endstop hit flags /** * We have to let the planner know where we are right now as it * is not where we said to go. */ long stop_steps = stepper.position(Z_AXIS); float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS]; current_position[Z_AXIS] = mm; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position); #endif #else // !DELTA #if ENABLED(AUTO_BED_LEVELING_FEATURE) planner.bed_level_matrix.set_to_identity(); #endif feedrate = homing_feedrate[Z_AXIS]; // Move down until the Z probe (or endstop?) is triggered float zPosition = -(Z_MAX_LENGTH + 10); line_to_z(zPosition); stepper.synchronize(); // Tell the planner where we ended up - Get this from the stepper handler zPosition = stepper.get_axis_position_mm(Z_AXIS); planner.set_position_mm( current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS] ); // move up the retract distance zPosition += home_bump_mm(Z_AXIS); line_to_z(zPosition); stepper.synchronize(); endstops.hit_on_purpose(); // clear endstop hit flags // move back down slowly to find bed set_homing_bump_feedrate(Z_AXIS); zPosition -= home_bump_mm(Z_AXIS) * 2; line_to_z(zPosition); stepper.synchronize(); endstops.hit_on_purpose(); // clear endstop hit flags // Get the current stepper position after bumping an endstop current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position); #endif #endif // !DELTA SYNC_PLAN_POSITION_KINEMATIC(); feedrate = old_feedrate; return current_position[Z_AXIS]; } inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) { do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate); } // // - Move to the given XY // - Deploy the probe, if not already deployed // - Probe the bed, get the Z position // - Depending on the 'stow' flag // - Stow the probe, or // - Raise to the BETWEEN height // - Return the probed Z position // static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> probe_pt(", x); SERIAL_ECHOPAIR(", ", y); SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow"); SERIAL_ECHOLNPGM(")"); DEBUG_POS("", current_position); } #endif float old_feedrate = feedrate; // Ensure a minimum height before moving the probe do_probe_raise(Z_RAISE_BETWEEN_PROBINGS); // Move to the XY where we shall probe #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER)); SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); SERIAL_ECHOLNPGM(")"); } #endif feedrate = XY_PROBE_FEEDRATE; do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> "); #endif if (DEPLOY_PROBE()) return NAN; float measured_z = run_z_probe(); if (stow) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> "); #endif if (STOW_PROBE()) return NAN; } else { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise"); #endif do_probe_raise(Z_RAISE_BETWEEN_PROBINGS); } if (verbose_level > 2) { SERIAL_PROTOCOLPGM("Bed X: "); SERIAL_PROTOCOL_F(x, 3); SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL_F(y, 3); SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOL_F(measured_z, 3); SERIAL_EOL; } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt"); #endif feedrate = old_feedrate; return measured_z; } #endif // HAS_BED_PROBE #if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_GRID) #if DISABLED(DELTA) static void set_bed_level_equation_lsq(double* plane_equation_coefficients) { //planner.bed_level_matrix.debug("bed level before"); #if ENABLED(DEBUG_LEVELING_FEATURE) planner.bed_level_matrix.set_to_identity(); if (DEBUGGING(LEVELING)) { vector_3 uncorrected_position = planner.adjusted_position(); DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position); DEBUG_POS(">>> set_bed_level_equation_lsq", current_position); } #endif vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); vector_3 corrected_position = planner.adjusted_position(); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position); #endif SYNC_PLAN_POSITION_KINEMATIC(); } #endif // !DELTA #else // !AUTO_BED_LEVELING_GRID static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { planner.bed_level_matrix.set_to_identity(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { vector_3 uncorrected_position = planner.adjusted_position(); DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position); } #endif vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal(); if (planeNormal.z < 0) { planeNormal.x = -planeNormal.x; planeNormal.y = -planeNormal.y; planeNormal.z = -planeNormal.z; } planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); vector_3 corrected_position = planner.adjusted_position(); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position); #endif SYNC_PLAN_POSITION_KINEMATIC(); } #endif // !AUTO_BED_LEVELING_GRID #if ENABLED(DELTA) /** * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING */ static void extrapolate_one_point(int x, int y, int xdir, int ydir) { if (bed_level[x][y] != 0.0) { return; // Don't overwrite good values. } float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal. float median = c; // Median is robust (ignores outliers). if (a < b) { if (b < c) median = b; if (c < a) median = a; } else { // b <= a if (c < b) median = b; if (a < c) median = a; } bed_level[x][y] = median; } /** * Fill in the unprobed points (corners of circular print surface) * using linear extrapolation, away from the center. */ static void extrapolate_unprobed_bed_level() { int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; for (int y = 0; y <= half; y++) { for (int x = 0; x <= half; x++) { if (x + y < 3) continue; extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0); extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0); extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0); extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0); } } } /** * Print calibration results for plotting or manual frame adjustment. */ static void print_bed_level() { for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { SERIAL_PROTOCOL_F(bed_level[x][y], 2); SERIAL_PROTOCOLCHAR(' '); } SERIAL_EOL; } } /** * Reset calibration results to zero. */ void reset_bed_level() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level"); #endif for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { bed_level[x][y] = 0.0; } } } #endif // DELTA #endif // AUTO_BED_LEVELING_FEATURE /** * Home an individual axis */ #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS) static void homeaxis(AxisEnum axis) { #define HOMEAXIS_DO(LETTER) \ ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> homeaxis(", axis); SERIAL_ECHOLNPGM(")"); } #endif int axis_home_dir = #if ENABLED(DUAL_X_CARRIAGE) (axis == X_AXIS) ? x_home_dir(active_extruder) : #endif home_dir(axis); // Homing Z towards the bed? Deploy the Z probe or endstop. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP) if (axis == Z_AXIS && axis_home_dir < 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> "); #endif if (DEPLOY_PROBE()) return; } #endif // Set the axis position as setup for the move current_position[axis] = 0; sync_plan_position(); // Set a flag for Z motor locking #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) stepper.set_homing_flag(true); #endif // Move towards the endstop until an endstop is triggered destination[axis] = 1.5 * max_length(axis) * axis_home_dir; feedrate = homing_feedrate[axis]; line_to_destination(); stepper.synchronize(); // Set the axis position as setup for the move current_position[axis] = 0; sync_plan_position(); // Move away from the endstop by the axis HOME_BUMP_MM destination[axis] = -home_bump_mm(axis) * axis_home_dir; line_to_destination(); stepper.synchronize(); // Slow down the feedrate for the next move set_homing_bump_feedrate(axis); // Move slowly towards the endstop until triggered destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir; line_to_destination(); stepper.synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position); #endif #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) { float adj = fabs(z_endstop_adj); bool lockZ1; if (axis_home_dir > 0) { adj = -adj; lockZ1 = (z_endstop_adj > 0); } else lockZ1 = (z_endstop_adj < 0); if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true); sync_plan_position(); // Move to the adjusted endstop height feedrate = homing_feedrate[axis]; destination[Z_AXIS] = adj; line_to_destination(); stepper.synchronize(); if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false); stepper.set_homing_flag(false); } // Z_AXIS #endif #if ENABLED(DELTA) // retrace by the amount specified in endstop_adj if (endstop_adj[axis] * axis_home_dir < 0) { sync_plan_position(); destination[axis] = endstop_adj[axis]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]); DEBUG_POS("", destination); } #endif line_to_destination(); stepper.synchronize(); } #endif // Set the axis position to its home position (plus home offsets) set_axis_is_at_home(axis); SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); #endif destination[axis] = current_position[axis]; endstops.hit_on_purpose(); // clear endstop hit flags axis_known_position[axis] = true; axis_homed[axis] = true; // Put away the Z probe #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP) if (axis == Z_AXIS && axis_home_dir < 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> "); #endif if (STOW_PROBE()) return; } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< homeaxis(", axis); SERIAL_ECHOLNPGM(")"); } #endif } #if ENABLED(FWRETRACT) void retract(bool retracting, bool swapping = false) { if (retracting == retracted[active_extruder]) return; float old_feedrate = feedrate; set_destination_to_current(); if (retracting) { feedrate = retract_feedrate_mm_s * 60; current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder]; sync_plan_position_e(); prepare_move_to_destination(); if (retract_zlift > 0.01) { current_position[Z_AXIS] -= retract_zlift; SYNC_PLAN_POSITION_KINEMATIC(); prepare_move_to_destination(); } } else { if (retract_zlift > 0.01) { current_position[Z_AXIS] += retract_zlift; SYNC_PLAN_POSITION_KINEMATIC(); } feedrate = retract_recover_feedrate * 60; float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length; current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder]; sync_plan_position_e(); prepare_move_to_destination(); } feedrate = old_feedrate; retracted[active_extruder] = retracting; } // retract() #endif // FWRETRACT /** * *************************************************************************** * ***************************** G-CODE HANDLING ***************************** * *************************************************************************** */ /** * Set XYZE destination and feedrate from the current GCode command * * - Set destination from included axis codes * - Set to current for missing axis codes * - Set the feedrate, if included */ void gcode_get_destination() { for (int i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); else destination[i] = current_position[i]; } if (code_seen('F') && code_value_linear_units() > 0.0) feedrate = code_value_linear_units(); } void unknown_command_error() { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND); SERIAL_ECHO(current_command); SERIAL_ECHOLNPGM("\""); } #if ENABLED(HOST_KEEPALIVE_FEATURE) /** * Output a "busy" message at regular intervals * while the machine is not accepting commands. */ void host_keepalive() { millis_t ms = millis(); if (host_keepalive_interval && busy_state != NOT_BUSY) { if (PENDING(ms, next_busy_signal_ms)) return; switch (busy_state) { case IN_HANDLER: case IN_PROCESS: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING); break; case PAUSED_FOR_USER: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER); break; case PAUSED_FOR_INPUT: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT); break; default: break; } } next_busy_signal_ms = ms + host_keepalive_interval * 1000UL; } #endif //HOST_KEEPALIVE_FEATURE /** * G0, G1: Coordinated movement of X Y Z E axes */ inline void gcode_G0_G1() { if (IsRunning()) { gcode_get_destination(); // For X Y Z E F #if ENABLED(FWRETRACT) if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { float echange = destination[E_AXIS] - current_position[E_AXIS]; // Is this move an attempt to retract or recover? if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) { current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations sync_plan_position_e(); // AND from the planner retract(!retracted[active_extruder]); return; } } #endif //FWRETRACT prepare_move_to_destination(); } } /** * G2: Clockwise Arc * G3: Counterclockwise Arc */ #if ENABLED(ARC_SUPPORT) inline void gcode_G2_G3(bool clockwise) { if (IsRunning()) { #if ENABLED(SF_ARC_FIX) bool relative_mode_backup = relative_mode; relative_mode = true; #endif gcode_get_destination(); #if ENABLED(SF_ARC_FIX) relative_mode = relative_mode_backup; #endif // Center of arc as offset from current_position float arc_offset[2] = { code_seen('I') ? code_value_axis_units(X_AXIS) : 0, code_seen('J') ? code_value_axis_units(Y_AXIS) : 0 }; // Send an arc to the planner plan_arc(destination, arc_offset, clockwise); refresh_cmd_timeout(); } } #endif /** * G4: Dwell S or P */ inline void gcode_G4() { millis_t codenum = 0; if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait stepper.synchronize(); refresh_cmd_timeout(); codenum += previous_cmd_ms; // keep track of when we started waiting if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL); while (PENDING(millis(), codenum)) idle(); } #if ENABLED(BEZIER_CURVE_SUPPORT) /** * Parameters interpreted according to: * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline * However I, J omission is not supported at this point; all * parameters can be omitted and default to zero. */ /** * G5: Cubic B-spline */ inline void gcode_G5() { if (IsRunning()) { gcode_get_destination(); float offset[] = { code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0, code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0, code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0, code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0 }; plan_cubic_move(offset); } } #endif // BEZIER_CURVE_SUPPORT #if ENABLED(FWRETRACT) /** * G10 - Retract filament according to settings of M207 * G11 - Recover filament according to settings of M208 */ inline void gcode_G10_G11(bool doRetract=false) { #if EXTRUDERS > 1 if (doRetract) { retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument } #endif retract(doRetract #if EXTRUDERS > 1 , retracted_swap[active_extruder] #endif ); } #endif //FWRETRACT #if ENABLED(INCH_MODE_SUPPORT) /** * G20: Set input mode to inches */ inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); } /** * G21: Set input mode to millimeters */ inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); } #endif #if ENABLED(QUICK_HOME) static void quick_home_xy() { current_position[X_AXIS] = current_position[Y_AXIS] = 0; #if ENABLED(DUAL_X_CARRIAGE) int x_axis_home_dir = x_home_dir(active_extruder); extruder_duplication_enabled = false; #else int x_axis_home_dir = home_dir(X_AXIS); #endif float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS), mlratio = mlx > mly ? mly / mlx : mlx / mly; destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir; destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS); feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1); line_to_destination(); stepper.synchronize(); endstops.hit_on_purpose(); // clear endstop hit flags destination[X_AXIS] = destination[Y_AXIS] = 0; } #endif // QUICK_HOME /** * G28: Home all axes according to settings * * Parameters * * None Home to all axes with no parameters. * With QUICK_HOME enabled XY will home together, then Z. * * Cartesian parameters * * X Home to the X endstop * Y Home to the Y endstop * Z Home to the Z endstop * */ inline void gcode_G28() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28"); #endif // Wait for planner moves to finish! stepper.synchronize(); // For auto bed leveling, clear the level matrix #if ENABLED(AUTO_BED_LEVELING_FEATURE) planner.bed_level_matrix.set_to_identity(); #if ENABLED(DELTA) reset_bed_level(); #endif #endif /** * For mesh bed leveling deactivate the mesh calculations, will be turned * on again when homing all axis */ #if ENABLED(MESH_BED_LEVELING) float pre_home_z = MESH_HOME_SEARCH_Z; if (mbl.active()) { // Save known Z position if already homed if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) { pre_home_z = current_position[Z_AXIS]; pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)); } mbl.set_active(false); current_position[Z_AXIS] = pre_home_z; } #endif setup_for_endstop_or_probe_move(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)"); #endif endstops.enable(true); // Enable endstops for next homing move #if ENABLED(DELTA) /** * A delta can only safely home all axes at the same time */ // Pretend the current position is 0,0,0 for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0; sync_plan_position(); // Move all carriages up together until the first endstop is hit. