/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) #include "../gcode.h" #include "../../module/motion.h" #include "../../module/probe.h" #include "../../feature/bedlevel/bedlevel.h" #if HAS_SPI_LCD #include "../../lcd/ultralcd.h" #endif #if HAS_LEVELING #include "../../module/planner.h" #endif /** * M48: Z probe repeatability measurement function. * * Usage: * M48 * P = Number of sampled points (4-50, default 10) * X = Sample X position * Y = Sample Y position * V = Verbose level (0-4, default=1) * E = Engage Z probe for each reading * L = Number of legs of movement before probe * S = Schizoid (Or Star if you prefer) * * This function requires the machine to be homed before invocation. */ void GcodeSuite::M48() { if (axis_unhomed_error()) return; const int8_t verbose_level = parser.byteval('V', 1); if (!WITHIN(verbose_level, 0, 4)) { SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4)."); return; } if (verbose_level > 0) SERIAL_ECHOLNPGM("M48 Z-Probe Repeatability Test"); const int8_t n_samples = parser.byteval('P', 10); if (!WITHIN(n_samples, 4, 50)) { SERIAL_ECHOLNPGM("?Sample size not plausible (4-50)."); return; } const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE; float X_current = current_position[X_AXIS], Y_current = current_position[Y_AXIS]; const float X_probe_location = parser.linearval('X', X_current + zprobe_offset[X_AXIS]), Y_probe_location = parser.linearval('Y', Y_current + zprobe_offset[Y_AXIS]); if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) { SERIAL_ECHOLNPGM("? (X,Y) out of bounds."); return; } bool seen_L = parser.seen('L'); uint8_t n_legs = seen_L ? parser.value_byte() : 0; if (n_legs > 15) { SERIAL_ECHOLNPGM("?Number of legs in movement not plausible (0-15)."); return; } if (n_legs == 1) n_legs = 2; const bool schizoid_flag = parser.boolval('S'); if (schizoid_flag && !seen_L) n_legs = 7; /** * Now get everything to the specified probe point So we can safely do a * probe to get us close to the bed. If the Z-Axis is far from the bed, * we don't want to use that as a starting point for each probe. */ if (verbose_level > 2) SERIAL_ECHOLNPGM("Positioning the probe..."); // Disable bed level correction in M48 because we want the raw data when we probe #if HAS_LEVELING const bool was_enabled = planner.leveling_active; set_bed_leveling_enabled(false); #endif remember_feedrate_scaling_off(); float mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples]; // Move to the first point, deploy, and probe const float t = probe_at_point(X_probe_location, Y_probe_location, raise_after, verbose_level); bool probing_good = !isnan(t); if (probing_good) { randomSeed(millis()); for (uint8_t n = 0; n < n_samples; n++) { #if HAS_SPI_LCD // Display M48 progress in the status bar ui.status_printf_P(0, PSTR(MSG_M48_POINT ": %d/%d"), int(n + 1), int(n_samples)); #endif if (n_legs) { const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise float angle = random(0, 360); const float radius = random( #if ENABLED(DELTA) int(0.1250000000 * (DELTA_PRINTABLE_RADIUS)), int(0.3333333333 * (DELTA_PRINTABLE_RADIUS)) #else int(5), int(0.125 * _MIN(X_BED_SIZE, Y_BED_SIZE)) #endif ); if (verbose_level > 3) { SERIAL_ECHOPAIR("Start radius:", radius, " angle:", angle, " dir:"); if (dir > 0) SERIAL_CHAR('C'); SERIAL_ECHOLNPGM("CW"); } for (uint8_t l = 0; l < n_legs - 1; l++) { float delta_angle; if (schizoid_flag) { // The points of a 5 point star are 72 degrees apart. We need to // skip a point and go to the next one on the star. delta_angle = dir * 2.0 * 72.0; } else { // If we do this line, we are just trying to move further // around the circle. delta_angle = dir * (float) random(25, 45); } angle += delta_angle; while (angle > 360.0) angle -= 360.0; // We probably do not need to keep the angle between 0 and 2*PI, but the // Arduino documentation says the trig functions should not be given values while (angle < 0.0) angle += 360.0; // outside of this range. It looks like they behave correctly with // numbers outside of the range, but just to be safe we clamp them. X_current = X_probe_location - zprobe_offset[X_AXIS] + cos(RADIANS(angle)) * radius; Y_current = Y_probe_location - zprobe_offset[Y_AXIS] + sin(RADIANS(angle)) * radius; #if DISABLED(DELTA) LIMIT(X_current, X_MIN_POS, X_MAX_POS); LIMIT(Y_current, Y_MIN_POS, Y_MAX_POS); #else // If we have gone out too far, we can do a simple fix and scale the numbers // back in closer to the origin. while (!position_is_reachable_by_probe(X_current, Y_current)) { X_current *= 0.8; Y_current *= 0.8; if (verbose_level > 3) SERIAL_ECHOLNPAIR("Moving inward: X", X_current, " Y", Y_current); } #endif if (verbose_level > 3) SERIAL_ECHOLNPAIR("Going to: X", X_current, " Y", Y_current, " Z", current_position[Z_AXIS]); do_blocking_move_to_xy(X_current, Y_current); } // n_legs loop } // n_legs // Probe a single point sample_set[n] = probe_at_point(X_probe_location, Y_probe_location, raise_after, 0); // Break the loop if the probe fails probing_good = !isnan(sample_set[n]); if (!probing_good) break; /** * Get the current mean for the data points we have so far */ float sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sample_set[j]; mean = sum / (n + 1); NOMORE(min, sample_set[n]); NOLESS(max, sample_set[n]); /** * Now, use that mean to calculate the standard deviation for the * data points we have so far */ sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sq(sample_set[j] - mean); sigma = SQRT(sum / (n + 1)); if (verbose_level > 0) { if (verbose_level > 1) { SERIAL_ECHO(n + 1); SERIAL_ECHOPAIR(" of ", int(n_samples)); SERIAL_ECHOPAIR_F(": z: ", sample_set[n], 3); if (verbose_level > 2) { SERIAL_ECHOPAIR_F(" mean: ", mean, 4); SERIAL_ECHOPAIR_F(" sigma: ", sigma, 6); SERIAL_ECHOPAIR_F(" min: ", min, 3); SERIAL_ECHOPAIR_F(" max: ", max, 3); SERIAL_ECHOPAIR_F(" range: ", max-min, 3); } SERIAL_EOL(); } } } // n_samples loop } STOW_PROBE(); if (probing_good) { SERIAL_ECHOLNPGM("Finished!"); if (verbose_level > 0) { SERIAL_ECHOPAIR_F("Mean: ", mean, 6); SERIAL_ECHOPAIR_F(" Min: ", min, 3); SERIAL_ECHOPAIR_F(" Max: ", max, 3); SERIAL_ECHOLNPAIR_F(" Range: ", max-min, 3); } SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6); SERIAL_EOL(); #if HAS_SPI_LCD // Display M48 results in the status bar char sigma_str[8]; ui.status_printf_P(0, PSTR(MSG_M48_DEVIATION ": %s"), dtostrf(sigma, 2, 6, sigma_str)); #endif } restore_feedrate_and_scaling(); // Re-enable bed level correction if it had been on #if HAS_LEVELING set_bed_leveling_enabled(was_enabled); #endif report_current_position(); } #endif // Z_MIN_PROBE_REPEATABILITY_TEST