/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors * Derived from Grbl * * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see . */ #ifndef STEPPER_H #define STEPPER_H #include "stepper_indirection.h" #ifdef __AVR__ #include "speed_lookuptable.h" #endif #include "../inc/MarlinConfig.h" #include "../module/planner.h" #include "../core/language.h" class Stepper; extern Stepper stepper; class Stepper { public: static block_t* current_block; // A pointer to the block currently being traced #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) static bool homing_dual_axis; #endif #if HAS_MOTOR_CURRENT_PWM #ifndef PWM_MOTOR_CURRENT #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT #endif static uint32_t motor_current_setting[3]; #endif private: static uint8_t last_direction_bits, // The next stepping-bits to be output axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner static bool abort_current_block; // Signals to the stepper that current block should be aborted #if DISABLED(MIXING_EXTRUDER) static uint8_t last_moved_extruder; // Last-moved extruder, as set when the last movement was fetched from planner #endif #if ENABLED(X_DUAL_ENDSTOPS) static bool locked_X_motor, locked_X2_motor; #endif #if ENABLED(Y_DUAL_ENDSTOPS) static bool locked_Y_motor, locked_Y2_motor; #endif #if ENABLED(Z_DUAL_ENDSTOPS) static bool locked_Z_motor, locked_Z2_motor; #endif static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call #if ENABLED(ADAPTIVE_STEP_SMOOTHING) static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis #else static constexpr uint8_t oversampling_factor = 0; #endif // Delta error variables for the Bresenham line tracer static int32_t delta_error[XYZE]; static uint32_t advance_dividend[XYZE], advance_divisor, step_events_completed, // The number of step events executed in the current block accelerate_until, // The point from where we need to stop acceleration decelerate_after, // The point from where we need to start decelerating step_event_count; // The total event count for the current block // Mixing extruder mix delta_errors for bresenham tracing #if ENABLED(MIXING_EXTRUDER) static int32_t delta_error_m[MIXING_STEPPERS]; static uint32_t advance_dividend_m[MIXING_STEPPERS], advance_divisor_m; #define MIXING_STEPPERS_LOOP(VAR) \ for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++) #else static int8_t active_extruder; // Active extruder #endif #if ENABLED(S_CURVE_ACCELERATION) static int32_t bezier_A, // A coefficient in Bézier speed curve bezier_B, // B coefficient in Bézier speed curve bezier_C; // C coefficient in Bézier speed curve static uint32_t bezier_F, // F coefficient in Bézier speed curve bezier_AV; // AV coefficient in Bézier speed curve #ifdef __AVR__ static bool A_negative; // If A coefficient was negative #endif static bool bezier_2nd_half; // If Bézier curve has been initialized or not #endif static uint32_t nextMainISR; // time remaining for the next Step ISR #if ENABLED(LIN_ADVANCE) static uint32_t nextAdvanceISR, LA_isr_rate; static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early". static int8_t LA_steps; static bool LA_use_advance_lead; #endif // LIN_ADVANCE static int32_t ticks_nominal; #if DISABLED(S_CURVE_ACCELERATION) static uint32_t acc_step_rate; // needed for deceleration start point #endif static volatile int32_t endstops_trigsteps[XYZ]; // // Positions of stepper motors, in step units // static volatile int32_t count_position[NUM_AXIS]; // // Current direction of stepper motors (+1 or -1) // static int8_t count_direction[NUM_AXIS]; public: // // Constructor / initializer // Stepper() { }; // Initialize stepper hardware static void init(); // Interrupt Service Routines // The ISR scheduler static void isr(); // The stepper pulse phase ISR static void stepper_pulse_phase_isr(); // The stepper block processing phase ISR static uint32_t stepper_block_phase_isr(); #if ENABLED(LIN_ADVANCE) // The Linear advance stepper ISR static uint32_t advance_isr(); #endif // Get the position of a stepper, in steps static int32_t position(const AxisEnum axis); // Report the positions of the steppers, in steps static void report_positions(); // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work. static void wake_up(); // Quickly stop all steppers FORCE_INLINE static void quick_stop() { abort_current_block = true; } // The direction of a single motor FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); } // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same. FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); } // The extruder associated to