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH); feedrate = 1.732 * homing_feedrate[X_AXIS]; line_to_destination(); stepper.synchronize(); endstops.hit_on_purpose(); // clear endstop hit flags // Destination reached for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i]; // take care of back off and rehome now we are all at the top HOMEAXIS(X); HOMEAXIS(Y); HOMEAXIS(Z); SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position); #endif #else // NOT DELTA bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'); home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ); set_destination_to_current(); #if Z_HOME_DIR > 0 // If homing away from BED do Z first if (home_all_axis || homeZ) { HOMEAXIS(Z); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position); #endif } #else if (home_all_axis || homeX || homeY) { // Raise Z before homing any other axes and z is not already high enough (never lower z) float z_dest = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING; if (z_dest > current_position[Z_AXIS]) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Raise Z (before homing) to ", z_dest); SERIAL_EOL; } #endif feedrate = homing_feedrate[Z_AXIS]; line_to_z(z_dest); stepper.synchronize(); destination[Z_AXIS] = current_position[Z_AXIS] = z_dest; } } #endif #if ENABLED(QUICK_HOME) if (home_all_axis || (homeX && homeY)) quick_home_xy(); #endif #if ENABLED(HOME_Y_BEFORE_X) // Home Y if (home_all_axis || homeY) { HOMEAXIS(Y); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position); #endif } #endif // Home X if (home_all_axis || homeX) { #if ENABLED(DUAL_X_CARRIAGE) int tmp_extruder = active_extruder; extruder_duplication_enabled = false; active_extruder = !active_extruder; HOMEAXIS(X); inactive_extruder_x_pos = current_position[X_AXIS]; active_extruder = tmp_extruder; HOMEAXIS(X); // reset state used by the different modes memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); delayed_move_time = 0; active_extruder_parked = true; #else HOMEAXIS(X); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position); #endif } #if DISABLED(HOME_Y_BEFORE_X) // Home Y if (home_all_axis || homeY) { HOMEAXIS(Y); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position); #endif } #endif // Home Z last if homing towards the bed #if Z_HOME_DIR < 0 if (home_all_axis || homeZ) { #if ENABLED(Z_SAFE_HOMING) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>"); } #endif if (home_all_axis) { /** * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height * No need to move Z any more as this height should already be safe * enough to reach Z_SAFE_HOMING XY positions. * Just make sure the planner is in sync. */ SYNC_PLAN_POSITION_KINEMATIC(); /** * Set the Z probe (or just the nozzle) destination to the safe * homing point */ destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER)); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER)); destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height feedrate = XY_PROBE_FEEDRATE; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position); DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination); } #endif // Move in the XY plane line_to_destination(); stepper.synchronize(); /** * Update the current positions for XY, Z is still at least at * MIN_Z_HEIGHT_FOR_HOMING height, no changes there. */ current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; } // Let's see if X and Y are homed if (axis_unhomed_error(true, true, false)) return; /** * Make sure the Z probe is within the physical limits * NOTE: This doesn't necessarily ensure the Z probe is also * within the bed! */ float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS]; if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER) && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER) && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER) && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) { // Home the Z axis HOMEAXIS(Z); } else { LCD_MESSAGEPGM(MSG_ZPROBE_OUT); SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT); } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING"); } #endif #else // !Z_SAFE_HOMING HOMEAXIS(Z); #endif // !Z_SAFE_HOMING #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position); #endif } // home_all_axis || homeZ #endif // Z_HOME_DIR < 0 SYNC_PLAN_POSITION_KINEMATIC(); #endif // !DELTA (gcode_G28) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()"); #endif endstops.not_homing(); endstops.hit_on_purpose(); // clear endstop hit flags // Enable mesh leveling again #if ENABLED(MESH_BED_LEVELING) if (mbl.has_mesh()) { if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) { current_position[Z_AXIS] = MESH_HOME_SEARCH_Z #if Z_HOME_DIR > 0 + Z_MAX_POS #endif ; SYNC_PLAN_POSITION_KINEMATIC(); mbl.set_active(true); #if ENABLED(MESH_G28_REST_ORIGIN) current_position[Z_AXIS] = 0.0; set_destination_to_current(); feedrate = homing_feedrate[Z_AXIS]; line_to_destination(); stepper.synchronize(); #else current_position[Z_AXIS] = MESH_HOME_SEARCH_Z - mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) #if Z_HOME_DIR > 0 + Z_MAX_POS #endif ; #endif } else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) { current_position[Z_AXIS] = pre_home_z; SYNC_PLAN_POSITION_KINEMATIC(); mbl.set_active(true); current_position[Z_AXIS] = pre_home_z - mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)); } } #endif clean_up_after_endstop_or_probe_move(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28"); #endif report_current_position(); } #if HAS_PROBING_PROCEDURE void out_of_range_error(const char* p_edge) { SERIAL_PROTOCOLPGM("?Probe "); serialprintPGM(p_edge); SERIAL_PROTOCOLLNPGM(" position out of range."); } #endif #if ENABLED(MESH_BED_LEVELING) enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset }; inline void _mbl_goto_xy(float x, float y) { float old_feedrate = feedrate; feedrate = homing_feedrate[X_AXIS]; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING + Z_RAISE_BETWEEN_PROBINGS #elif MIN_Z_HEIGHT_FOR_HOMING > 0 + MIN_Z_HEIGHT_FOR_HOMING #endif ; line_to_current_position(); current_position[X_AXIS] = x + home_offset[X_AXIS]; current_position[Y_AXIS] = y + home_offset[Y_AXIS]; line_to_current_position(); #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0 current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; line_to_current_position(); #endif feedrate = old_feedrate; stepper.synchronize(); } /** * G29: Mesh-based Z probe, probes a grid and produces a * mesh to compensate for variable bed height * * Parameters With MESH_BED_LEVELING: * * S0 Produce a mesh report * S1 Start probing mesh points * S2 Probe the next mesh point * S3 Xn Yn Zn.nn Manually modify a single point * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed. * S5 Reset and disable mesh * * The S0 report the points as below * * +----> X-axis 1-n * | * | * v Y-axis 1-n * */ inline void gcode_G29() { static int probe_point = -1; MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport; if (state < 0 || state > 5) { SERIAL_PROTOCOLLNPGM("S out of range (0-5)."); return; } int8_t px, py; switch (state) { case MeshReport: if (mbl.has_mesh()) { SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off"); SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z); SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5); SERIAL_PROTOCOLLNPGM("\nMeasured points:"); for (py = 0; py < MESH_NUM_Y_POINTS; py++) { for (px = 0; px < MESH_NUM_X_POINTS; px++) { SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5); } SERIAL_EOL; } } else SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); break; case MeshStart: mbl.reset(); probe_point = 0; enqueue_and_echo_commands_P(PSTR("G28\nG29 S2")); break; case MeshNext: if (probe_point < 0) { SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first."); return; } // For each G29 S2... if (probe_point == 0) { // For the intial G29 S2 make Z a positive value (e.g., 4.0) current_position[Z_AXIS] = MESH_HOME_SEARCH_Z #if Z_HOME_DIR > 0 + Z_MAX_POS #endif ; SYNC_PLAN_POSITION_KINEMATIC(); } else { // For G29 S2 after adjusting Z. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]); } // If there's another point to sample, move there with optional lift. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) { mbl.zigzag(probe_point, px, py); _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py)); probe_point++; } else { // One last "return to the bed" (as originally coded) at completion current_position[Z_AXIS] = MESH_HOME_SEARCH_Z #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING + Z_RAISE_BETWEEN_PROBINGS #elif MIN_Z_HEIGHT_FOR_HOMING > 0 + MIN_Z_HEIGHT_FOR_HOMING #endif ; line_to_current_position(); stepper.synchronize(); // After recording the last point, activate the mbl and home SERIAL_PROTOCOLLNPGM("Mesh probing done."); probe_point = -1; mbl.set_has_mesh(true); enqueue_and_echo_commands_P(PSTR("G28")); } break; case MeshSet: if (code_seen('X')) { px = code_value_int() - 1; if (px < 0 || px >= MESH_NUM_X_POINTS) { SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ")."); return; } } else { SERIAL_PROTOCOLLNPGM("X not entered."); return; } if (code_seen('Y')) { py = code_value_int() - 1; if (py < 0 || py >= MESH_NUM_Y_POINTS) { SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ")."); return; } } else { SERIAL_PROTOCOLLNPGM("Y not entered."); return; } if (code_seen('Z')) { mbl.z_values[py][px] = code_value_axis_units(Z_AXIS); } else { SERIAL_PROTOCOLLNPGM("Z not entered."); return; } break; case MeshSetZOffset: if (code_seen('Z')) { mbl.z_offset = code_value_axis_units(Z_AXIS); } else { SERIAL_PROTOCOLLNPGM("Z not entered."); return; } break; case MeshReset: if (mbl.active()) { current_position[Z_AXIS] += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z; mbl.reset(); SYNC_PLAN_POSITION_KINEMATIC(); } else mbl.reset(); } // switch(state) report_current_position(); } #elif ENABLED(AUTO_BED_LEVELING_FEATURE) /** * G29: Detailed Z probe, probes the bed at 3 or more points. * Will fail if the printer has not been homed with G28. * * Enhanced G29 Auto Bed Leveling Probe Routine * * Parameters With AUTO_BED_LEVELING_GRID: * * P Set the size of the grid that will be probed (P x P points). * Not supported by non-linear delta printer bed leveling. * Example: "G29 P4" * * S Set the XY travel speed between probe points (in units/min) * * D Dry-Run mode. Just evaluate the bed Topology - Don't apply * or clean the rotation Matrix. Useful to check the topology * after a first run of G29. * * V Set the verbose level (0-4). Example: "G29 V3" * * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report. * This is useful for manual bed leveling and finding flaws in the bed (to * assist with part placement). * Not supported by non-linear delta printer bed leveling. * * F Set the Front limit of the probing grid * B Set the Back limit of the probing grid * L Set the Left limit of the probing grid * R Set the Right limit of the probing grid * * Global Parameters: * * E/e By default G29 will engage the Z probe, test the bed, then disengage. * Include "E" to engage/disengage the Z probe for each sample. * There's no extra effect if you have a fixed Z probe. * Usage: "G29 E" or "G29 e" * */ inline void gcode_G29() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_G29"); DEBUG_POS("", current_position); } #endif // Don't allow auto-leveling without homing first if (axis_unhomed_error(true, true, true)) return; int verbose_level = code_seen('V') ? code_value_int() : 1; if (verbose_level < 0 || verbose_level > 4) { SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4)."); return; } bool dryrun = code_seen('D'); bool stow_probe_after_each = code_seen('E'); #if ENABLED(AUTO_BED_LEVELING_GRID) #if DISABLED(DELTA) bool do_topography_map = verbose_level > 2 || code_seen('T'); #endif if (verbose_level > 0) { SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling"); if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode"); } int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS; #if DISABLED(DELTA) if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int(); if (auto_bed_leveling_grid_points < 2) { SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum)."); return; } #endif xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED; int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION, right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION, front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION, back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION; bool left_out_l = left_probe_bed_position < MIN_PROBE_X, left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE), right_out_r = right_probe_bed_position > MAX_PROBE_X, right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE, front_out_f = front_probe_bed_position < MIN_PROBE_Y, front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE), back_out_b = back_probe_bed_position > MAX_PROBE_Y, back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE; if (left_out || right_out || front_out || back_out) { if (left_out) { out_of_range_error(PSTR("(L)eft")); left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE); } if (right_out) { out_of_range_error(PSTR("(R)ight")); right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE; } if (front_out) { out_of_range_error(PSTR("(F)ront")); front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE); } if (back_out) { out_of_range_error(PSTR("(B)ack")); back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE; } return; } #endif // AUTO_BED_LEVELING_GRID if (!dryrun) { #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA) if (DEBUGGING(LEVELING)) { vector_3 corrected_position = planner.adjusted_position(); DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position); DEBUG_POS("BEFORE matrix.set_to_identity", current_position); } #endif // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong planner.bed_level_matrix.set_to_identity(); #if ENABLED(DELTA) reset_bed_level(); #else //!DELTA //vector_3 corrected_position = planner.adjusted_position(); //corrected_position.debug("position before G29"); vector_3 uncorrected_position = planner.adjusted_position(); //uncorrected_position.debug("position during G29"); current_position[X_AXIS] = uncorrected_position.x; current_position[Y_AXIS] = uncorrected_position.y; current_position[Z_AXIS] = uncorrected_position.z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position); #endif SYNC_PLAN_POSITION_KINEMATIC(); #endif // !DELTA } stepper.synchronize(); setup_for_endstop_or_probe_move(); // Deploy the probe. Probe will raise if needed. if (DEPLOY_PROBE()) return; bed_leveling_in_progress = true; #if ENABLED(AUTO_BED_LEVELING_GRID) // probe at the points of a lattice grid const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1), yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1); #if ENABLED(DELTA) delta_grid_spacing[0] = xGridSpacing; delta_grid_spacing[1] = yGridSpacing; float zoffset = zprobe_zoffset; if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS); #else // !DELTA /** * solve the plane equation ax + by + d = z * A is the matrix with rows [x y 1] for all the probed points * B is the vector of the Z positions * the normal vector to the plane is formed by the coefficients of the * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z */ int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points; double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations eqnBVector[abl2], // "B" vector of Z points mean = 0.0; int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points]; #endif // !DELTA int probePointCounter = 0; bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION] for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) { double yProbe = front_probe_bed_position + yGridSpacing * yCount; int xStart, xStop, xInc; if (zig) { xStart = 0; xStop = auto_bed_leveling_grid_points; xInc = 1; } else { xStart = auto_bed_leveling_grid_points - 1; xStop = -1; xInc = -1; } zig = !zig; for (int xCount = xStart; xCount != xStop; xCount += xInc) { double xProbe = left_probe_bed_position + xGridSpacing * xCount; #if ENABLED(DELTA) // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe); if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue; #endif //DELTA float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); #if DISABLED(DELTA) mean += measured_z; eqnBVector[probePointCounter] = measured_z; eqnAMatrix[probePointCounter + 0 * abl2] = xProbe; eqnAMatrix[probePointCounter + 1 * abl2] = yProbe; eqnAMatrix[probePointCounter + 2 * abl2] = 1; indexIntoAB[xCount][yCount] = probePointCounter; #else bed_level[xCount][yCount] = measured_z + zoffset; #endif probePointCounter++; idle(); } //xProbe } //yProbe #else // !AUTO_BED_LEVELING_GRID #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling"); #endif // Probe at 3 arbitrary points float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS], ABL_PROBE_PT_1_Y + home_offset[Y_AXIS], stow_probe_after_each, verbose_level), z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS], ABL_PROBE_PT_2_Y + home_offset[Y_AXIS], stow_probe_after_each, verbose_level), z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS], ABL_PROBE_PT_3_Y + home_offset[Y_AXIS], stow_probe_after_each, verbose_level); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); #endif // !AUTO_BED_LEVELING_GRID // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe. if (STOW_PROBE()) return; // Restore state after probing clean_up_after_endstop_or_probe_move(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position); #endif // Calculate leveling, print reports, correct the position #if ENABLED(AUTO_BED_LEVELING_GRID) #if ENABLED(DELTA) if (!dryrun) extrapolate_unprobed_bed_level(); print_bed_level(); #else // !DELTA // solve lsq problem double plane_equation_coefficients[3]; qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector); mean /= abl2; if (verbose_level) { SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8); SERIAL_PROTOCOLPGM(" b: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8); SERIAL_EOL; if (verbose_level > 2) { SERIAL_PROTOCOLPGM("Mean of sampled points: "); SERIAL_PROTOCOL_F(mean, 8); SERIAL_EOL; } } if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients); // Show the Topography map if enabled if (do_topography_map) { SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n" " +--- BACK --+\n" " | |\n" " L | (+) | R\n" " E | | I\n" " F | (-) N (+) | G\n" " T | | H\n" " | (-) | T\n" " | |\n" " O-- FRONT --+\n" " (0,0)"); float min_diff = 999; for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) { for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) { int ind = indexIntoAB[xx][yy]; float diff = eqnBVector[ind] - mean; float x_tmp = eqnAMatrix[ind + 0 * abl2], y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); NOMORE(min_diff, eqnBVector[ind] - z_tmp); if (diff >= 0.0) SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment else SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL_F(diff, 5); } // xx SERIAL_EOL; } // yy SERIAL_EOL; if (verbose_level > 3) { SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:"); for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) { for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) { int ind = indexIntoAB[xx][yy]; float x_tmp = eqnAMatrix[ind + 0 * abl2], y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); float diff = eqnBVector[ind] - z_tmp - min_diff; if (diff >= 0.0) SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment else SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL_F(diff, 5); } // xx SERIAL_EOL; } // yy SERIAL_EOL; } } //do_topography_map #endif //!DELTA #endif // AUTO_BED_LEVELING_GRID #if DISABLED(DELTA) if (verbose_level > 0) planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:"); if (!dryrun) { /** * Correct the Z height difference from Z probe position and nozzle tip position. * The Z height on homing is measured by Z probe, but the Z probe is quite far * from the nozzle. When the bed is uneven, this height must be corrected. */ float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, z_tmp = current_position[Z_AXIS], stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z); SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp); SERIAL_EOL; } #endif // Apply the correction sending the Z probe offset apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp); SERIAL_EOL; } #endif // Adjust the current Z and send it to the planner. current_position[Z_AXIS] += z_tmp - stepper_z; SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position); #endif } #endif // !DELTA #ifdef Z_PROBE_END_SCRIPT #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("Z Probe End Script: "); SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT); } #endif enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT)); stepper.synchronize(); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); #endif bed_leveling_in_progress = false; report_current_position(); KEEPALIVE_STATE(IN_HANDLER); } #endif //AUTO_BED_LEVELING_FEATURE #if HAS_BED_PROBE /** * G30: Do a single Z probe at the current XY */ inline void gcode_G30() { setup_for_endstop_or_probe_move(); // TODO: clear the leveling matrix or the planner will be set incorrectly float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, true, 1); SERIAL_PROTOCOLPGM("Bed X: "); SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001); SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001); SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOL(measured_z + 0.0001); SERIAL_EOL; clean_up_after_endstop_or_probe_move(); report_current_position(); } #if ENABLED(Z_PROBE_SLED) /** * G31: Deploy the Z probe */ inline void gcode_G31() { DEPLOY_PROBE(); } /** * G32: Stow the Z probe */ inline void gcode_G32() { STOW_PROBE(); } #endif // Z_PROBE_SLED #endif // HAS_BED_PROBE /** * G92: Set current position to given X Y Z E */ inline void gcode_G92() { bool didE = code_seen('E'); if (!didE) stepper.synchronize(); bool didXYZ = false; for (int i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { float p = current_position[i], v = code_value_axis_units(i); current_position[i] = v; if (i != E_AXIS) { position_shift[i] += v - p; // Offset the coordinate space update_software_endstops((AxisEnum)i); didXYZ = true; } } } if (didXYZ) SYNC_PLAN_POSITION_KINEMATIC(); else if (didE) sync_plan_position_e(); } #if ENABLED(ULTIPANEL) /** * M0: Unconditional stop - Wait for user button press on LCD * M1: Conditional stop - Wait for user button press on LCD */ inline void gcode_M0_M1() { char* args = current_command_args; millis_t codenum = 0; bool hasP = false, hasS = false; if (code_seen('P')) { codenum = code_value_millis(); // milliseconds to wait hasP = codenum > 0; } if (code_seen('S')) { codenum = code_value_millis_from_seconds(); // seconds to wait hasS = codenum > 0; } if (!hasP && !hasS && *args != '\0') lcd_setstatus(args, true); else { LCD_MESSAGEPGM(MSG_USERWAIT); #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0 dontExpireStatus(); #endif } lcd_ignore_click(); stepper.synchronize(); refresh_cmd_timeout(); if (codenum > 0) { codenum += previous_cmd_ms; // wait until this time for a click KEEPALIVE_STATE(PAUSED_FOR_USER); while (PENDING(millis(), codenum) && !lcd_clicked()) idle(); KEEPALIVE_STATE(IN_HANDLER); lcd_ignore_click(false); } else { if (!lcd_detected()) return; KEEPALIVE_STATE(PAUSED_FOR_USER); while (!lcd_clicked()) idle(); KEEPALIVE_STATE(IN_HANDLER); } if (IS_SD_PRINTING) LCD_MESSAGEPGM(MSG_RESUMING); else LCD_MESSAGEPGM(WELCOME_MSG); } #endif // ULTIPANEL /** * M17: Enable power on all stepper motors */ inline void gcode_M17() { LCD_MESSAGEPGM(MSG_NO_MOVE); enable_all_steppers(); } #if ENABLED(SDSUPPORT) /** * M20: List SD card to serial output */ inline void gcode_M20() { SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST); card.ls(); SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST); } /** * M21: Init SD Card */ inline void gcode_M21() { card.initsd(); } /** * M22: Release SD Card */ inline void gcode_M22() { card.release(); } /** * M23: Open a file */ inline void gcode_M23() { card.openFile(current_command_args, true); } /** * M24: Start SD Print */ inline void gcode_M24() { card.startFileprint(); print_job_timer.start(); } /** * M25: Pause SD Print */ inline void gcode_M25() { card.pauseSDPrint(); } /** * M26: Set SD Card file index */ inline void gcode_M26() { if (card.cardOK && code_seen('S')) card.setIndex(code_value_long()); } /** * M27: Get SD Card status */ inline void gcode_M27() { card.getStatus(); } /** * M28: Start SD Write */ inline void gcode_M28() { card.openFile(current_command_args, false); } /** * M29: Stop SD Write * Processed in write to file routine above */ inline void gcode_M29() { // card.saving = false; } /** * M30 : Delete SD Card file */ inline void gcode_M30() { if (card.cardOK) { card.closefile(); card.removeFile(current_command_args); } } #endif //SDSUPPORT /** * M31: Get the time since the start of SD Print (or last M109) */ inline void gcode_M31() { millis_t t = print_job_timer.duration(); int min = t / 60, sec = t % 60; char time[30]; sprintf_P(time, PSTR("%i min, %i sec"), min, sec); SERIAL_ECHO_START; SERIAL_ECHOLN(time); lcd_setstatus(time); thermalManager.autotempShutdown(); } #if ENABLED(SDSUPPORT) /** * M32: Select file and start SD Print */ inline void gcode_M32() { if (card.sdprinting) stepper.synchronize(); char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start. if (!namestartpos) namestartpos = current_command_args; // Default name position, 4 letters after the M else namestartpos++; //to skip the '!' bool call_procedure = code_seen('P') && (seen_pointer < namestartpos); if (card.cardOK) { card.openFile(namestartpos, true, call_procedure); if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!) card.setIndex(code_value_long()); card.startFileprint(); // Procedure calls count as normal print time. if (!call_procedure) print_job_timer.start(); } } #if ENABLED(LONG_FILENAME_HOST_SUPPORT) /** * M33: Get the long full path of a file or folder * * Parameters: * Case-insensitive DOS-style path to a file or folder * * Example: * M33 miscel~1/armchair/armcha~1.gco * * Output: * /Miscellaneous/Armchair/Armchair.gcode */ inline void gcode_M33() { card.printLongPath(current_command_args); } #endif /** * M928: Start SD Write */ inline void gcode_M928() { card.openLogFile(current_command_args); } #endif // SDSUPPORT /** * M42: Change pin status via GCode * * P Pin number (LED if omitted) * S Pin status from 0 - 255 */ inline void gcode_M42() { if (!code_seen('S')) return; int pin_status = code_value_int(); if (pin_status < 0 || pin_status > 255) return; int pin_number = code_seen('P') ? code_value_int() : LED_PIN; if (pin_number < 0) return; for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) if (pin_number == sensitive_pins[i]) return; pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); analogWrite(pin_number, pin_status); #if FAN_COUNT > 0 switch (pin_number) { #if HAS_FAN0 case FAN_PIN: fanSpeeds[0] = pin_status; break; #endif #if HAS_FAN1 case FAN1_PIN: fanSpeeds[1] = pin_status; break; #endif #if HAS_FAN2 case FAN2_PIN: fanSpeeds[2] = pin_status; break; #endif } #endif } #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) /** * M48: Z probe repeatability measurement function. * * Usage: * M48 * P = Number of sampled points (4-50, default 10) * X = Sample X position * Y = Sample Y position * V = Verbose level (0-4, default=1) * E = Engage Z probe for each reading * L = Number of legs of movement before probe * S = Schizoid (Or Star if you prefer) * * This function assumes the bed has been homed. Specifically, that a G28 command * as been issued prior to invoking the M48 Z probe repeatability measurement function. * Any information generated by a prior G29 Bed leveling command will be lost and need to be * regenerated. */ inline void gcode_M48() { if (axis_unhomed_error(true, true, true)) return; int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; if (verbose_level < 0 || verbose_level > 4) { SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4)."); return; } if (verbose_level > 0) SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test"); int8_t n_samples = code_seen('P') ? code_value_byte() : 10; if (n_samples < 4 || n_samples > 50) { SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50)."); return; } float X_current = current_position[X_AXIS], Y_current = current_position[Y_AXIS]; bool stow_probe_after_each = code_seen('E'); float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER; #if DISABLED(DELTA) if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) { out_of_range_error(PSTR("X")); return; } #endif float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER; #if DISABLED(DELTA) if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) { out_of_range_error(PSTR("Y")); return; } #else if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) { SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius."); return; } #endif bool seen_L = code_seen('L'); uint8_t n_legs = seen_L ? code_value_byte() : 0; if (n_legs > 15) { SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15)."); return; } if (n_legs == 1) n_legs = 2; bool schizoid_flag = code_seen('S'); if (schizoid_flag && !seen_L) n_legs = 7; /** * Now get everything to the specified probe point So we can safely do a * probe to get us close to the bed. If the Z-Axis is far from the bed, * we don't want to use that as a starting point for each probe. */ if (verbose_level > 2) SERIAL_PROTOCOLLNPGM("Positioning the probe..."); #if ENABLED(DELTA) // we don't do bed level correction in M48 because we want the raw data when we probe reset_bed_level(); #elif ENABLED(AUTO_BED_LEVELING_FEATURE) // we don't do bed level correction in M48 because we want the raw data when we probe planner.bed_level_matrix.set_to_identity(); #endif setup_for_endstop_or_probe_move(); // Move to the first point, deploy, and probe probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level); randomSeed(millis()); double mean = 0, sigma = 0, sample_set[n_samples]; for (uint8_t n = 0; n < n_samples; n++) { if (n_legs) { int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise float angle = random(0.0, 360.0), radius = random( #if ENABLED(DELTA) DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3 #else 5, X_MAX_LENGTH / 8 #endif ); if (verbose_level > 3) { SERIAL_ECHOPAIR("Starting radius: ", radius); SERIAL_ECHOPAIR(" angle: ", angle); SERIAL_ECHOPGM(" Direction: "); if (dir > 0) SERIAL_ECHOPGM("Counter-"); SERIAL_ECHOLNPGM("Clockwise"); } for (uint8_t l = 0; l < n_legs - 1; l++) { double delta_angle; if (schizoid_flag) // The points of a 5 point star are 72 degrees apart. We need to // skip a point and go to the next one on the star. delta_angle = dir * 2.0 * 72.0; else // If we do this line, we are just trying to move further // around the circle. delta_angle = dir * (float) random(25, 45); angle += delta_angle; while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the angle -= 360.0; // Arduino documentation says the trig functions should not be given values while (angle < 0.0) // outside of this range. It looks like they behave correctly with angle += 360.0; // numbers outside of the range, but just to be safe we clamp them. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius; Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius; #if DISABLED(DELTA) X_current = constrain(X_current, X_MIN_POS, X_MAX_POS); Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS); #else // If we have gone out too far, we can do a simple fix and scale the numbers // back in closer to the origin. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) { X_current /= 1.25; Y_current /= 1.25; if (verbose_level > 3) { SERIAL_ECHOPAIR("Pulling point towards center:", X_current); SERIAL_ECHOPAIR(", ", Y_current); SERIAL_EOL; } } #endif if (verbose_level > 3) { SERIAL_PROTOCOLPGM("Going to:"); SERIAL_ECHOPAIR(" X", X_current); SERIAL_ECHOPAIR(" Y", Y_current); SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]); SERIAL_EOL; } do_blocking_move_to_xy(X_current, Y_current); } // n_legs loop } // n_legs // Probe a single point sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level); /** * Get the current mean for the data points we have so far */ double sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sample_set[j]; mean = sum / (n + 1); /** * Now, use that mean to calculate the standard deviation for the * data points we have so far */ sum = 0.0; for (uint8_t j = 0; j <= n; j++) { float ss = sample_set[j] - mean; sum += ss * ss; } sigma = sqrt(sum / (n + 1)); if (verbose_level > 0) { if (verbose_level > 1) { SERIAL_PROTOCOL(n + 1); SERIAL_PROTOCOLPGM(" of "); SERIAL_PROTOCOL((int)n_samples); SERIAL_PROTOCOLPGM(" z: "); SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); if (verbose_level > 2) { SERIAL_PROTOCOLPGM(" mean: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_PROTOCOLPGM(" sigma: "); SERIAL_PROTOCOL_F(sigma, 6); } } SERIAL_EOL; } } // End of probe loop if (STOW_PROBE()) return; if (verbose_level > 0) { SERIAL_PROTOCOLPGM("Mean: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_EOL; } SERIAL_PROTOCOLPGM("Standard Deviation: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_EOL; SERIAL_EOL; clean_up_after_endstop_or_probe_move(); report_current_position(); } #endif // Z_MIN_PROBE_REPEATABILITY_TEST /** * M75: Start print timer */ inline void gcode_M75() { print_job_timer.start(); } /** * M76: Pause print timer */ inline void gcode_M76() { print_job_timer.pause(); } /** * M77: Stop print timer */ inline void gcode_M77() { print_job_timer.stop(); } #if ENABLED(PRINTCOUNTER) /*+ * M78: Show print statistics */ inline void gcode_M78() { // "M78 S78" will reset the statistics if (code_seen('S') && code_value_int() == 78) print_job_timer.initStats(); else print_job_timer.showStats(); } #endif /** * M104: Set hot end temperature */ inline void gcode_M104() { if (get_target_extruder_from_command(104)) return; if (DEBUGGING(DRYRUN)) return; #if ENABLED(SINGLENOZZLE) if (target_extruder != active_extruder) return; #endif if (code_seen('S')) { thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1); #endif #if ENABLED(PRINTJOB_TIMER_AUTOSTART) /** * Stop the timer at the end of print, starting is managed by * 'heat and wait' M109. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot * stand by mode, for instance in a dual extruder setup, without affecting * the running print timer. */ if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) { print_job_timer.stop(); LCD_MESSAGEPGM(WELCOME_MSG); } #endif if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING); } } #if HAS_TEMP_HOTEND || HAS_TEMP_BED void print_heaterstates() { #if HAS_TEMP_HOTEND SERIAL_PROTOCOLPGM(" T:"); SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1); #endif #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOL_F(thermalManager.degBed(), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1); #endif #if HOTENDS > 1 HOTEND_LOOP() { SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(e); SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1); } #endif #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" B@:"); #ifdef BED_WATTS SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127); SERIAL_PROTOCOLCHAR('W'); #else SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1)); #endif #endif SERIAL_PROTOCOLPGM(" @:"); #ifdef EXTRUDER_WATTS SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127); SERIAL_PROTOCOLCHAR('W'); #else SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder)); #endif #if HOTENDS > 1 HOTEND_LOOP() { SERIAL_PROTOCOLPGM(" @"); SERIAL_PROTOCOL(e); SERIAL_PROTOCOLCHAR(':'); #ifdef EXTRUDER_WATTS SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127); SERIAL_PROTOCOLCHAR('W'); #else SERIAL_PROTOCOL(thermalManager.getHeaterPower(e)); #endif } #endif #if ENABLED(SHOW_TEMP_ADC_VALUES) #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" ADC B:"); SERIAL_PROTOCOL_F(thermalManager.degBed(), 1); SERIAL_PROTOCOLPGM("C->"); SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0); #endif HOTEND_LOOP() { SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(e); SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1); SERIAL_PROTOCOLPGM("C->"); SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0); } #endif } #endif /** * M105: Read hot end and bed temperature */ inline void gcode_M105() { if (get_target_extruder_from_command(105)) return; #if HAS_TEMP_HOTEND || HAS_TEMP_BED SERIAL_PROTOCOLPGM(MSG_OK); print_heaterstates(); #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS); #endif SERIAL_EOL; } #if FAN_COUNT > 0 /** * M106: Set Fan Speed * * S Speed between 0-255 * P Fan index, if more than one fan */ inline void gcode_M106() { uint16_t s = code_seen('S') ? code_value_ushort() : 255, p = code_seen('P') ? code_value_ushort() : 0; NOMORE(s, 255); if (p < FAN_COUNT) fanSpeeds[p] = s; } /** * M107: Fan Off */ inline void gcode_M107() { uint16_t p = code_seen('P') ? code_value_ushort() : 0; if (p < FAN_COUNT) fanSpeeds[p] = 0; } #endif // FAN_COUNT > 0 #if DISABLED(EMERGENCY_PARSER) /** * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature. */ inline void gcode_M108() { wait_for_heatup = false; } /** * M112: Emergency Stop */ inline void gcode_M112() { kill(PSTR(MSG_KILLED)); } /** * M410: Quickstop - Abort all planned moves * * This will stop the carriages mid-move, so most likely they * will be out of sync with the stepper position after this. */ inline void gcode_M410() { quickstop_stepper(); } #endif #ifndef MIN_COOLING_SLOPE_DEG #define MIN_COOLING_SLOPE_DEG 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME #define MIN_COOLING_SLOPE_TIME 60 #endif /** * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling. */ inline void gcode_M109() { if (get_target_extruder_from_command(109)) return; if (DEBUGGING(DRYRUN)) return; #if ENABLED(SINGLENOZZLE) if (target_extruder != active_extruder) return; #endif bool no_wait_for_cooling = code_seen('S'); if (no_wait_for_cooling || code_seen('R')) { thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1); #endif #if ENABLED(PRINTJOB_TIMER_AUTOSTART) /** * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot * stand by mode, for instance in a dual extruder setup, without affecting * the running print timer. */ if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) { print_job_timer.stop(); LCD_MESSAGEPGM(WELCOME_MSG); } /** * We do not check if the timer is already running because this check will * be done for us inside the Stopwatch::start() method thus a running timer * will not restart. */ else print_job_timer.start(); #endif if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING); } #if ENABLED(AUTOTEMP) planner.autotemp_M109(); #endif #if TEMP_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder)) #endif //TEMP_RESIDENCY_TIME > 0 float theTarget = -1.0, old_temp = 9999.0; bool wants_to_cool = false; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; KEEPALIVE_STATE(NOT_BUSY); do { // Target temperature might be changed during the loop if (theTarget != thermalManager.degTargetHotend(target_extruder)) { wants_to_cool = thermalManager.isCoolingHotend(target_extruder); theTarget = thermalManager.degTargetHotend(target_extruder); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting next_temp_ms = now + 1000UL; print_heaterstates(); #if TEMP_RESIDENCY_TIME > 0 SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) { long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL; SERIAL_PROTOCOLLN(rem); } else { SERIAL_PROTOCOLLNPGM("?"); } #else SERIAL_EOL; #endif } idle(); refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out float temp = thermalManager.degHotend(target_extruder); #if TEMP_RESIDENCY_TIME > 0 float temp_diff = fabs(theTarget - temp); if (!residency_start_ms) { // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_WINDOW) residency_start_ms = now; } else if (temp_diff > TEMP_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif //TEMP_RESIDENCY_TIME > 0 // Prevent a wait-forever situation if R is misused i.e. M109 R0 if (wants_to_cool) { // break after MIN_COOLING_SLOPE_TIME seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME; old_temp = temp; } } } while (wait_for_heatup && TEMP_CONDITIONS); LCD_MESSAGEPGM(MSG_HEATING_COMPLETE); KEEPALIVE_STATE(IN_HANDLER); } #if HAS_TEMP_BED #ifndef MIN_COOLING_SLOPE_DEG_BED #define MIN_COOLING_SLOPE_DEG_BED 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME_BED #define MIN_COOLING_SLOPE_TIME_BED 60 #endif /** * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling */ inline void gcode_M190() { if (DEBUGGING(DRYRUN)) return; LCD_MESSAGEPGM(MSG_BED_HEATING); bool no_wait_for_cooling = code_seen('S'); if (no_wait_for_cooling || code_seen('R')) { thermalManager.setTargetBed(code_value_temp_abs()); #if ENABLED(PRINTJOB_TIMER_AUTOSTART) if (code_value_temp_abs() > BED_MINTEMP) { /** * We start the timer when 'heating and waiting' command arrives, LCD * functions never wait. Cooling down managed by extruders. * * We do not check if the timer is already running because this check will * be done for us inside the Stopwatch::start() method thus a running timer * will not restart. */ print_job_timer.start(); } #endif } #if TEMP_BED_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed()) #endif //TEMP_BED_RESIDENCY_TIME > 0 float theTarget = -1.0, old_temp = 9999.0; bool wants_to_cool = false; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; KEEPALIVE_STATE(NOT_BUSY); do { // Target temperature might be changed during the loop if (theTarget != thermalManager.degTargetBed()) { wants_to_cool = thermalManager.isCoolingBed(); theTarget = thermalManager.degTargetBed(); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heaterstates(); #if TEMP_BED_RESIDENCY_TIME > 0 SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) { long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL; SERIAL_PROTOCOLLN(rem); } else { SERIAL_PROTOCOLLNPGM("?"); } #else SERIAL_EOL; #endif } idle(); refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out float temp = thermalManager.degBed(); #if TEMP_BED_RESIDENCY_TIME > 0 float temp_diff = fabs(theTarget - temp); if (!residency_start_ms) { // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now; } else if (temp_diff > TEMP_BED_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif //TEMP_BED_RESIDENCY_TIME > 0 // Prevent a wait-forever situation if R is misused i.e. M190 R0 if (wants_to_cool) { // break after MIN_COOLING_SLOPE_TIME_BED seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED; old_temp = temp; } } } while (wait_for_heatup && TEMP_BED_CONDITIONS); LCD_MESSAGEPGM(MSG_BED_DONE); KEEPALIVE_STATE(IN_HANDLER); } #endif // HAS_TEMP_BED /** * M110: Set Current Line Number */ inline void gcode_M110() { if (code_seen('N')) gcode_N = code_value_long(); } /** * M111: Set the debug level */ inline void gcode_M111() { marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE; const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO; const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO; const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS; const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN; const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION; #if ENABLED(DEBUG_LEVELING_FEATURE) const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING; #endif const static char* const debug_strings[] PROGMEM = { str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16, #if ENABLED(DEBUG_LEVELING_FEATURE) str_debug_32 #endif }; SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_DEBUG_PREFIX); if (marlin_debug_flags) { uint8_t comma = 0; for (uint8_t i = 0; i < COUNT(debug_strings); i++) { if (TEST(marlin_debug_flags, i)) { if (comma++) SERIAL_CHAR(','); serialprintPGM((char*)pgm_read_word(&(debug_strings[i]))); } } } else { SERIAL_ECHOPGM(MSG_DEBUG_OFF); } SERIAL_EOL; } #if ENABLED(HOST_KEEPALIVE_FEATURE) /** * M113: Get or set Host Keepalive interval (0 to disable) * * S Optional. Set the keepalive interval. */ inline void gcode_M113() { if (code_seen('S')) { host_keepalive_interval = code_value_byte(); NOMORE(host_keepalive_interval, 60); } else { SERIAL_ECHO_START; SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval); SERIAL_EOL; } } #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 /** * M126: Heater 1 valve open */ inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; } /** * M127: Heater 1 valve close */ inline void gcode_M127() { baricuda_valve_pressure = 0; } #endif #if HAS_HEATER_2 /** * M128: Heater 2 valve open */ inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; } /** * M129: Heater 2 valve close */ inline void gcode_M129() { baricuda_e_to_p_pressure = 0; } #endif #endif //BARICUDA /** * M140: Set bed temperature */ inline void gcode_M140() { if (DEBUGGING(DRYRUN)) return; if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs()); } #if ENABLED(ULTIPANEL) /** * M145: Set the heatup state for a material in the LCD menu * S (0=PLA, 1=ABS) * H * B * F */ inline void gcode_M145() { int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0; if (material < 0 || material > 1) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX); } else { int v; switch (material) { case 0: if (code_seen('H')) { v = code_value_int(); plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15); } if (code_seen('F')) { v = code_value_int(); plaPreheatFanSpeed = constrain(v, 0, 255); } #if TEMP_SENSOR_BED != 0 if (code_seen('B')) { v = code_value_int(); plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15); } #endif break; case 1: if (code_seen('H')) { v = code_value_int(); absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15); } if (code_seen('F')) { v = code_value_int(); absPreheatFanSpeed = constrain(v, 0, 255); } #if TEMP_SENSOR_BED != 0 if (code_seen('B')) { v = code_value_int(); absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15); } #endif break; } } } #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) /** * M149: Set temperature units */ inline void gcode_M149() { if (code_seen('C')) { set_input_temp_units(TEMPUNIT_C); } else if (code_seen('K')) { set_input_temp_units(TEMPUNIT_K); } else if (code_seen('F')) { set_input_temp_units(TEMPUNIT_F); } } #endif #if HAS_POWER_SWITCH /** * M80: Turn on Power Supply */ inline void gcode_M80() { OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND /** * If you have a switch on suicide pin, this is useful * if you want to start another print with suicide feature after * a print without suicide... */ #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, HIGH); #endif #if ENABLED(ULTIPANEL) powersupply = true; LCD_MESSAGEPGM(WELCOME_MSG); lcd_update(); #endif } #endif // HAS_POWER_SWITCH /** * M81: Turn off Power, including Power Supply, if there is one. * * This code should ALWAYS be available for EMERGENCY SHUTDOWN! */ inline void gcode_M81() { thermalManager.disable_all_heaters(); stepper.finish_and_disable(); #if FAN_COUNT > 0 #if FAN_COUNT > 1 for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; #else fanSpeeds[0] = 0; #endif #endif delay(1000); // Wait 1 second before switching off #if HAS_SUICIDE stepper.synchronize(); suicide(); #elif HAS_POWER_SWITCH OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); #endif #if ENABLED(ULTIPANEL) #if HAS_POWER_SWITCH powersupply = false; #endif LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF "."); lcd_update(); #endif } /** * M82: Set E codes absolute (default) */ inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; } /** * M83: Set E codes relative while in Absolute Coordinates (G90) mode */ inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; } /** * M18, M84: Disable all stepper motors */ inline void gcode_M18_M84() { if (code_seen('S')) { stepper_inactive_time = code_value_millis_from_seconds(); } else { bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E'))); if (all_axis) { stepper.finish_and_disable(); } else { stepper.synchronize(); if (code_seen('X')) disable_x(); if (code_seen('Y')) disable_y(); if (code_seen('Z')) disable_z(); #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS if (code_seen('E')) { disable_e0(); disable_e1(); disable_e2(); disable_e3(); } #endif } } } /** * M85: Set inactivity shutdown timer with parameter S. To disable set zero (default) */ inline void gcode_M85() { if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds(); } /** * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E. * (Follows the same syntax as G92) */ inline void gcode_M92() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { if (i == E_AXIS) { float value = code_value_per_axis_unit(i); if (value < 20.0) { float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab. planner.max_e_jerk *= factor; planner.max_feedrate[i] *= factor; planner.max_acceleration_steps_per_s2[i] *= factor; } planner.axis_steps_per_mm[i] = value; } else { planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i); } } } } /** * Output the current position to serial */ static void report_current_position() { SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(current_position[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(current_position[Z_AXIS]); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(current_position[E_AXIS]); stepper.report_positions(); #if ENABLED(SCARA) SERIAL_PROTOCOLPGM("SCARA Theta:"); SERIAL_PROTOCOL(delta[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOL(delta[Y_AXIS]); SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]); SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]); SERIAL_EOL; SERIAL_EOL; #endif } /** * M114: Output current position to serial port */ inline void gcode_M114() { report_current_position(); } /** * M115: Capabilities string */ inline void gcode_M115() { SERIAL_PROTOCOLPGM(MSG_M115_REPORT); } /** * M117: Set LCD Status Message */ inline void gcode_M117() { lcd_setstatus(current_command_args); } /** * M119: Output endstop states to serial output */ inline void gcode_M119() { endstops.M119(); } /** * M120: Enable endstops and set non-homing endstop state to "enabled" */ inline void gcode_M120() { endstops.enable_globally(true); } /** * M121: Disable endstops and set non-homing endstop state to "disabled" */ inline void gcode_M121() { endstops.enable_globally(false); } #if ENABLED(BLINKM) /** * M150: Set Status LED Color - Use R-U-B for R-G-B */ inline void gcode_M150() { SendColors( code_seen('R') ? code_value_byte() : 0, code_seen('U') ? code_value_byte() : 0, code_seen('B') ? code_value_byte() : 0 ); } #endif // BLINKM #if ENABLED(EXPERIMENTAL_I2CBUS) /** * M155: Send data to a I2C slave device * * This is a PoC, the formating and arguments for the GCODE will * change to be more compatible, the current proposal is: * * M155 A ; Sets the I2C slave address the data will be sent to * * M155 B * M155 B * M155 B * * M155 S1 ; Send the buffered data and reset the buffer * M155 R1 ; Reset the buffer without sending data * */ inline void gcode_M155() { // Set the target address if (code_seen('A')) i2c.address(code_value_byte()); // Add a new byte to the buffer else if (code_seen('B')) i2c.addbyte(code_value_int()); // Flush the buffer to the bus else if (code_seen('S')) i2c.send(); // Reset and rewind the buffer else if (code_seen('R')) i2c.reset(); } /** * M156: Request X bytes from I2C slave device * * Usage: M156 A B */ inline void gcode_M156() { uint8_t addr = code_seen('A') ? code_value_byte() : 0; int bytes = code_seen('B') ? code_value_int() : 1; if (addr && bytes > 0 && bytes <= 32) { i2c.address(addr); i2c.reqbytes(bytes); } else { SERIAL_ERROR_START; SERIAL_ERRORLN("Bad i2c request"); } } #endif //EXPERIMENTAL_I2CBUS /** * M200: Set filament diameter and set E axis units to cubic units * * T - Optional extruder number. Current extruder if omitted. * D - Diameter of the filament. Use "D0" to switch back to linear units on the E axis. */ inline void gcode_M200() { if (get_target_extruder_from_command(200)) return; if (code_seen('D')) { // setting any extruder filament size disables volumetric on the assumption that // slicers either generate in extruder values as cubic mm or as as filament feeds // for all extruders volumetric_enabled = (code_value_linear_units() != 0.0); if (volumetric_enabled) { filament_size[target_extruder] = code_value_linear_units(); // make sure all extruders have some sane value for the filament size for (int i = 0; i < EXTRUDERS; i++) if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; } } else { //reserved for setting filament diameter via UFID or filament measuring device return; } calculate_volumetric_multipliers(); } /** * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) */ inline void gcode_M201() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i); } } // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) planner.reset_acceleration_rates(); } #if 0 // Not used for Sprinter/grbl gen6 inline void gcode_M202() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i]; } } #endif /** * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec */ inline void gcode_M203() { for (int8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) planner.max_feedrate[i] = code_value_axis_units(i); } /** * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000) * * P = Printing moves * R = Retract only (no X, Y, Z) moves * T = Travel (non printing) moves * * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate */ inline void gcode_M204() { if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments. planner.travel_acceleration = planner.acceleration = code_value_linear_units(); SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration); SERIAL_EOL; } if (code_seen('P')) { planner.acceleration = code_value_linear_units(); SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration); SERIAL_EOL; } if (code_seen('R')) { planner.retract_acceleration = code_value_linear_units(); SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration); SERIAL_EOL; } if (code_seen('T')) { planner.travel_acceleration = code_value_linear_units(); SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration); SERIAL_EOL; } } /** * M205: Set Advanced Settings * * S = Min Feed Rate (units/s) * T = Min Travel Feed Rate (units/s) * B = Min Segment Time (µs) * X = Max XY Jerk (units/sec^2) * Z = Max Z Jerk (units/sec^2) * E = Max E Jerk (units/sec^2) */ inline void gcode_M205() { if (code_seen('S')) planner.min_feedrate = code_value_linear_units(); if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units(); if (code_seen('B')) planner.min_segment_time = code_value_millis(); if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units(); if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS); if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS); } /** * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y */ inline void gcode_M206() { for (int8_t i = X_AXIS; i <= Z_AXIS; i++) if (code_seen(axis_codes[i])) set_home_offset((AxisEnum)i, code_value_axis_units(i)); #if ENABLED(SCARA) if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi #endif SYNC_PLAN_POSITION_KINEMATIC(); report_current_position(); } #if ENABLED(DELTA) /** * M665: Set delta configurations * * L = diagonal rod * R = delta radius * S = segments per second * A = Alpha (Tower 1) diagonal rod trim * B = Beta (Tower 2) diagonal rod trim * C = Gamma (Tower 3) diagonal rod trim */ inline void gcode_M665() { if (code_seen('L')) delta_diagonal_rod = code_value_linear_units(); if (code_seen('R')) delta_radius = code_value_linear_units(); if (code_seen('S')) delta_segments_per_second = code_value_float(); if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units(); if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units(); if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units(); recalc_delta_settings(delta_radius, delta_diagonal_rod); } /** * M666: Set delta endstop adjustment */ inline void gcode_M666() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_M666"); } #endif for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { if (code_seen(axis_codes[i])) { endstop_adj[i] = code_value_axis_units(i); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("endstop_adj["); SERIAL_ECHO(axis_codes[i]); SERIAL_ECHOPAIR("] = ", endstop_adj[i]); SERIAL_EOL; } #endif } } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("<<< gcode_M666"); } #endif } #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS) /** * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis. */ inline void gcode_M666() { if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS); SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj); SERIAL_EOL; } #endif // !DELTA && Z_DUAL_ENDSTOPS #if ENABLED(FWRETRACT) /** * M207: Set firmware retraction values * * S[+units] retract_length * W[+units] retract_length_swap (multi-extruder) * F[units/min] retract_feedrate_mm_s * Z[units] retract_zlift */ inline void gcode_M207() { if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS); if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60; if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS); #if EXTRUDERS > 1 if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS); #endif } /** * M208: Set firmware un-retraction values * * S[+units] retract_recover_length (in addition to M207 S*) * W[+units] retract_recover_length_swap (multi-extruder) * F[units/min] retract_recover_feedrate */ inline void gcode_M208() { if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS); if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60; #if EXTRUDERS > 1 if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS); #endif } /** * M209: Enable automatic retract (M209 S1) * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. */ inline void gcode_M209() { if (code_seen('S')) { int t = code_value_int(); switch (t) { case 0: autoretract_enabled = false; break; case 1: autoretract_enabled = true; break; default: unknown_command_error(); return; } for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false; } } #endif // FWRETRACT #if HOTENDS > 1 /** * M218 - set hotend offset (in linear units) * * T * X * Y * Z - Available with DUAL_X_CARRIAGE */ inline void gcode_M218() { if (get_target_extruder_from_command(218)) return; if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS); if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS); #if ENABLED(DUAL_X_CARRIAGE) if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS); #endif SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); HOTEND_LOOP() { SERIAL_CHAR(' '); SERIAL_ECHO(hotend_offset[X_AXIS][e]); SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Y_AXIS][e]); #if ENABLED(DUAL_X_CARRIAGE) SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Z_AXIS][e]); #endif } SERIAL_EOL; } #endif // HOTENDS > 1 /** * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95) */ inline void gcode_M220() { if (code_seen('S')) feedrate_multiplier = code_value_int(); } /** * M221: Set extrusion percentage (M221 T0 S95) */ inline void gcode_M221() { if (get_target_extruder_from_command(221)) return; if (code_seen('S')) extruder_multiplier[target_extruder] = code_value_int(); } /** * M226: Wait until the specified pin reaches the state required (M226 P S) */ inline void gcode_M226() { if (code_seen('P')) { int pin_number = code_value_int(); int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted if (pin_state >= -1 && pin_state <= 1) { for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) { if (sensitive_pins[i] == pin_number) { pin_number = -1; break; } } if (pin_number > -1) { int target = LOW; stepper.synchronize(); pinMode(pin_number, INPUT); switch (pin_state) { case 1: target = HIGH; break; case 0: target = LOW; break; case -1: target = !digitalRead(pin_number); break; } while (digitalRead(pin_number) != target) idle(); } // pin_number > -1 } // pin_state -1 0 1 } // code_seen('P') } #if HAS_SERVOS /** * M280: Get or set servo position. P [S] */ inline void gcode_M280() { if (!code_seen('P')) return; int servo_index = code_value_int(); if (servo_index >= 0 && servo_index < NUM_SERVOS) { if (code_seen('S')) MOVE_SERVO(servo_index, code_value_int()); else { SERIAL_ECHO_START; SERIAL_ECHOPGM(" Servo "); SERIAL_ECHO(servo_index); SERIAL_ECHOPGM(": "); SERIAL_ECHOLN(servo[servo_index].read()); } } else { SERIAL_ERROR_START; SERIAL_ERROR("Servo "); SERIAL_ERROR(servo_index); SERIAL_ERRORLN(" out of range"); } } #endif // HAS_SERVOS #if HAS_BUZZER /** * M300: Play beep sound S P */ inline void gcode_M300() { uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260; uint16_t duration = code_seen('P') ? code_value_ushort() : 1000; // Limits the tone duration to 0-5 seconds. NOMORE(duration, 5000); buzzer.tone(duration, frequency); } #endif // HAS_BUZZER #if ENABLED(PIDTEMP) /** * M301: Set PID parameters P I D (and optionally C, L) * * P[float] Kp term * I[float] Ki term (unscaled) * D[float] Kd term (unscaled) * * With PID_ADD_EXTRUSION_RATE: * * C[float] Kc term * L[float] LPQ length */ inline void gcode_M301() { // multi-extruder PID patch: M301 updates or prints a single extruder's PID values // default behaviour (omitting E parameter) is to update for extruder 0 only int e = code_seen('E') ? code_value_int() : 0; // extruder being updated if (e < HOTENDS) { // catch bad input value if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float(); if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float()); if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float()); #if ENABLED(PID_ADD_EXTRUSION_RATE) if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float(); if (code_seen('L')) lpq_len = code_value_float(); NOMORE(lpq_len, LPQ_MAX_LEN); #endif thermalManager.updatePID(); SERIAL_ECHO_START; #if ENABLED(PID_PARAMS_PER_HOTEND) SERIAL_ECHOPGM(" e:"); // specify extruder in serial output SERIAL_ECHO(e); #endif // PID_PARAMS_PER_HOTEND SERIAL_ECHOPGM(" p:"); SERIAL_ECHO(PID_PARAM(Kp, e)); SERIAL_ECHOPGM(" i:"); SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e))); SERIAL_ECHOPGM(" d:"); SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e))); #if ENABLED(PID_ADD_EXTRUSION_RATE) SERIAL_ECHOPGM(" c:"); //Kc does not have scaling applied above, or in resetting defaults SERIAL_ECHO(PID_PARAM(Kc, e)); #endif SERIAL_EOL; } else { SERIAL_ERROR_START; SERIAL_ERRORLN(MSG_INVALID_EXTRUDER); } } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) inline void gcode_M304() { if (code_seen('P')) thermalManager.bedKp = code_value_float(); if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float()); if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float()); thermalManager.updatePID(); SERIAL_ECHO_START; SERIAL_ECHOPGM(" p:"); SERIAL_ECHO(thermalManager.bedKp); SERIAL_ECHOPGM(" i:"); SERIAL_ECHO(unscalePID_i(thermalManager.bedKi)); SERIAL_ECHOPGM(" d:"); SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd)); } #endif // PIDTEMPBED #if defined(CHDK) || HAS_PHOTOGRAPH /** * M240: Trigger a camera by emulating a Canon RC-1 * See http://www.doc-diy.net/photo/rc-1_hacked/ */ inline void gcode_M240() { #ifdef CHDK OUT_WRITE(CHDK, HIGH); chdkHigh = millis(); chdkActive = true; #elif HAS_PHOTOGRAPH const uint8_t NUM_PULSES = 16; const float PULSE_LENGTH = 0.01524; for (int i = 0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } delay(7.33); for (int i = 0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } #endif // !CHDK && HAS_PHOTOGRAPH } #endif // CHDK || PHOTOGRAPH_PIN #if HAS_LCD_CONTRAST /** * M250: Read and optionally set the LCD contrast */ inline void gcode_M250() { if (code_seen('C')) set_lcd_contrast(code_value_int()); SERIAL_PROTOCOLPGM("lcd contrast value: "); SERIAL_PROTOCOL(lcd_contrast); SERIAL_EOL; } #endif // HAS_LCD_CONTRAST #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) /** * M302: Allow cold extrudes, or set the minimum extrude S. */ inline void gcode_M302() { thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0; } #endif // PREVENT_DANGEROUS_EXTRUDE /** * M303: PID relay autotune * * S sets the target temperature. (default 150C) * E (-1 for the bed) (default 0) * C * U with a non-zero value will apply the result to current settings */ inline void gcode_M303() { #if HAS_PID_HEATING int e = code_seen('E') ? code_value_int() : 0; int c = code_seen('C') ? code_value_int() : 5; bool u = code_seen('U') && code_value_bool(); float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0); if (e >= 0 && e < HOTENDS) target_extruder = e; KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output thermalManager.PID_autotune(temp, e, c, u); KEEPALIVE_STATE(IN_HANDLER); #else SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED); #endif } #if ENABLED(SCARA) bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) { //SoftEndsEnabled = false; // Ignore soft endstops during calibration //SERIAL_ECHOLNPGM(" Soft endstops disabled"); if (IsRunning()) { //gcode_get_destination(); // For X Y Z E F delta[X_AXIS] = delta_x; delta[Y_AXIS] = delta_y; calculate_SCARA_forward_Transform(delta); destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS]; destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS]; prepare_move_to_destination(); //ok_to_send(); return true; } return false; } /** * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration) */ inline bool gcode_M360() { SERIAL_ECHOLNPGM(" Cal: Theta 0"); return SCARA_move_to_cal(0, 120); } /** * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) */ inline bool gcode_M361() { SERIAL_ECHOLNPGM(" Cal: Theta 90"); return SCARA_move_to_cal(90, 130); } /** * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration) */ inline bool gcode_M362() { SERIAL_ECHOLNPGM(" Cal: Psi 0"); return SCARA_move_to_cal(60, 180); } /** * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree) */ inline bool gcode_M363() { SERIAL_ECHOLNPGM(" Cal: Psi 90"); return SCARA_move_to_cal(50, 90); } /** * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position) */ inline bool gcode_M364() { SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90"); return SCARA_move_to_cal(45, 135); } /** * M365: SCARA calibration: Scaling factor, X, Y, Z axis */ inline void gcode_M365() { for (int8_t i = X_AXIS; i <= Z_AXIS; i++) if (code_seen(axis_codes[i])) axis_scaling[i] = code_value_float(); } #endif // SCARA #if ENABLED(EXT_SOLENOID) void enable_solenoid(uint8_t num) { switch (num) { case 0: OUT_WRITE(SOL0_PIN, HIGH); break; #if HAS_SOLENOID_1 case 1: OUT_WRITE(SOL1_PIN, HIGH); break; #endif #if HAS_SOLENOID_2 case 2: OUT_WRITE(SOL2_PIN, HIGH); break; #endif #if HAS_SOLENOID_3 case 3: OUT_WRITE(SOL3_PIN, HIGH); break; #endif default: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID); break; } } void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); } void disable_all_solenoids() { OUT_WRITE(SOL0_PIN, LOW); OUT_WRITE(SOL1_PIN, LOW); OUT_WRITE(SOL2_PIN, LOW); OUT_WRITE(SOL3_PIN, LOW); } /** * M380: Enable solenoid on the active extruder */ inline void gcode_M380() { enable_solenoid_on_active_extruder(); } /** * M381: Disable all solenoids */ inline void gcode_M381() { disable_all_solenoids(); } #endif // EXT_SOLENOID /** * M400: Finish all moves */ inline void gcode_M400() { stepper.synchronize(); } #if HAS_BED_PROBE /** * M401: Engage Z Servo endstop if available */ inline void gcode_M401() { DEPLOY_PROBE(); } /** * M402: Retract Z Servo endstop if enabled */ inline void gcode_M402() { STOW_PROBE(); } #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0> */ inline void gcode_M404() { if (code_seen('W')) { filament_width_nominal = code_value_linear_units(); } else { SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); SERIAL_PROTOCOLLN(filament_width_nominal); } } /** * M405: Turn on filament sensor for control */ inline void gcode_M405() { // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than // everything else, it uses code_value_int() instead of code_value_linear_units(). if (code_seen('D')) meas_delay_cm = code_value_int(); NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY); if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup int temp_ratio = thermalManager.widthFil_to_size_ratio(); for (uint8_t i = 0; i < COUNT(measurement_delay); ++i) measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte filwidth_delay_index1 = filwidth_delay_index2 = 0; } filament_sensor = true; //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); //SERIAL_PROTOCOL(filament_width_meas); //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]); } /** * M406: Turn off filament sensor for control */ inline void gcode_M406() { filament_sensor = false; } /** * M407: Get measured filament diameter on serial output */ inline void gcode_M407() { SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); SERIAL_PROTOCOLLN(filament_width_meas); } #endif // FILAMENT_WIDTH_SENSOR void quickstop_stepper() { stepper.quick_stop(); #if DISABLED(DELTA) && DISABLED(SCARA) stepper.synchronize(); #if ENABLED(AUTO_BED_LEVELING_FEATURE) vector_3 pos = planner.adjusted_position(); // values directly from steppers... current_position[X_AXIS] = pos.x; current_position[Y_AXIS] = pos.y; current_position[Z_AXIS] = pos.z; #else current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); #endif sync_plan_position(); // ...re-apply to planner position #endif } #if ENABLED(MESH_BED_LEVELING) /** * M420: Enable/Disable Mesh Bed Leveling */ inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); } /** * M421: Set a single Mesh Bed Leveling Z coordinate * Use either 'M421 X Y Z' or 'M421 I J Z' */ inline void gcode_M421() { int8_t px = 0, py = 0; float z = 0; bool hasX, hasY, hasZ, hasI, hasJ; if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS)); if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS)); if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS); if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS); if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS); if (hasX && hasY && hasZ) { if (px >= 0 && py >= 0) mbl.set_z(px, py, z); else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); } } else if (hasI && hasJ && hasZ) { if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS) mbl.set_z(px, py, z); else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); } } else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS); } } #endif /** * M428: Set home_offset based on the distance between the * current_position and the nearest "reference point." * If an axis is past center its endstop position * is the reference-point. Otherwise it uses 0. This allows * the Z offset to be set near the bed when using a max endstop. * * M428 can't be used more than 2cm away from 0 or an endstop. * * Use M206 to set these values directly. */ inline void gcode_M428() { bool err = false; for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { if (axis_homed[i]) { float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0, diff = current_position[i] - base; if (diff > -20 && diff < 20) { set_home_offset((AxisEnum)i, home_offset[i] - diff); } else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR); LCD_ALERTMESSAGEPGM("Err: Too far!"); #if HAS_BUZZER buzzer.tone(200, 40); #endif err = true; break; } } } if (!err) { SYNC_PLAN_POSITION_KINEMATIC(); report_current_position(); LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED); #if HAS_BUZZER buzzer.tone(200, 659); buzzer.tone(200, 698); #endif } } /** * M500: Store settings in EEPROM */ inline void gcode_M500() { Config_StoreSettings(); } /** * M501: Read settings from EEPROM */ inline void gcode_M501() { Config_RetrieveSettings(); } /** * M502: Revert to default settings */ inline void gcode_M502() { Config_ResetDefault(); } /** * M503: print settings currently in memory */ inline void gcode_M503() { Config_PrintSettings(code_seen('S') && !code_value_bool()); } #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) /** * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>) */ inline void gcode_M540() { if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool(); } #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #if HAS_BED_PROBE inline void gcode_M851() { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET); SERIAL_CHAR(' '); if (code_seen('Z')) { float value = code_value_axis_units(Z_AXIS); if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) { zprobe_zoffset = value; SERIAL_ECHO(zprobe_zoffset); } else { SERIAL_ECHOPGM(MSG_Z_MIN); SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN); SERIAL_CHAR(' '); SERIAL_ECHOPGM(MSG_Z_MAX); SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX); } } else { SERIAL_ECHOPAIR(": ", zprobe_zoffset); } SERIAL_EOL; } #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_CHANGE_FEATURE) /** * M600: Pause for filament change * * E[distance] - Retract the filament this far (negative value) * Z[distance] - Move the Z axis by this distance * X[position] - Move to this X position, with Y * Y[position] - Move to this Y position, with X * L[distance] - Retract distance for removal (manual reload) * * Default values are used for omitted arguments. * */ inline void gcode_M600() { if (thermalManager.tooColdToExtrude(active_extruder)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600); return; } // Show initial message and wait for synchronize steppers lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT); stepper.synchronize(); float lastpos[NUM_AXIS]; // Save current position of all axes for (uint8_t i = 0; i < NUM_AXIS; i++) lastpos[i] = destination[i] = current_position[i]; // Define runplan for move axes #if ENABLED(DELTA) #define RUNPLAN(RATE) calculate_delta(destination); \ planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder); #else #define RUNPLAN(RATE) line_to_destination(RATE * 60); #endif KEEPALIVE_STATE(IN_HANDLER); // Initial retract before move to filament change position if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS); #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0 else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH; #endif RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE); // Lift Z axis float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) : #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0 FILAMENT_CHANGE_Z_ADD #else 0 #endif ; if (z_lift > 0) { destination[Z_AXIS] += z_lift; NOMORE(destination[Z_AXIS], Z_MAX_POS); RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE); } // Move XY axes to filament exchange position if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS); #ifdef FILAMENT_CHANGE_X_POS else destination[X_AXIS] = FILAMENT_CHANGE_X_POS; #endif if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS); #ifdef FILAMENT_CHANGE_Y_POS else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS; #endif RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE); stepper.synchronize(); lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD); // Unload filament if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS); #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0 else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH; #endif RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE); // Synchronize steppers and then disable extruders steppers for manual filament changing stepper.synchronize(); disable_e0(); disable_e1(); disable_e2(); disable_e3(); delay(100); #if HAS_BUZZER millis_t next_tick = 0; #endif // Wait for filament insert by user and press button lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT); while (!lcd_clicked()) { #if HAS_BUZZER millis_t ms = millis(); if (ms >= next_tick) { buzzer.tone(300, 2000); next_tick = ms + 2500; // Beep every 2.5s while waiting } #endif idle(true); } delay(100); while (lcd_clicked()) idle(true); delay(100); // Show load message lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD); // Load filament if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS); #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0 else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH; #endif RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE); stepper.synchronize(); #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0 do { // Extrude filament to get into hotend lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE); destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH; RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE); stepper.synchronize(); // Ask user if more filament should be extruded KEEPALIVE_STATE(PAUSED_FOR_USER); lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION); while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true); KEEPALIVE_STATE(IN_HANDLER); } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT); #endif lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME); KEEPALIVE_STATE(IN_HANDLER); // Set extruder to saved position current_position[E_AXIS] = lastpos[E_AXIS]; destination[E_AXIS] = lastpos[E_AXIS]; planner.set_e_position_mm(current_position[E_AXIS]); #if ENABLED(DELTA) // Move XYZ to starting position, then E calculate_delta(lastpos); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); #else // Move XY to starting position, then Z, then E destination[X_AXIS] = lastpos[X_AXIS]; destination[Y_AXIS] = lastpos[Y_AXIS]; RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE); destination[Z_AXIS] = lastpos[Z_AXIS]; RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE); #endif stepper.synchronize(); #if ENABLED(FILAMENT_RUNOUT_SENSOR) filament_ran_out = false; #endif // Show status screen lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS); } #endif // FILAMENT_CHANGE_FEATURE #if ENABLED(DUAL_X_CARRIAGE) /** * M605: Set dual x-carriage movement mode * * M605 S0: Full control mode. The slicer has full control over x-carriage movement * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn * units x-offset and an optional differential hotend temperature of * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate * the first with a spacing of 100mm in the x direction and 2 degrees hotter. * * Note: the X axis should be homed after changing dual x-carriage mode. */ inline void gcode_M605() { stepper.synchronize(); if (code_seen('S')) dual_x_carriage_mode = code_value_byte(); switch (dual_x_carriage_mode) { case DXC_DUPLICATION_MODE: if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0)); if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff(); SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_CHAR(' '); SERIAL_ECHO(hotend_offset[X_AXIS][0]); SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Y_AXIS][0]); SERIAL_CHAR(' '); SERIAL_ECHO(duplicate_extruder_x_offset); SERIAL_CHAR(','); SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]); break; case DXC_FULL_CONTROL_MODE: case DXC_AUTO_PARK_MODE: break; default: dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; break; } active_extruder_parked = false; extruder_duplication_enabled = false; delayed_move_time = 0; } #endif // DUAL_X_CARRIAGE #if ENABLED(LIN_ADVANCE) /** * M905: Set advance factor */ inline void gcode_M905() { stepper.synchronize(); stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0); } #endif /** * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S */ inline void gcode_M907() { #if HAS_DIGIPOTSS for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int()); if (code_seen('B')) stepper.digipot_current(4, code_value_int()); if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) if (code_seen('X')) stepper.digipot_current(0, code_value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) if (code_seen('Z')) stepper.digipot_current(1, code_value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) if (code_seen('E')) stepper.digipot_current(2, code_value_int()); #endif #if ENABLED(DIGIPOT_I2C) // this one uses actual amps in floating point for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float()); // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...) for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float()); #endif #if ENABLED(DAC_STEPPER_CURRENT) if (code_seen('S')) { float dac_percent = code_value_float(); for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent); } for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float()); #endif } #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT) /** * M908: Control digital trimpot directly (M908 P S) */ inline void gcode_M908() { #if HAS_DIGIPOTSS stepper.digitalPotWrite( code_seen('P') ? code_value_int() : 0, code_seen('S') ? code_value_int() : 0 ); #endif #ifdef DAC_STEPPER_CURRENT dac_current_raw( code_seen('P') ? code_value_byte() : -1, code_seen('S') ? code_value_ushort() : 0 ); #endif } #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF inline void gcode_M909() { dac_print_values(); } inline void gcode_M910() { dac_commit_eeprom(); } #endif #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT #if HAS_MICROSTEPS // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. inline void gcode_M350() { if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte()); for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte()); if (code_seen('B')) stepper.microstep_mode(4, code_value_byte()); stepper.microstep_readings(); } /** * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B * S# determines MS1 or MS2, X# sets the pin high/low. */ inline void gcode_M351() { if (code_seen('S')) switch (code_value_byte()) { case 1: for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1); if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1); break; case 2: for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte()); if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte()); break; } stepper.microstep_readings(); } #endif // HAS_MICROSTEPS /** * M999: Restart after being stopped * * Default behaviour is to flush the serial buffer and request * a resend to the host starting on the last N line received. * * Sending "M999 S1" will resume printing without flushing the * existing command buffer. * */ inline void gcode_M999() { Running = true; lcd_reset_alert_level(); if (code_seen('S') && code_value_bool()) return; // gcode_LastN = Stopped_gcode_LastN; FlushSerialRequestResend(); } /** * T0-T3: Switch tool, usually switching extruders * * F[units/min] Set the movement feedrate * S1 Don't move the tool in XY after change */ inline void gcode_T(uint8_t tmp_extruder) { if (tmp_extruder >= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_CHAR('T'); SERIAL_PROTOCOL_F(tmp_extruder, DEC); SERIAL_ECHOLN(MSG_INVALID_EXTRUDER); return; } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_T"); DEBUG_POS("BEFORE", current_position); } #endif #if HOTENDS > 1 float old_feedrate = feedrate; if (code_seen('F')) { float next_feedrate = code_value_axis_units(X_AXIS); if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate; } else feedrate = XY_PROBE_FEEDRATE; if (tmp_extruder != active_extruder) { bool no_move = code_seen('S') && code_value_bool(); // Save current position to return to after applying extruder offset if (!no_move) set_destination_to_current(); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() && (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) { // Park old head: 1) raise 2) move to park position 3) lower planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder); planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); stepper.synchronize(); } // apply Y & Z extruder offset (x offset is already used in determining home pos) current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder]; current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder]; active_extruder = tmp_extruder; // This function resets the max/min values - the current position may be overwritten below. set_axis_is_at_home(X_AXIS); if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) { current_position[X_AXIS] = inactive_extruder_x_pos; inactive_extruder_x_pos = destination[X_AXIS]; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position if (active_extruder_parked) current_position[X_AXIS] = inactive_extruder_x_pos; else current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset; inactive_extruder_x_pos = destination[X_AXIS]; extruder_duplication_enabled = false; } else { // record raised toolhead position for use by unpark memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT; active_extruder_parked = true; delayed_move_time = 0; } // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together? #else // !DUAL_X_CARRIAGE // // Set current_position to the position of the new nozzle. // Offsets are based on linear distance, so we need to get // the resulting position in coordinate space. // // - With grid or 3-point leveling, offset XYZ by a tilted vector // - With mesh leveling, update Z for the new position // - Otherwise, just use the raw linear distance // // Software endstops are altered here too. Consider a case where: // E0 at X=0 ... E1 at X=10 // When we switch to E1 now X=10, but E1 can't move left. // To express this we apply the change in XY to the software endstops. // E1 can move farther right than E0, so the right limit is extended. // // Note that we don't adjust the Z software endstops. Why not? // Consider a case where Z=0 (here) and switching to E1 makes Z=1 // because the bed is 1mm lower at the new position. As long as // the first nozzle is out of the way, the carriage should be // allowed to move 1mm lower. This technically "breaks" the // Z software endstop. But this is technically correct (and // there is no viable alternative). // #if ENABLED(AUTO_BED_LEVELING_FEATURE) // Offset extruder, make sure to apply the bed level rotation matrix vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder], hotend_offset[Y_AXIS][tmp_extruder], 0), act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder], hotend_offset[Y_AXIS][active_extruder], 0), offset_vec = tmp_offset_vec - act_offset_vec; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { tmp_offset_vec.debug("tmp_offset_vec"); act_offset_vec.debug("act_offset_vec"); offset_vec.debug("offset_vec (BEFORE)"); } #endif offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix)); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)"); #endif // Adjustments to the current position float xydiff[2] = { offset_vec.x, offset_vec.y }; current_position[Z_AXIS] += offset_vec.z; #else // !AUTO_BED_LEVELING_FEATURE float xydiff[2] = { hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder], hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder] }; #if ENABLED(MESH_BED_LEVELING) if (mbl.active()) { float xpos = RAW_CURRENT_POSITION(X_AXIS), ypos = RAW_CURRENT_POSITION(Y_AXIS); current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos); } #endif // MESH_BED_LEVELING #endif // !AUTO_BED_LEVELING_FEATURE // The newly-selected extruder XY is actually at... current_position[X_AXIS] += xydiff[X_AXIS]; current_position[Y_AXIS] += xydiff[Y_AXIS]; for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) { position_shift[i] += xydiff[i]; update_software_endstops((AxisEnum)i); } // Set the new active extruder active_extruder = tmp_extruder; #endif // !DUAL_X_CARRIAGE // Tell the planner the new "current position" SYNC_PLAN_POSITION_KINEMATIC(); // Move to the "old position" (move the extruder into place) if (!no_move && IsRunning()) prepare_move_to_destination(); } // (tmp_extruder != active_extruder) #if ENABLED(EXT_SOLENOID) stepper.synchronize(); disable_all_solenoids(); enable_solenoid_on_active_extruder(); #endif // EXT_SOLENOID feedrate = old_feedrate; #else // !HOTENDS > 1 // Set the new active extruder active_extruder = tmp_extruder; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { DEBUG_POS("AFTER", current_position); SERIAL_ECHOLNPGM("<<< gcode_T"); } #endif SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER); SERIAL_PROTOCOLLN((int)active_extruder); } /** * Process a single command and dispatch it to its handler * This is called from the main loop() */ void process_next_command() { current_command = command_queue[cmd_queue_index_r]; if (DEBUGGING(ECHO)) { SERIAL_ECHO_START; SERIAL_ECHOLN(current_command); } // Sanitize the current command: // - Skip leading spaces // - Bypass N[-0-9][0-9]*[ ]* // - Overwrite * with nul to mark the end while (*current_command == ' ') ++current_command; if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) { current_command += 2; // skip N[-0-9] while (NUMERIC(*current_command)) ++current_command; // skip [0-9]* while (*current_command == ' ') ++current_command; // skip [ ]* } char* starpos = strchr(current_command, '*'); // * should always be the last parameter if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' ' char *cmd_ptr = current_command; // Get the command code, which must be G, M, or T char command_code = *cmd_ptr++; // Skip spaces to get the numeric part while (*cmd_ptr == ' ') cmd_ptr++; uint16_t codenum = 0; // define ahead of goto // Bail early if there's no code bool code_is_good = NUMERIC(*cmd_ptr); if (!code_is_good) goto ExitUnknownCommand; // Get and skip the code number do { codenum = (codenum * 10) + (*cmd_ptr - '0'); cmd_ptr++; } while (NUMERIC(*cmd_ptr)); // Skip all spaces to get to the first argument, or nul while (*cmd_ptr == ' ') cmd_ptr++; // The command's arguments (if any) start here, for sure! current_command_args = cmd_ptr; KEEPALIVE_STATE(IN_HANDLER); // Handle a known G, M, or T switch (command_code) { case 'G': switch (codenum) { // G0, G1 case 0: case 1: gcode_G0_G1(); break; // G2, G3 #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA) case 2: // G2 - CW ARC case 3: // G3 - CCW ARC gcode_G2_G3(codenum == 2); break; #endif // G4 Dwell case 4: gcode_G4(); break; #if ENABLED(BEZIER_CURVE_SUPPORT) // G5 case 5: // G5 - Cubic B_spline gcode_G5(); break; #endif // BEZIER_CURVE_SUPPORT #if ENABLED(FWRETRACT) case 10: // G10: retract case 11: // G11: retract_recover gcode_G10_G11(codenum == 10); break; #endif // FWRETRACT #if ENABLED(INCH_MODE_SUPPORT) case 20: //G20: Inch Mode gcode_G20(); break; case 21: //G21: MM Mode gcode_G21(); break; #endif