/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/**************
* ui_api.cpp *
**************/
/****************************************************************************
* Written By Marcio Teixeira 2018 - Aleph Objects, Inc. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* To view a copy of the GNU General Public License, go to the following *
* location: . *
****************************************************************************/
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../ultralcd.h"
#include "../../gcode/queue.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#include "../../module/temperature.h"
#include "../../module/printcounter.h"
#include "../../libs/duration_t.h"
#include "../../HAL/shared/Delay.h"
#if ENABLED(PRINTCOUNTER)
#include "../../core/utility.h"
#include "../../libs/numtostr.h"
#endif
#if DO_SWITCH_EXTRUDER || EITHER(SWITCHING_NOZZLE, PARKING_EXTRUDER)
#include "../../module/tool_change.h"
#endif
#if ENABLED(EMERGENCY_PARSER)
#include "../../feature/emergency_parser.h"
#endif
#if ENABLED(SDSUPPORT)
#include "../../sd/cardreader.h"
#define IFSD(A,B) (A)
#else
#define IFSD(A,B) (B)
#endif
#if HAS_TRINAMIC
#include "../../feature/tmc_util.h"
#include "../../module/stepper_indirection.h"
#endif
#include "ui_api.h"
#if ENABLED(BACKLASH_GCODE)
#include "../../feature/backlash.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
#if HAS_FILAMENT_SENSOR
#include "../../feature/runout.h"
#endif
#if ENABLED(BABYSTEPPING)
#include "../../feature/babystep.h"
#endif
inline float clamp(const float value, const float minimum, const float maximum) {
return MAX(MIN(value, maximum), minimum);
}
static struct {
uint8_t printer_killed : 1;
uint8_t manual_motion : 1;
} flags;
namespace ExtUI {
#ifdef __SAM3X8E__
/**
* Implement a special millis() to allow time measurement
* within an ISR (such as when the printer is killed).
*
* To keep proper time, must be called at least every 1s.
*/
uint32_t safe_millis() {
// Not killed? Just call millis()
if (!flags.printer_killed) return millis();
static uint32_t currTimeHI = 0; /* Current time */
// Machine was killed, reinit SysTick so we are able to compute time without ISRs
if (currTimeHI == 0) {
// Get the last time the Arduino time computed (from CMSIS) and convert it to SysTick
currTimeHI = (uint32_t)((GetTickCount() * (uint64_t)(F_CPU / 8000)) >> 24);
// Reinit the SysTick timer to maximize its period
SysTick->LOAD = SysTick_LOAD_RELOAD_Msk; // get the full range for the systick timer
SysTick->VAL = 0; // Load the SysTick Counter Value
SysTick->CTRL = // MCLK/8 as source
// No interrupts
SysTick_CTRL_ENABLE_Msk; // Enable SysTick Timer
}
// Check if there was a timer overflow from the last read
if (SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) {
// There was. This means (SysTick_LOAD_RELOAD_Msk * 1000 * 8)/F_CPU ms has elapsed
currTimeHI++;
}
// Calculate current time in milliseconds
uint32_t currTimeLO = SysTick_LOAD_RELOAD_Msk - SysTick->VAL; // (in MCLK/8)
uint64_t currTime = ((uint64_t)currTimeLO) | (((uint64_t)currTimeHI) << 24);
// The ms count is
return (uint32_t)(currTime / (F_CPU / 8000));
}
#endif // __SAM3X8E__
void delay_us(unsigned long us) { DELAY_US(us); }
void delay_ms(unsigned long ms) {
if (flags.printer_killed)
DELAY_US(ms * 1000);
else
safe_delay(ms);
}
void yield() {
if (!flags.printer_killed)
thermalManager.manage_heater();
}
void enableHeater(const extruder_t extruder) {
#if HEATER_IDLE_HANDLER
thermalManager.reset_heater_idle_timer(extruder - E0);
#endif
}
void enableHeater(const heater_t heater) {
#if HEATER_IDLE_HANDLER
switch (heater) {
#if HAS_HEATED_BED
case BED:
thermalManager.reset_bed_idle_timer();
return;
#endif
#if HAS_HEATED_CHAMBER
case CHAMBER: return; // Chamber has no idle timer
#endif
default: thermalManager.reset_heater_idle_timer(heater - H0);
}
#endif
}
bool isHeaterIdle(const extruder_t extruder) {