the last movement FORCE_INLINE static uint8_t movement_extruder() { return #if ENABLED(MIXING_EXTRUDER) 0 #else last_moved_extruder #endif ; } // Handle a triggered endstop static void endstop_triggered(const AxisEnum axis); // Triggered position of an axis in steps static int32_t triggered_position(const AxisEnum axis); #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digitalPotWrite(const int16_t address, const int16_t value); static void digipot_current(const uint8_t driver, const int16_t current); #endif #if HAS_MICROSTEPS static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2); static void microstep_mode(const uint8_t driver, const uint8_t stepping); static void microstep_readings(); #endif #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) FORCE_INLINE static void set_homing_dual_axis(const bool state) { homing_dual_axis = state; } #endif #if ENABLED(X_DUAL_ENDSTOPS) FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; } FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; } #endif #if ENABLED(Y_DUAL_ENDSTOPS) FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; } FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; } #endif #if ENABLED(Z_DUAL_ENDSTOPS) FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; } FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; } #endif #if ENABLED(BABYSTEPPING) static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention #endif #if HAS_MOTOR_CURRENT_PWM static void refresh_motor_power(); #endif // Set the current position in steps inline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { planner.synchronize(); const bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); _set_position(a, b, c, e); if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } inline static void set_position(const AxisEnum a, const int32_t &v) { planner.synchronize(); #ifdef __AVR__ // Protect the access to the position. Only required for AVR, as // any 32bit CPU offers atomic access to 32bit variables const bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); #endif count_position[a] = v; #ifdef __AVR__ // Reenable Stepper ISR if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); #endif } private: // Set the current position in steps static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e); // Set direction bits for all steppers static void set_directions(); FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t scale, uint8_t* loops) { uint32_t timer; // Scale the frequency, as requested by the caller step_rate <<= scale; uint8_t multistep = 1; #if DISABLED(DISABLE_MULTI_STEPPING) // The stepping frequency limits for each multistepping rate static const uint32_t limit[] PROGMEM = { ( MAX_1X_STEP_ISR_FREQUENCY ), ( MAX_2X_STEP_ISR_FREQUENCY >> 1), ( MAX_4X_STEP_ISR_FREQUENCY >> 2), ( MAX_8X_STEP_ISR_FREQUENCY >> 3), ( MAX_16X_STEP_ISR_FREQUENCY >> 4), ( MAX_32X_STEP_ISR_FREQUENCY >> 5), ( MAX_64X_STEP_ISR_FREQUENCY >> 6), (MAX_128X_STEP_ISR_FREQUENCY >> 7) }; // Select the proper multistepping uint8_t idx = 0; while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) { step_rate >>= 1; multistep <<= 1; ++idx; }; #else NOMORE(step_rate, uint32_t(MAX_1X_STEP_ISR_FREQUENCY)); #endif *loops = multistep; #ifdef CPU_32_BIT // In case of high-performance processor, it is able to calculate in real-time timer = uint32_t(HAL_STEPPER_TIMER_RATE) / step_rate; #else constexpr uint32_t min_step_rate = F_CPU / 500000U; NOLESS(step_rate, min_step_rate); step_rate -= min_step_rate; // Correct for minimal speed if (step_rate >= (8 * 256)) { // higher step rate const uint8_t tmp_step_rate = (step_rate & 0x00FF); const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0], gain = (uint16_t)pgm_read_word_near(table_address + 2); timer = MultiU16X8toH16(tmp_step_rate, gain); timer = (uint16_t)pgm_read_word_near(table_address) - timer; } else { // lower step rates uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0]; table_address += ((step_rate) >> 1) & 0xFFFC; timer = (uint16_t)pgm_read_word_near(table_address) - (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3); } // (there is no need to limit the timer value here. All limits have been // applied above, and AVR is able to keep up at 30khz Stepping ISR rate) #endif return timer; } #if ENABLED(S_CURVE_ACCELERATION) static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av); static int32_t _eval_bezier_curve(const uint32_t curr_step); #endif #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digipot_init(); #endif #if HAS_MICROSTEPS static void microstep_init(); #endif }; #endif // STEPPER_H