case 28: // G28: Home all axes, one at a time gcode_G28(); break; #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) case 29: // G29 Detailed Z probe, probes the bed at 3 or more points. gcode_G29(); break; #endif #if HAS_BED_PROBE case 30: // G30 Single Z probe gcode_G30(); break; #if ENABLED(Z_PROBE_SLED) case 31: // G31: dock the sled gcode_G31(); break; case 32: // G32: undock the sled gcode_G32(); break; #endif // Z_PROBE_SLED #endif // HAS_BED_PROBE case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 gcode_G92(); break; } break; case 'M': switch (codenum) { #if ENABLED(ULTIPANEL) case 0: // M0 - Unconditional stop - Wait for user button press on LCD case 1: // M1 - Conditional stop - Wait for user button press on LCD gcode_M0_M1(); break; #endif // ULTIPANEL case 17: gcode_M17(); break; #if ENABLED(SDSUPPORT) case 20: // M20 - list SD card gcode_M20(); break; case 21: // M21 - init SD card gcode_M21(); break; case 22: //M22 - release SD card gcode_M22(); break; case 23: //M23 - Select file gcode_M23(); break; case 24: //M24 - Start SD print gcode_M24(); break; case 25: //M25 - Pause SD print gcode_M25(); break; case 26: //M26 - Set SD index gcode_M26(); break; case 27: //M27 - Get SD status gcode_M27(); break; case 28: //M28 - Start SD write gcode_M28(); break; case 29: //M29 - Stop SD write gcode_M29(); break; case 30: //M30 Delete File gcode_M30(); break; case 32: //M32 - Select file and start SD print gcode_M32(); break; #if ENABLED(LONG_FILENAME_HOST_SUPPORT) case 33: //M33 - Get the long full path to a file or folder gcode_M33(); break; #endif // LONG_FILENAME_HOST_SUPPORT case 928: //M928 - Start SD write gcode_M928(); break; #endif //SDSUPPORT case 31: //M31 take time since the start of the SD print or an M109 command gcode_M31(); break; case 42: //M42 -Change pin status via gcode gcode_M42(); break; #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) case 48: // M48 Z probe repeatability gcode_M48(); break; #endif // Z_MIN_PROBE_REPEATABILITY_TEST case 75: // Start print timer gcode_M75(); break; case 76: // Pause print timer gcode_M76(); break; case 77: // Stop print timer gcode_M77(); break; #if ENABLED(PRINTCOUNTER) case 78: // Show print statistics gcode_M78(); break; #endif #if ENABLED(M100_FREE_MEMORY_WATCHER) case 100: gcode_M100(); break; #endif case 104: // M104 gcode_M104(); break; case 110: // M110: Set Current Line Number gcode_M110(); break; case 111: // M111: Set debug level gcode_M111(); break; #if DISABLED(EMERGENCY_PARSER) case 108: // M108: Cancel Waiting gcode_M108(); break; case 112: // M112: Emergency Stop gcode_M112(); break; case 410: // M410 quickstop - Abort all the planned moves. gcode_M410(); break; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) case 113: // M113: Set Host Keepalive interval gcode_M113(); break; #endif case 140: // M140: Set bed temp gcode_M140(); break; case 105: // M105: Read current temperature gcode_M105(); KEEPALIVE_STATE(NOT_BUSY); return; // "ok" already printed case 109: // M109: Wait for temperature gcode_M109(); break; #if HAS_TEMP_BED case 190: // M190: Wait for bed heater to reach target gcode_M190(); break; #endif // HAS_TEMP_BED #if FAN_COUNT > 0 case 106: // M106: Fan On gcode_M106(); break; case 107: // M107: Fan Off gcode_M107(); break; #endif // FAN_COUNT > 0 #if ENABLED(BARICUDA) // PWM for HEATER_1_PIN #if HAS_HEATER_1 case 126: // M126: valve open gcode_M126(); break; case 127: // M127: valve closed gcode_M127(); break; #endif // HAS_HEATER_1 // PWM for HEATER_2_PIN #if HAS_HEATER_2 case 128: // M128: valve open gcode_M128(); break; case 129: // M129: valve closed gcode_M129(); break; #endif // HAS_HEATER_2 #endif // BARICUDA #if HAS_POWER_SWITCH case 80: // M80: Turn on Power Supply gcode_M80(); break; #endif // HAS_POWER_SWITCH case 81: // M81: Turn off Power, including Power Supply, if possible gcode_M81(); break; case 82: gcode_M82(); break; case 83: gcode_M83(); break; case 18: // (for compatibility) case 84: // M84 gcode_M18_M84(); break; case 85: // M85 gcode_M85(); break; case 92: // M92: Set the steps-per-unit for one or more axes gcode_M92(); break; case 115: // M115: Report capabilities gcode_M115(); break; case 117: // M117: Set LCD message text, if possible gcode_M117(); break; case 114: // M114: Report current position gcode_M114(); break; case 120: // M120: Enable endstops gcode_M120(); break; case 121: // M121: Disable endstops gcode_M121(); break; case 119: // M119: Report endstop states gcode_M119(); break; #if ENABLED(ULTIPANEL) case 145: // M145: Set material heatup parameters gcode_M145(); break; #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) case 149: gcode_M149(); break; #endif #if ENABLED(BLINKM) case 150: // M150 gcode_M150(); break; #endif //BLINKM #if ENABLED(EXPERIMENTAL_I2CBUS) case 155: gcode_M155(); break; case 156: gcode_M156(); break; #endif //EXPERIMENTAL_I2CBUS case 200: // M200 D Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.) gcode_M200(); break; case 201: // M201 gcode_M201(); break; #if 0 // Not used for Sprinter/grbl gen6 case 202: // M202 gcode_M202(); break; #endif case 203: // M203 max feedrate units/sec gcode_M203(); break; case 204: // M204 acclereration S normal moves T filmanent only moves gcode_M204(); break; case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk gcode_M205(); break; case 206: // M206 additional homing offset gcode_M206(); break; #if ENABLED(DELTA) case 665: // M665 set delta configurations L R S gcode_M665(); break; #endif #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS) case 666: // M666 set delta / dual endstop adjustment gcode_M666(); break; #endif #if ENABLED(FWRETRACT) case 207: // M207 - Set Retract Length: S, Feedrate: F, and Z lift: Z gcode_M207(); break; case 208: // M208 - Set Recover (unretract) Additional (!) Length: S and Feedrate: F gcode_M208(); break; case 209: // M209 - Turn Automatic Retract Detection on/off: S (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction. gcode_M209(); break; #endif // FWRETRACT #if HOTENDS > 1 case 218: // M218 - Set a tool offset: T X Y gcode_M218(); break; #endif case 220: // M220 - Set Feedrate Percentage: S ("FR" on your LCD) gcode_M220(); break; case 221: // M221 - Set Flow Percentage: S gcode_M221(); break; case 226: // M226 P S- Wait until the specified pin reaches the state required gcode_M226(); break; #if HAS_SERVOS case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds gcode_M280(); break; #endif // HAS_SERVOS #if HAS_BUZZER case 300: // M300 - Play beep tone gcode_M300(); break; #endif // HAS_BUZZER #if ENABLED(PIDTEMP) case 301: // M301 gcode_M301(); break; #endif // PIDTEMP #if ENABLED(PIDTEMPBED) case 304: // M304 gcode_M304(); break; #endif // PIDTEMPBED #if defined(CHDK) || HAS_PHOTOGRAPH case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ gcode_M240(); break; #endif // CHDK || PHOTOGRAPH_PIN #if HAS_LCD_CONTRAST case 250: // M250 Set LCD contrast value: C (value 0..63) gcode_M250(); break; #endif // HAS_LCD_CONTRAST #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) case 302: // allow cold extrudes, or set the minimum extrude temperature gcode_M302(); break; #endif // PREVENT_DANGEROUS_EXTRUDE case 303: // M303 PID autotune gcode_M303(); break; #if ENABLED(SCARA) case 360: // M360 SCARA Theta pos1 if (gcode_M360()) return; break; case 361: // M361 SCARA Theta pos2 if (gcode_M361()) return; break; case 362: // M362 SCARA Psi pos1 if (gcode_M362()) return; break; case 363: // M363 SCARA Psi pos2 if (gcode_M363()) return; break; case 364: // M364 SCARA Psi pos3 (90 deg to Theta) if (gcode_M364()) return; break; case 365: // M365 Set SCARA scaling for X Y Z gcode_M365(); break; #endif // SCARA case 400: // M400 finish all moves gcode_M400(); break; #if HAS_BED_PROBE case 401: gcode_M401(); break; case 402: gcode_M402(); break; #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_WIDTH_SENSOR) case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width gcode_M404(); break; case 405: //M405 Turn on filament sensor for control gcode_M405(); break; case 406: //M406 Turn off filament sensor for control gcode_M406(); break; case 407: //M407 Display measured filament diameter gcode_M407(); break; #endif // ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(MESH_BED_LEVELING) case 420: // M420 Enable/Disable Mesh Bed Leveling gcode_M420(); break; case 421: // M421 Set a Mesh Bed Leveling Z coordinate gcode_M421(); break; #endif case 428: // M428 Apply current_position to home_offset gcode_M428(); break; case 500: // M500 Store settings in EEPROM gcode_M500(); break; case 501: // M501 Read settings from EEPROM gcode_M501(); break; case 502: // M502 Revert to default settings gcode_M502(); break; case 503: // M503 print settings currently in memory gcode_M503(); break; #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) case 540: gcode_M540(); break; #endif #if HAS_BED_PROBE case 851: gcode_M851(); break; #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_CHANGE_FEATURE) case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] gcode_M600(); break; #endif // FILAMENT_CHANGE_FEATURE #if ENABLED(DUAL_X_CARRIAGE) case 605: gcode_M605(); break; #endif // DUAL_X_CARRIAGE #if ENABLED(LIN_ADVANCE) case 905: // M905 Set advance factor. gcode_M905(); break; #endif case 907: // M907 Set digital trimpot motor current using axis codes. gcode_M907(); break; #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT) case 908: // M908 Control digital trimpot directly. gcode_M908(); break; #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF case 909: // M909 Print digipot/DAC current value gcode_M909(); break; case 910: // M910 Commit digipot/DAC value to external EEPROM gcode_M910(); break; #endif #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT #if HAS_MICROSTEPS case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. gcode_M350(); break; case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low. gcode_M351(); break; #endif // HAS_MICROSTEPS case 999: // M999: Restart after being Stopped gcode_M999(); break; } break; case 'T': gcode_T(codenum); break; default: code_is_good = false; } KEEPALIVE_STATE(NOT_BUSY); ExitUnknownCommand: // Still unknown command? Throw an error if (!code_is_good) unknown_command_error(); ok_to_send(); } void FlushSerialRequestResend() { //char command_queue[cmd_queue_index_r][100]="Resend:"; MYSERIAL.flush(); SERIAL_PROTOCOLPGM(MSG_RESEND); SERIAL_PROTOCOLLN(gcode_LastN + 1); ok_to_send(); } void ok_to_send() { refresh_cmd_timeout(); if (!send_ok[cmd_queue_index_r]) return; SERIAL_PROTOCOLPGM(MSG_OK); #if ENABLED(ADVANCED_OK) char* p = command_queue[cmd_queue_index_r]; if (*p == 'N') { SERIAL_PROTOCOL(' '); SERIAL_ECHO(*p++); while (NUMERIC_SIGNED(*p)) SERIAL_ECHO(*p++); } SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1)); SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue); #endif SERIAL_EOL; } void clamp_to_software_endstops(float target[3]) { if (min_software_endstops) { NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]); NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]); NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]); } if (max_software_endstops) { NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]); NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]); NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]); } } #if ENABLED(DELTA) void recalc_delta_settings(float radius, float diagonal_rod) { delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); delta_tower3_x = 0.0; // back middle tower delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3); delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1); delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2); delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); } void calculate_delta(float cartesian[3]) { delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 - sq(delta_tower1_x - cartesian[X_AXIS]) - sq(delta_tower1_y - cartesian[Y_AXIS]) ) + cartesian[Z_AXIS]; delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2 - sq(delta_tower2_x - cartesian[X_AXIS]) - sq(delta_tower2_y - cartesian[Y_AXIS]) ) + cartesian[Z_AXIS]; delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3 - sq(delta_tower3_x - cartesian[X_AXIS]) - sq(delta_tower3_y - cartesian[Y_AXIS]) ) + cartesian[Z_AXIS]; /** SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]); SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]); SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]); SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]); */ } #if ENABLED(AUTO_BED_LEVELING_FEATURE) // Adjust print surface height by linear interpolation over the bed_level array. void adjust_delta(float cartesian[3]) { if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done! int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; float h1 = 0.001 - half, h2 = half - 0.001, grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])), grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1])); int floor_x = floor(grid_x), floor_y = floor(grid_y); float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, z1 = bed_level[floor_x + half][floor_y + half], z2 = bed_level[floor_x + half][floor_y + half + 1], z3 = bed_level[floor_x + half + 1][floor_y + half], z4 = bed_level[floor_x + half + 1][floor_y + half + 1], left = (1 - ratio_y) * z1 + ratio_y * z2, right = (1 - ratio_y) * z3 + ratio_y * z4, offset = (1 - ratio_x) * left + ratio_x * right; delta[X_AXIS] += offset; delta[Y_AXIS] += offset; delta[Z_AXIS] += offset; /** SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x); SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y); SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x); SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y); SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x); SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y); SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1); SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2); SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3); SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4); SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left); SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right); SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset); */ } #endif // AUTO_BED_LEVELING_FEATURE #endif // DELTA #if ENABLED(MESH_BED_LEVELING) // This function is used to split lines on mesh borders so each segment is only part of one mesh area void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { if (!mbl.active()) { planner.buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)), cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS)); NOMORE(pcx, MESH_NUM_X_POINTS - 2); NOMORE(pcy, MESH_NUM_Y_POINTS - 2); NOMORE(cx, MESH_NUM_X_POINTS - 2); NOMORE(cy, MESH_NUM_Y_POINTS - 2); if (pcx == cx && pcy == cy) { // Start and end on same mesh square planner.buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } float nx, ny, nz, ne, normalized_dist; if (cx > pcx && TEST(x_splits, cx)) { nx = mbl.get_probe_x(cx) + home_offset[X_AXIS]; normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; CBI(x_splits, cx); } else if (cx < pcx && TEST(x_splits, pcx)) { nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS]; normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; CBI(x_splits, pcx); } else if (cy > pcy && TEST(y_splits, cy)) { ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS]; normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; CBI(y_splits, cy); } else if (cy < pcy && TEST(y_splits, pcy)) { ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS]; normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; CBI(y_splits, pcy); } else { // Already split on a border planner.buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } // Do the split and look for more borders destination[X_AXIS] = nx; destination[Y_AXIS] = ny; destination[Z_AXIS] = nz; destination[E_AXIS] = ne; mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits); destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[Z_AXIS] = z; destination[E_AXIS] = e; mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); } #endif // MESH_BED_LEVELING #if ENABLED(DELTA) || ENABLED(SCARA) inline bool prepare_delta_move_to(float target[NUM_AXIS]) { float difference[NUM_AXIS]; for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); if (cartesian_mm < 0.000001) return false; float _feedrate = feedrate * feedrate_multiplier / 6000.0; float seconds = cartesian_mm / _feedrate; int steps = max(1, int(delta_segments_per_second * seconds)); float inv_steps = 1.0/steps; // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); for (int s = 1; s <= steps; s++) { float fraction = float(s) * inv_steps; for (int8_t i = 0; i < NUM_AXIS; i++) target[i] = current_position[i] + difference[i] * fraction; calculate_delta(target); #if ENABLED(AUTO_BED_LEVELING_FEATURE) if (!bed_leveling_in_progress) adjust_delta(target); #endif //DEBUG_POS("prepare_delta_move_to", target); //DEBUG_POS("prepare_delta_move_to", delta); planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder); } return true; } #endif // DELTA || SCARA #if ENABLED(SCARA) inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); } #endif #if ENABLED(DUAL_X_CARRIAGE) inline bool prepare_move_to_destination_dualx() { if (active_extruder_parked) { if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { // move duplicate extruder into correct duplication position. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1); SYNC_PLAN_POSITION_KINEMATIC(); stepper.synchronize(); extruder_duplication_enabled = true; active_extruder_parked = false; } else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head if (current_position[E_AXIS] == destination[E_AXIS]) { // This is a travel move (with no extrusion) // Skip it, but keep track of the current position // (so it can be used as the start of the next non-travel move) if (delayed_move_time != 0xFFFFFFFFUL) { set_current_to_destination(); NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]); delayed_move_time = millis(); return false; } } delayed_move_time = 0; // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder); active_extruder_parked = false; } } return true; } #endif // DUAL_X_CARRIAGE #if DISABLED(DELTA) && DISABLED(SCARA) inline bool prepare_move_to_destination_cartesian() { // Do not use feedrate_multiplier for E or Z only moves if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) { line_to_destination(); } else { #if ENABLED(MESH_BED_LEVELING) mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); return false; #else line_to_destination(feedrate * feedrate_multiplier / 100.0); #endif } return true; } #endif // !DELTA && !SCARA #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) { if (DEBUGGING(DRYRUN)) return; float de = dest_e - curr_e; if (de) { if (thermalManager.tooColdToExtrude(active_extruder)) { curr_e = dest_e; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (labs(de) > EXTRUDE_MAXLENGTH) { curr_e = dest_e; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif } } #endif // PREVENT_DANGEROUS_EXTRUDE /** * Prepare a single move and get ready for the next one * * (This may call planner.buffer_line several times to put * smaller moves into the planner for DELTA or SCARA.) */ void prepare_move_to_destination() { clamp_to_software_endstops(destination); refresh_cmd_timeout(); #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]); #endif #if ENABLED(SCARA) if (!prepare_scara_move_to(destination)) return; #elif ENABLED(DELTA) if (!prepare_delta_move_to(destination)) return; #else #if ENABLED(DUAL_X_CARRIAGE) if (!prepare_move_to_destination_dualx()) return; #endif if (!prepare_move_to_destination_cartesian()) return; #endif set_current_to_destination(); } #if ENABLED(ARC_SUPPORT) /** * Plan an arc in 2 dimensions * * The arc is approximated by generating many small linear segments. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) * Arcs should only be made relatively large (over 5mm), as larger arcs with * larger segments will tend to be more efficient. Your slicer should have * options for G2/G3 arc generation. In future these options may be GCode tunable. */ void plan_arc( float target[NUM_AXIS], // Destination position float* offset, // Center of rotation relative to current_position uint8_t clockwise // Clockwise? ) { float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), center_X = current_position[X_AXIS] + offset[X_AXIS], center_Y = current_position[Y_AXIS] + offset[Y_AXIS], linear_travel = target[Z_AXIS] - current_position[Z_AXIS], extruder_travel = target[E_AXIS] - current_position[E_AXIS], r_X = -offset[X_AXIS], // Radius vector from center to current location r_Y = -offset[Y_AXIS], rt_X = target[X_AXIS] - center_X, rt_Y = target[Y_AXIS] - center_Y; // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); if (angular_travel < 0) angular_travel += RADIANS(360); if (clockwise) angular_travel -= RADIANS(360); // Make a circle if the angular rotation is 0 if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS]) angular_travel += RADIANS(360); float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel)); if (mm_of_travel < 0.001) return; uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT)); if (segments == 0) segments = 1; float theta_per_segment = angular_travel / segments; float linear_per_segment = linear_travel / segments; float extruder_per_segment = extruder_travel / segments; /** * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, * and phi is the angle of rotation. Based on the solution approach by Jens Geisler. * r_T = [cos(phi) -sin(phi); * sin(phi) cos(phi] * r ; * * For arc generation, the center of the circle is the axis of rotation and the radius vector is * defined from the circle center to the initial position. Each line segment is formed by successive * vector rotations. This requires only two cos() and sin() computations to form the rotation * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since * all double numbers are single precision on the Arduino. (True double precision will not have * round off issues for CNC applications.) Single precision error can accumulate to be greater than * tool precision in some cases. Therefore, arc path correction is implemented. * * Small angle approximation may be used to reduce computation overhead further. This approximation * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an * issue for CNC machines with the single precision Arduino calculations. * * This approximation also allows plan_arc to immediately insert a line segment into the planner * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. * This is important when there are successive arc motions. */ // Vector rotation matrix values float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation float sin_T = theta_per_segment; float arc_target[NUM_AXIS]; float sin_Ti, cos_Ti, r_new_Y; uint16_t i; int8_t count = 0; // Initialize the linear axis arc_target[Z_AXIS] = current_position[Z_AXIS]; // Initialize the extruder axis arc_target[E_AXIS] = current_position[E_AXIS]; float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0; millis_t next_idle_ms = millis() + 200UL; for (i = 1; i < segments; i++) { // Iterate (segments-1) times thermalManager.manage_heater(); millis_t now = millis(); if (ELAPSED(now, next_idle_ms)) { next_idle_ms = now + 200UL; idle(); } if (++count < N_ARC_CORRECTION) { // Apply vector rotation matrix to previous r_X / 1 r_new_Y = r_X * sin_T + r_Y * cos_T; r_X = r_X * cos_T - r_Y * sin_T; r_Y = r_new_Y; } else { // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. // Compute exact location by applying transformation matrix from initial radius vector(=-offset). // To reduce stuttering, the sin and cos could be computed at different times. // For now, compute both at the same time. cos_Ti = cos(i * theta_per_segment); sin_Ti = sin(i * theta_per_segment); r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; count = 0; } // Update arc_target location arc_target[X_AXIS] = center_X + r_X; arc_target[Y_AXIS] = center_Y + r_Y; arc_target[Z_AXIS] += linear_per_segment; arc_target[E_AXIS] += extruder_per_segment; clamp_to_software_endstops(arc_target); #if ENABLED(DELTA) || ENABLED(SCARA) calculate_delta(arc_target); #if ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(arc_target); #endif planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); #else planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); #endif } // Ensure last segment arrives at target location. #if ENABLED(DELTA) || ENABLED(SCARA) calculate_delta(target); #if ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(target); #endif planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); #else planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); #endif // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. set_current_to_destination(); } #endif #if ENABLED(BEZIER_CURVE_SUPPORT) void plan_cubic_move(const float offset[4]) { cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder); // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. set_current_to_destination(); } #endif // BEZIER_CURVE_SUPPORT #if HAS_CONTROLLERFAN void controllerFan() { static millis_t lastMotorOn = 0; // Last time a motor was turned on static millis_t nextMotorCheck = 0; // Last time the state was checked millis_t ms = millis(); if (ELAPSED(ms, nextMotorCheck)) { nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0 || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled... #if EXTRUDERS > 1 || E1_ENABLE_READ == E_ENABLE_ON #if HAS_X2_ENABLE || X2_ENABLE_READ == X_ENABLE_ON #endif #if EXTRUDERS > 2 || E2_ENABLE_READ == E_ENABLE_ON #if EXTRUDERS > 3 || E3_ENABLE_READ == E_ENABLE_ON #endif #endif #endif ) { lastMotorOn = ms; //... set time to NOW so the fan will turn on } // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED; // allows digital or PWM fan output to be used (see M42 handling) digitalWrite(CONTROLLERFAN_PIN, speed); analogWrite(CONTROLLERFAN_PIN, speed); } } #endif // HAS_CONTROLLERFAN #if ENABLED(SCARA) void calculate_SCARA_forward_Transform(float f_scara[3]) { // Perform forward kinematics, and place results in delta[3] // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 float x_sin, x_cos, y_sin, y_cos; //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]); //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]); x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1; x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1; y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2; y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2; //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin); //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos); //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin); //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos); delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]); //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); } void calculate_delta(float cartesian[3]) { //reverse kinematics. // Perform reversed kinematics, and place results in delta[3] // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 float SCARA_pos[2]; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. #if (Linkage_1 == Linkage_2) SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; #else SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000; #endif SCARA_S2 = sqrt(1 - sq(SCARA_C2)); SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2; SCARA_K2 = Linkage_2 * SCARA_S2; SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1; SCARA_psi = atan2(SCARA_S2, SCARA_C2); delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) delta[Z_AXIS] = cartesian[Z_AXIS]; /** SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]); SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]); SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]); SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2); SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2); SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta); SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi); SERIAL_EOL; */ } #endif // SCARA #if ENABLED(TEMP_STAT_LEDS) static bool red_led = false; static millis_t next_status_led_update_ms = 0; void handle_status_leds(void) { float max_temp = 0.0; if (ELAPSED(millis(), next_status_led_update_ms)) { next_status_led_update_ms += 500; // Update every 0.5s HOTEND_LOOP() { max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e)); } #if HAS_TEMP_BED max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed()); #endif bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led; if (new_led != red_led) { red_led = new_led; digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW); digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH); } } } #endif void enable_all_steppers() { enable_x(); enable_y(); enable_z(); enable_e0(); enable_e1(); enable_e2(); enable_e3(); } void disable_all_steppers() { disable_x(); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); disable_e3(); } /** * Standard idle routine keeps the machine alive */ void idle( #if ENABLED(FILAMENT_CHANGE_FEATURE) bool no_stepper_sleep/*=false*/ #endif ) { lcd_update(); host_keepalive(); manage_inactivity( #if ENABLED(FILAMENT_CHANGE_FEATURE) no_stepper_sleep #endif ); thermalManager.manage_heater(); #if ENABLED(PRINTCOUNTER) print_job_timer.tick(); #endif #if HAS_BUZZER buzzer.tick(); #endif } /** * Manage several activities: * - Check for Filament Runout * - Keep the command buffer full * - Check for maximum inactive time between commands * - Check for maximum inactive time between stepper commands * - Check if pin CHDK needs to go LOW * - Check for KILL button held down * - Check for HOME button held down * - Check if cooling fan needs to be switched on * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT) */ void manage_inactivity(bool ignore_stepper_queue/*=false*/) { #if ENABLED(FILAMENT_RUNOUT_SENSOR) if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING)) handle_filament_runout(); #endif if (commands_in_queue < BUFSIZE) get_available_commands(); millis_t ms = millis(); if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED)); if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time) && !ignore_stepper_queue && !planner.blocks_queued()) { #if ENABLED(DISABLE_INACTIVE_X) disable_x(); #endif #if ENABLED(DISABLE_INACTIVE_Y) disable_y(); #endif #if ENABLED(DISABLE_INACTIVE_Z) disable_z(); #endif #if ENABLED(DISABLE_INACTIVE_E) disable_e0(); disable_e1(); disable_e2(); disable_e3(); #endif } #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) { chdkActive = false; WRITE(CHDK, LOW); } #endif #if HAS_KILL // Check if the kill button was pressed and wait just in case it was an accidental // key kill key press // ------------------------------------------------------------------------------- static int killCount = 0; // make the inactivity button a bit less responsive const int KILL_DELAY = 750; if (!READ(KILL_PIN)) killCount++; else if (killCount > 0) killCount--; // Exceeded threshold and we can confirm that it was not accidental // KILL the machine // ---------------------------------------------------------------- if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED)); #endif #if HAS_HOME // Check to see if we have to home, use poor man's debouncer // --------------------------------------------------------- static int homeDebounceCount = 0; // poor man's debouncing count const int HOME_DEBOUNCE_DELAY = 2500; if (!READ(HOME_PIN)) { if (!homeDebounceCount) { enqueue_and_echo_commands_P(PSTR("G28")); LCD_MESSAGEPGM(MSG_AUTO_HOME); } if (homeDebounceCount < HOME_DEBOUNCE_DELAY) homeDebounceCount++; else homeDebounceCount = 0; } #endif #if HAS_CONTROLLERFAN controllerFan(); // Check if fan should be turned on to cool stepper drivers down #endif #if ENABLED(EXTRUDER_RUNOUT_PREVENT) if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)) if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) { bool oldstatus; switch (active_extruder) { case 0: oldstatus = E0_ENABLE_READ; enable_e0(); break; #if EXTRUDERS > 1 case 1: oldstatus = E1_ENABLE_READ; enable_e1(); break; #if EXTRUDERS > 2 case 2: oldstatus = E2_ENABLE_READ; enable_e2(); break; #if EXTRUDERS > 3 case 3: oldstatus = E3_ENABLE_READ; enable_e3(); break; #endif #endif #endif } float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS]; planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder); current_position[E_AXIS] = oldepos; destination[E_AXIS] = oldedes; planner.set_e_position_mm(oldepos); previous_cmd_ms = ms; // refresh_cmd_timeout() stepper.synchronize(); switch (active_extruder) { case 0: E0_ENABLE_WRITE(oldstatus); break; #if EXTRUDERS > 1 case 1: E1_ENABLE_WRITE(oldstatus); break; #if EXTRUDERS > 2 case 2: E2_ENABLE_WRITE(oldstatus); break; #if EXTRUDERS > 3 case 3: E3_ENABLE_WRITE(oldstatus); break; #endif #endif #endif } } #endif #if ENABLED(DUAL_X_CARRIAGE) // handle delayed move timeout if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) { // travel moves have been received so enact them delayed_move_time = 0xFFFFFFFFUL; // force moves to be done set_destination_to_current(); prepare_move_to_destination(); } #endif #if ENABLED(TEMP_STAT_LEDS) handle_status_leds(); #endif planner.check_axes_activity(); } void kill(const char* lcd_msg) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_KILLED); #if ENABLED(ULTRA_LCD) kill_screen(lcd_msg); #else UNUSED(lcd_msg); #endif for (int i = 5; i--;) delay(100); // Wait a short time cli(); // Stop interrupts thermalManager.disable_all_heaters(); disable_all_steppers(); #if HAS_POWER_SWITCH pinMode(PS_ON_PIN, INPUT); #endif suicide(); while (1) { #if ENABLED(USE_WATCHDOG) watchdog_reset(); #endif } // Wait for reset } #if ENABLED(FILAMENT_RUNOUT_SENSOR) void handle_filament_runout() { if (!filament_ran_out) { filament_ran_out = true; enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT)); stepper.synchronize(); } } #endif // FILAMENT_RUNOUT_SENSOR #if ENABLED(FAST_PWM_FAN) void setPwmFrequency(uint8_t pin, int val) { val &= 0x07; switch (digitalPinToTimer(pin)) { #if defined(TCCR0A) case TIMER0A: case TIMER0B: // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); // TCCR0B |= val; break; #endif #if defined(TCCR1A) case TIMER1A: case TIMER1B: // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); // TCCR1B |= val; break; #endif #if defined(TCCR2) case TIMER2: case TIMER2: TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); TCCR2 |= val; break; #endif #if defined(TCCR2A) case TIMER2A: case TIMER2B: TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); TCCR2B |= val; break; #endif #if defined(TCCR3A) case TIMER3A: case TIMER3B: case TIMER3C: TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); TCCR3B |= val; break; #endif #if defined(TCCR4A) case TIMER4A: case TIMER4B: case TIMER4C: TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); TCCR4B |= val; break; #endif #if defined(TCCR5A) case TIMER5A: case TIMER5B: case TIMER5C: TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); TCCR5B |= val; break; #endif } } #endif // FAST_PWM_FAN void stop() { thermalManager.disable_all_heaters(); if (IsRunning()) { Running = false; Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); LCD_MESSAGEPGM(MSG_STOPPED); } } float calculate_volumetric_multiplier(float diameter) { if (!volumetric_enabled || diameter == 0) return 1.0; float d2 = diameter * 0.5; return 1.0 / (M_PI * d2 * d2); } void calculate_volumetric_multipliers() { for (int i = 0; i < EXTRUDERS; i++) volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); }