return false
#if HEATER_IDLE_HANDLER
|| thermalManager.hotend_idle[extruder - E0].timed_out
#endif
;
}
bool isHeaterIdle(const heater_t heater) {
#if HEATER_IDLE_HANDLER
switch (heater) {
#if HAS_HEATED_BED
case BED: return thermalManager.bed_idle.timed_out;
#endif
#if HAS_HEATED_CHAMBER
case CHAMBER: return false; // Chamber has no idle timer
#endif
default: return thermalManager.hotend_idle[heater - H0].timed_out;
}
#else
return false;
#endif
}
float getActualTemp_celsius(const heater_t heater) {
switch (heater) {
#if HAS_HEATED_BED
case BED: return thermalManager.degBed();
#endif
#if HAS_HEATED_CHAMBER
case CHAMBER: return thermalManager.degChamber();
#endif
default: return thermalManager.degHotend(heater - H0);
}
}
float getActualTemp_celsius(const extruder_t extruder) {
return thermalManager.degHotend(extruder - E0);
}
float getTargetTemp_celsius(const heater_t heater) {
switch (heater) {
#if HAS_HEATED_BED
case BED: return thermalManager.degTargetBed();
#endif
#if HAS_HEATED_CHAMBER
case CHAMBER: return thermalManager.degTargetChamber();
#endif
default: return thermalManager.degTargetHotend(heater - H0);
}
}
float getTargetTemp_celsius(const extruder_t extruder) {
return thermalManager.degTargetHotend(extruder - E0);
}
float getTargetFan_percent(const fan_t fan) {
#if FAN_COUNT > 0
return thermalManager.fanPercent(thermalManager.fan_speed[fan - FAN0]);
#else
UNUSED(fan);
return 0;
#endif
}
float getActualFan_percent(const fan_t fan) {
#if FAN_COUNT > 0
return thermalManager.fanPercent(thermalManager.scaledFanSpeed(fan - FAN0));
#else
UNUSED(fan);
return 0;
#endif
}
float getAxisPosition_mm(const axis_t axis) {
return flags.manual_motion ? destination[axis] : current_position[axis];
}
float getAxisPosition_mm(const extruder_t) {
return flags.manual_motion ? destination[E_AXIS] : current_position[E_AXIS];
}
void setAxisPosition_mm(const float position, const axis_t axis) {
// Start with no limits to movement
float min = current_position[axis] - 1000,
max = current_position[axis] + 1000;
// Limit to software endstops, if enabled
#if HAS_SOFTWARE_ENDSTOPS
if (soft_endstops_enabled) switch (axis) {
case X_AXIS:
#if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
min = soft_endstop[X_AXIS].min;
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
max = soft_endstop[X_AXIS].max;
#endif
break;
case Y_AXIS:
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
min = soft_endstop[Y_AXIS].min;
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
max = soft_endstop[Y_AXIS].max;
#endif
break;
case Z_AXIS:
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
min = soft_endstop[Z_AXIS].min;
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
max = soft_endstop[Z_AXIS].max;
#endif
default: break;
}
#endif // HAS_SOFTWARE_ENDSTOPS
// Delta limits XY based on the current offset from center
// This assumes the center is 0,0
#if ENABLED(DELTA)
if (axis != Z_AXIS) {
max = SQRT(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis])); // (Y_AXIS - axis) == the other axis
min = -max;
}
#endif
if (!flags.manual_motion) set_destination_from_current();
destination[axis] = clamp(position, min, max);
flags.manual_motion = true;
}
void setAxisPosition_mm(const float position, const extruder_t extruder) {
setActiveTool(extruder, true);
if (!flags.manual_motion) set_destination_from_current();
destination[E_AXIS] = position;
flags.manual_motion = true;
}
void _processManualMoveToDestination() {
// Lower max_response_lag makes controls more responsive, but makes CPU work harder
constexpr float max_response_lag = 0.1; // seconds
constexpr uint8_t segments_to_buffer = 4; // keep planner filled with this many segments
if (flags.manual_motion && planner.movesplanned() < segments_to_buffer) {
float saved_destination[XYZ];
COPY(saved_destination, destination);
// Compute direction vector from current_position towards destination.
destination[X_AXIS] -= current_position[X_AXIS];
destination[Y_AXIS] -= current_position[Y_AXIS];
destination[Z_AXIS] -= current_position[Z_AXIS];
const float inv_length = RSQRT(sq(destination[X_AXIS]) + sq(destination[Y_AXIS]) + sq(destination[Z_AXIS]));
// Find move segment length so that all segments can execute in less time than max_response_lag
const float scale = inv_length * feedrate_mm_s * max_response_lag / segments_to_buffer;
if (scale < 1) {
// Move a small bit towards the destination.
destination[X_AXIS] = scale * destination[X_AXIS] + current_position[X_AXIS];
destination[Y_AXIS] = scale * destination[Y_AXIS] + current_position[Y_AXIS];
destination[Z_AXIS] = scale * destination[Z_AXIS] + current_position[Z_AXIS];
prepare_move_to_destination();
COPY(destination, saved_destination);
}
else {
// We are close enough to finish off the move.
COPY(destination, saved_destination);
prepare_move_to_destination();
flags.manual_motion = false;
}
}
}
void setActiveTool(const extruder_t extruder, bool no_move) {
#if EXTRUDERS > 1
const uint8_t e = extruder - E0;
#if DO_SWITCH_EXTRUDER || EITHER(SWITCHING_NOZZLE, PARKING_EXTRUDER)
if (e != active_extruder) tool_change(e, no_move);
#endif
active_extruder = e;
#else
UNUSED(extruder);
UNUSED(no_move);
#endif
}
extruder_t getActiveTool() {
switch (active_extruder) {
case 5: return E5;
case 4: return E4;
case 3: return E3;
case 2: return E2;
case 1: return E1;
default: return E0;
}
}
bool isMoving() { return planner.has_blocks_queued(); }
bool canMove(const axis_t axis) {
switch (axis) {
#if IS_KINEMATIC || ENABLED(NO_MOTION_BEFORE_HOMING)
case X: return TEST(axis_homed, X_AXIS);
case Y: return TEST(axis_homed, Y_AXIS);
case Z: return TEST(axis_homed, Z_AXIS);
#else
case X: case Y: case Z: return true;
#endif
default: return false;
}
}
bool canMove(const extruder_t extruder) {
return !thermalManager.tooColdToExtrude(extruder - E0);
}
#if HAS_SOFTWARE_ENDSTOPS
bool getSoftEndstopState() { return soft_endstops_enabled; }
void setSoftEndstopState(const bool value) { soft_endstops_enabled = value; }
#endif
#if HAS_TRINAMIC
float getAxisCurrent_mA(const axis_t axis) {
switch (axis) {
#if AXIS_IS_TMC(X)
case X: return stepperX.getMilliamps();
#endif
#if AXIS_IS_TMC(Y)
case Y: return stepperY.getMilliamps();
#endif
#if AXIS_IS_TMC(Z)
case Z: return stepperZ.getMilliamps();
#endif
default: return NAN;
};
}
float getAxisCurrent_mA(const extruder_t extruder) {
switch (extruder) {
#if AXIS_IS_TMC(E0)
case E0: return stepperE0.getMilliamps();
#endif
#if AXIS_IS_TMC(E1)
case E1: return stepperE1.getMilliamps();
#endif
#if AXIS_IS_TMC(E2)
case E2: return stepperE2.getMilliamps();
#endif
#if AXIS_IS_TMC(E3)
case E3: return stepperE3.getMilliamps();
#endif
#if AXIS_IS_TMC(E4)
case E4: return stepperE4.getMilliamps();
#endif
#if AXIS_IS_TMC(E5)
case E5: return stepperE5.getMilliamps();
#endif
default: return NAN;
};
}
void setAxisCurrent_mA(const float mA, const axis_t axis) {
switch (axis) {
#if AXIS_IS_TMC(X)
case X: stepperX.rms_current(clamp(mA, 500, 1500)); break;
#endif
#if AXIS_IS_TMC(Y)
case Y: stepperY.rms_current(clamp(mA, 500, 1500)); break;
#endif
#if AXIS_IS_TMC(Z)
case Z: stepperZ.rms_current(clamp(mA, 500, 1500)); break;
#endif
default: break;
};
}
void setAxisCurrent_mA(const float mA, const extruder_t extruder) {
switch (extruder) {
#if AXIS_IS_TMC(E0)
case E0: stepperE0.rms_current(clamp(mA, 500, 1500)); break;
#endif
#if AXIS_IS_TMC(E1)
case E1: stepperE1.rms_current(clamp(mA, 500, 1500)); break;
#endif
#if AXIS_IS_TMC(E2)
case E2: stepperE2.rms_current(clamp(mA, 500, 1500)); break;
#endif
#if AXIS_IS_TMC(E3)
case E3: stepperE3.rms_current(clamp(mA, 500, 1500)); break;
#endif
#if AXIS_IS_TMC(E4)
case E4: stepperE4.rms_current(clamp(mA, 500, 1500)); break;
#endif
#if AXIS_IS_TMC(E5)
case E5: stepperE5.rms_current(clamp(mA, 500, 1500)); break;
#endif
default: break;
};
}
int getTMCBumpSensitivity(const axis_t axis) {
switch (axis) {
#if X_SENSORLESS && AXIS_HAS_STALLGUARD(X)
case X: return stepperX.homing_threshold();
#endif
#if Y_SENSORLESS && AXIS_HAS_STALLGUARD(Y)
case Y: return stepperY.homing_threshold();
#endif
#if Z_SENSORLESS && AXIS_HAS_STALLGUARD(Z)
case Z: return stepperZ.homing_threshold();
#endif
default: return 0;
}
}
void setTMCBumpSensitivity(const float value, const axis_t axis) {
switch (axis) {
#if X_SENSORLESS && AXIS_HAS_STALLGUARD(X)
case X: stepperX.homing_threshold(value); break;
#endif
#if Y_SENSORLESS && AXIS_HAS_STALLGUARD(Y)
case Y: stepperY.homing_threshold(value); break;
#endif
#if Z_SENSORLESS && AXIS_HAS_STALLGUARD(Z)
case Z: stepperZ.homing_threshold(value); break;
#endif
default: break;
}
}
#endif
float getAxisSteps_per_mm(const axis_t axis) {
return planner.settings.axis_steps_per_mm[axis];
}
float getAxisSteps_per_mm(const extruder_t extruder) {
UNUSED_E(extruder);
return planner.settings.axis_steps_per_mm[E_AXIS_N(extruder - E0)];
}
void setAxisSteps_per_mm(const float value, const axis_t axis) {
planner.settings.axis_steps_per_mm[axis] = value;
}
void setAxisSteps_per_mm(const float value, const extruder_t extruder) {
UNUSED_E(extruder);
planner.settings.axis_steps_per_mm[E_AXIS_N(axis - E0)] = value;
}
float getAxisMaxFeedrate_mm_s(const axis_t axis) {
return planner.settings.max_feedrate_mm_s[axis];
}
float getAxisMaxFeedrate_mm_s(const extruder_t extruder) {
UNUSED_E(extruder);
return planner.settings.max_feedrate_mm_s[E_AXIS_N(axis - E0)];
}
void setAxisMaxFeedrate_mm_s(const float value, const axis_t axis) {
planner.settings.max_feedrate_mm_s[axis] = value;
}
void setAxisMaxFeedrate_mm_s(const float value, const extruder_t extruder) {
UNUSED_E(extruder);
planner.settings.max_feedrate_mm_s[E_AXIS_N(axis - E0)] = value;
}
float getAxisMaxAcceleration_mm_s2(const axis_t axis) {
return planner.settings.max_acceleration_mm_per_s2[axis];
}
float getAxisMaxAcceleration_mm_s2(const extruder_t extruder) {
UNUSED_E(extruder);
return planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(extruder - E0)];
}
void setAxisMaxAcceleration_mm_s2(const float value, const axis_t axis) {
planner.settings.max_acceleration_mm_per_s2[axis] = value;
}
void setAxisMaxAcceleration_mm_s2(const float value, const extruder_t extruder) {
UNUSED_E(extruder);
planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(extruder - E0)] = value;
}
#if HAS_FILAMENT_SENSOR
bool getFilamentRunoutEnabled() { return runout.enabled; }
void setFilamentRunoutEnabled(const bool value) { runout.enabled = value; }
#ifdef FILAMENT_RUNOUT_DISTANCE_MM
float getFilamentRunoutDistance_mm() { return runout.runout_distance(); }
void setFilamentRunoutDistance_mm(const float value) { runout.set_runout_distance(clamp(value, 0, 999)); }
#endif
#endif
#if ENABLED(LIN_ADVANCE)
float getLinearAdvance_mm_mm_s(const extruder_t extruder) {
return (extruder < EXTRUDERS) ? planner.extruder_advance_K[extruder - E0] : 0;
}
void setLinearAdvance_mm_mm_s(const float value, const extruder_t extruder) {
if (extruder < EXTRUDERS)
planner.extruder_advance_K[extruder - E0] = clamp(value, 0, 999);
}
#endif
#if ENABLED(JUNCTION_DEVIATION)
float getJunctionDeviation_mm() {
return planner.junction_deviation_mm;
}
void setJunctionDeviation_mm(const float value) {
planner.junction_deviation_mm = clamp(value, 0.01, 0.3);
#if ENABLED(LIN_ADVANCE)
planner.recalculate_max_e_jerk();
#endif
}
#else
float getAxisMaxJerk_mm_s(const axis_t axis) {
return planner.max_jerk[axis];
}
float getAxisMaxJerk_mm_s(const extruder_t) {
return planner.max_jerk[E_AXIS];
}
void setAxisMaxJerk_mm_s(const float value, const axis_t axis) {
planner.max_jerk[axis] = value;
}
void setAxisMaxJerk_mm_s(const float value, const extruder_t) {
planner.max_jerk[E_AXIS] = value;
}
#endif
float getFeedrate_mm_s() { return feedrate_mm_s; }
float getMinFeedrate_mm_s() { return planner.settings.min_feedrate_mm_s; }
float getMinTravelFeedrate_mm_s() { return planner.settings.min_travel_feedrate_mm_s; }
float getPrintingAcceleration_mm_s2() { return planner.settings.acceleration; }
float getRetractAcceleration_mm_s2() { return planner.settings.retract_acceleration; }
float getTravelAcceleration_mm_s2() { return planner.settings.travel_acceleration; }
void setFeedrate_mm_s(const float fr) { feedrate_mm_s = fr; }
void setMinFeedrate_mm_s(const float fr) { planner.settings.min_feedrate_mm_s = fr; }
void setMinTravelFeedrate_mm_s(const float fr) { planner.settings.min_travel_feedrate_mm_s = fr; }
void setPrintingAcceleration_mm_s2(const float acc) { planner.settings.acceleration = acc; }
void setRetractAcceleration_mm_s2(const float acc) { planner.settings.retract_acceleration = acc; }
void setTravelAcceleration_mm_s2(const float acc) { planner.settings.travel_acceleration = acc; }
#if ENABLED(BABYSTEPPING)
bool babystepAxis_steps(const int16_t steps, const axis_t axis) {
switch (axis) {
#if ENABLED(BABYSTEP_XY)
case X: babystep.add_steps(X_AXIS, steps); break;
case Y: babystep.add_steps(Y_AXIS, steps); break;
#endif
case Z: babystep.add_steps(Z_AXIS, steps); break;
default: return false;
};
return true;
}
/**
* This function adjusts an axis during a print.
*
* When linked_nozzles is false, each nozzle in a multi-nozzle
* printer can be babystepped independently of the others. This
* lets the user to fine tune the Z-offset and Nozzle Offsets
* while observing the first layer of a print, regardless of
* what nozzle is printing.
*/
void smartAdjustAxis_steps(const int16_t steps, const axis_t axis, bool linked_nozzles) {
const float mm = steps * planner.steps_to_mm[axis];
if (!babystepAxis_steps(steps, axis)) return;
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
// Make it so babystepping in Z adjusts the Z probe offset.
if (axis == Z
#if EXTRUDERS > 1
&& (linked_nozzles || active_extruder == 0)
#endif
) zprobe_zoffset += mm;
#endif
#if EXTRUDERS > 1
/**
* When linked_nozzles is false, as an axis is babystepped
* adjust the hotend offsets so that the other nozzles are
* unaffected by the babystepping of the active nozzle.
*/
if (!linked_nozzles) {
HOTEND_LOOP()
if (e != active_extruder)
hotend_offset[axis][e] += mm;
normalizeNozzleOffset(X);
normalizeNozzleOffset(Y);
normalizeNozzleOffset(Z);
}
#else
UNUSED(linked_nozzles);
#endif
}
/**
* Converts a mm displacement to a number of whole number of
* steps that is at least mm long.
*/
int16_t mmToWholeSteps(const float mm, const axis_t axis) {
const float steps = mm / planner.steps_to_mm[axis];
return steps > 0 ? ceil(steps) : floor(steps);
}
#endif
#if HAS_BED_PROBE
float getZOffset_mm() {
return zprobe_zoffset;
}
void setZOffset_mm(const float value) {
if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
zprobe_zoffset = value;
}
}
#endif // HAS_BED_PROBE
#if HAS_HOTEND_OFFSET
float getNozzleOffset_mm(const axis_t axis, const extruder_t extruder) {
if (extruder - E0 >= HOTENDS) return 0;
return hotend_offset[axis][extruder - E0];
}
void setNozzleOffset_mm(const float value, const axis_t axis, const extruder_t extruder) {
if (extruder - E0 >= HOTENDS) return;
hotend_offset[axis][extruder - E0] = value;
}
/**
* The UI should call this if needs to guarantee the first
* nozzle offset is zero (such as when it doesn't allow the
* user to edit the offset the first nozzle).
*/
void normalizeNozzleOffset(const axis_t axis) {
const float offs = hotend_offset[axis][0];
HOTEND_LOOP() hotend_offset[axis][e] -= offs;
}
#endif // HAS_HOTEND_OFFSET
#if ENABLED(BACKLASH_GCODE)
float getAxisBacklash_mm(const axis_t axis) { return backlash.distance_mm[axis]; }
void setAxisBacklash_mm(const float value, const axis_t axis)
{ backlash.distance_mm[axis] = clamp(value,0,5); }
float getBacklashCorrection_percent() { return ui8_to_percent(backlash.correction); }
void setBacklashCorrection_percent(const float value) { backlash.correction = map(clamp(value, 0, 100), 0, 100, 0, 255); }
#ifdef BACKLASH_SMOOTHING_MM
float getBacklashSmoothing_mm() { return backlash.smoothing_mm; }
void setBacklashSmoothing_mm(const float value) { backlash.smoothing_mm = clamp(value, 0, 999); }
#endif
#endif
uint8_t getProgress_percent() {
return ui.get_progress();
}
uint32_t getProgress_seconds_elapsed() {
const duration_t elapsed = print_job_timer.duration();
return elapsed.value;
}
#if HAS_LEVELING
bool getLevelingActive() { return planner.leveling_active; }
void setLevelingActive(const bool state) { set_bed_leveling_enabled(state); }
bool getMeshValid() { return leveling_is_valid(); }
#if HAS_MESH
bed_mesh_t getMeshArray() { return Z_VALUES_ARR; }
float getMeshPoint(const uint8_t xpos, const uint8_t ypos) { return Z_VALUES(xpos,ypos); }
void setMeshPoint(const uint8_t xpos, const uint8_t ypos, const float zoff) {
if (WITHIN(xpos, 0, GRID_MAX_POINTS_X) && WITHIN(ypos, 0, GRID_MAX_POINTS_Y)) {
Z_VALUES(xpos, ypos) = zoff;
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
#endif
}
}
#endif
#endif
#if ENABLED(HOST_PROMPT_SUPPORT)
void setHostResponse(const uint8_t response) { host_response_handler(response); }
#endif
#if ENABLED(PRINTCOUNTER)
char* getTotalPrints_str(char buffer[21]) { strcpy(buffer,i16tostr3left(print_job_timer.getStats().totalPrints)); return buffer; }
char* getFinishedPrints_str(char buffer[21]) { strcpy(buffer,i16tostr3left(print_job_timer.getStats().finishedPrints)); return buffer; }
char* getTotalPrintTime_str(char buffer[21]) { duration_t(print_job_timer.getStats().printTime).toString(buffer); return buffer; }
char* getLongestPrint_str(char buffer[21]) { duration_t(print_job_timer.getStats().printTime).toString(buffer); return buffer; }
char* getFilamentUsed_str(char buffer[21]) {
printStatistics stats = print_job_timer.getStats();
sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10);
return buffer;
}
#endif
float getFeedrate_percent() { return feedrate_percentage; }
void enqueueCommands_P(PGM_P const gcode) {
queue.inject_P(gcode);
}
bool commandsInQueue() { return (planner.movesplanned() || queue.has_commands_queued()); }
bool isAxisPositionKnown(const axis_t axis) {
return TEST(axis_known_position, axis);
}
bool isAxisPositionKnown(const extruder_t) {
return TEST(axis_known_position, E_AXIS);
}
bool isPositionKnown() { return all_axes_known(); }
bool isMachineHomed() { return all_axes_homed(); }
PGM_P getFirmwareName_str() {
static const char firmware_name[] PROGMEM = "Marlin " SHORT_BUILD_VERSION;
return firmware_name;
}
void setTargetTemp_celsius(float value, const heater_t heater) {
constexpr int16_t heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP);
const int16_t e = heater - H0;
enableHeater(heater);
#if HAS_HEATED_BED
if (heater == BED)
thermalManager.setTargetBed(clamp(value, 0, BED_MAXTEMP - 10));
else
#endif
thermalManager.setTargetHotend(clamp(value, 0, heater_maxtemp[e] - 15), e);
}
void setTargetTemp_celsius(float value, const extruder_t extruder) {
constexpr int16_t heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP);
const int16_t e = extruder - E0;
enableHeater(extruder);
thermalManager.setTargetHotend(clamp(value, 0, heater_maxtemp[e] - 15), e);
}
void setTargetFan_percent(const float value, const fan_t fan) {
#if FAN_COUNT > 0
if (fan < FAN_COUNT)
thermalManager.set_fan_speed(fan - FAN0, map(clamp(value, 0, 100), 0, 100, 0, 255));
#else
UNUSED(value);
UNUSED(fan);
#endif
}
void setFeedrate_percent(const float value) {
feedrate_percentage = clamp(value, 10, 500);
}
void setUserConfirmed(void) {
#if HAS_RESUME_CONTINUE
wait_for_user = false;
#endif
}
void printFile(const char *filename) {
IFSD(card.openAndPrintFile(filename), NOOP);
}
bool isPrintingFromMediaPaused() {
return IFSD(isPrintingFromMedia() && !IS_SD_PRINTING(), false);
}
bool isPrintingFromMedia() {
return IFSD(card.isFileOpen(), false);
}
bool isPrinting() {
return (planner.movesplanned() || isPrintingFromMedia() || IFSD(IS_SD_PRINTING(), false));
}
bool isMediaInserted() {
return IFSD(IS_SD_INSERTED() && card.isDetected(), false);
}
void pausePrint() {
ui.pause_print();
}
void resumePrint() {
ui.resume_print();
}
void stopPrint() {
ui.abort_print();
}
FileList::FileList() { refresh(); }
void FileList::refresh() { num_files = 0xFFFF; }
bool FileList::seek(const uint16_t pos, const bool skip_range_check) {
#if ENABLED(SDSUPPORT)
if (!skip_range_check && (pos + 1) > count()) return false;
const uint16_t nr =
#if ENABLED(SDCARD_RATHERRECENTFIRST) && DISABLED(SDCARD_SORT_ALPHA)
count() - 1 -
#endif
pos;
card.getfilename_sorted(nr);
return card.filename[0] != '\0';
#else
return false;
#endif
}
const char* FileList::filename() {
return IFSD(card.longFilename[0] ? card.longFilename : card.filename, "");
}
const char* FileList::shortFilename() {
return IFSD(card.filename, "");
}
const char* FileList::longFilename() {
return IFSD(card.longFilename, "");
}
bool FileList::isDir() {
return IFSD(card.flag.filenameIsDir, false);
}
uint16_t FileList::count() {
return IFSD((num_files = (num_files == 0xFFFF ? card.get_num_Files() : num_files)), 0);
}
bool FileList::isAtRootDir() {
#if ENABLED(SDSUPPORT)
card.getWorkDirName();
return card.filename[0] == '/';
#else
return true;
#endif
}
void FileList::upDir() {
#if ENABLED(SDSUPPORT)
card.updir();
num_files = 0xFFFF;
#endif
}
void FileList::changeDir(const char * const dirname) {
#if ENABLED(SDSUPPORT)
card.chdir(dirname);
num_files = 0xFFFF;
#endif
}
} // namespace ExtUI
// At the moment, we piggy-back off the ultralcd calls, but this could be cleaned up in the future
void MarlinUI::init() {
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
SET_INPUT_PULLUP(SD_DETECT_PIN);
#endif
ExtUI::onStartup();
}
void MarlinUI::update() {
#if ENABLED(SDSUPPORT)
static bool last_sd_status;
const bool sd_status = IS_SD_INSERTED();
if (sd_status != last_sd_status) {
last_sd_status = sd_status;
if (sd_status) {
card.initsd();
if (card.isDetected())
ExtUI::onMediaInserted();
else
ExtUI::onMediaError();
}
else {
const bool ok = card.isDetected();
card.release();
if (ok) ExtUI::onMediaRemoved();
}
}
#endif // SDSUPPORT
ExtUI::_processManualMoveToDestination();
ExtUI::onIdle();
}
void MarlinUI::kill_screen(PGM_P const msg) {
if (!flags.printer_killed) {
flags.printer_killed = true;
ExtUI::onPrinterKilled(msg);
}
}
#endif // EXTENSIBLE_UI