/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(ARC_SUPPORT) #include "../gcode.h" #include "../../module/motion.h" #include "../../module/planner.h" #include "../../module/temperature.h" #if ENABLED(DELTA) #include "../../module/delta.h" #elif ENABLED(SCARA) #include "../../module/scara.h" #endif #if N_ARC_CORRECTION < 1 #undef N_ARC_CORRECTION #define N_ARC_CORRECTION 1 #endif /** * Plan an arc in 2 dimensions * * The arc is approximated by generating many small linear segments. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) * Arcs should only be made relatively large (over 5mm), as larger arcs with * larger segments will tend to be more efficient. Your slicer should have * options for G2/G3 arc generation. In future these options may be GCode tunable. */ void plan_arc( const xyze_pos_t &cart, // Destination position const ab_float_t &offset, // Center of rotation relative to current_position const uint8_t clockwise // Clockwise? ) { #if ENABLED(CNC_WORKSPACE_PLANES) AxisEnum p_axis, q_axis, l_axis; switch (gcode.workspace_plane) { default: case GcodeSuite::PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break; case GcodeSuite::PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break; case GcodeSuite::PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break; } #else constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS; #endif // Radius vector from center to current location ab_float_t rvec = -offset; const float radius = HYPOT(rvec.a, rvec.b), #if ENABLED(AUTO_BED_LEVELING_UBL) start_L = current_position[l_axis], #endif center_P = current_position[p_axis] - rvec.a, center_Q = current_position[q_axis] - rvec.b, rt_X = cart[p_axis] - center_P, rt_Y = cart[q_axis] - center_Q, linear_travel = cart[l_axis] - current_position[l_axis], extruder_travel = cart.e - current_position.e; // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. float angular_travel = ATAN2(rvec.a * rt_Y - rvec.b * rt_X, rvec.a * rt_X + rvec.b * rt_Y); if (angular_travel < 0) angular_travel += RADIANS(360); #ifdef MIN_ARC_SEGMENTS uint16_t min_segments = CEIL((MIN_ARC_SEGMENTS) * (angular_travel / RADIANS(360))); NOLESS(min_segments, 1U); #else constexpr uint16_t min_segments = 1; #endif if (clockwise) angular_travel -= RADIANS(360); // Make a circle if the angular rotation is 0 and the target is current position if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis]) { angular_travel = RADIANS(360); #ifdef MIN_ARC_SEGMENTS min_segments = MIN_ARC_SEGMENTS; #endif } const float flat_mm = radius * angular_travel, mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm); if (mm_of_travel < 0.001f) return; const feedRate_t scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s); #ifdef ARC_SEGMENTS_PER_R float seg_length = MM_PER_ARC_SEGMENT * radius; LIMIT(seg_length, MM_PER_ARC_SEGMENT, ARC_SEGMENTS_PER_R); #elif ARC_SEGMENTS_PER_SEC float seg_length = scaled_fr_mm_s * RECIPROCAL(ARC_SEGMENTS_PER_SEC); NOLESS(seg_length, MM_PER_ARC_SEGMENT); #else constexpr float seg_length = MM_PER_ARC_SEGMENT; #endif uint16_t segments = FLOOR(mm_of_travel / seg_length); NOLESS(segments, min_segments); /** * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, * and phi is the angle of rotation. Based on the solution approach by Jens Geisler. * r_T = [cos(phi) -sin(phi); * sin(phi) cos(phi)] * r ; * * For arc generation, the center of the circle is the axis of rotation and the radius vector is * defined from the circle center to the initial position. Each line segment is formed by successive * vector rotations. This requires only two cos() and sin() computations to form the rotation * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since * all double numbers are single precision on the Arduino. (True double precision will not have * round off issues for CNC applications.) Single precision error can accumulate to be greater than * tool precision in some cases. Therefore, arc path correction is implemented. * * Small angle approximation may be used to reduce computation overhead further. This approximation * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an * issue for CNC machines with the single precision Arduino calculations. * * This approximation also allows plan_arc to immediately insert a line segment into the planner * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. * This is important when there are successive arc motions. */ // Vector rotation matrix values xyze_pos_t raw; const float theta_per_segment = angular_travel / segments, linear_per_segment = linear_travel / segments, extruder_per_segment = extruder_travel / segments, sin_T = theta_per_segment, cos_T = 1 - 0.5f * sq(theta_per_segment); // Small angle approximation // Initialize the linear axis raw[l_axis] = current_position[l_axis]; // Initialize the extruder axis raw.e = current_position.e; #if ENABLED(SCARA_FEEDRATE_SCALING) const float inv_duration = scaled_fr_mm_s / seg_length; #endif millis_t next_idle_ms = millis() + 200UL; #if N_ARC_CORRECTION > 1 int8_t arc_recalc_count = N_ARC_CORRECTION; #endif for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times thermalManager.manage_heater(); if (ELAPSED(millis(), next_idle_ms)) { next_idle_ms = millis() + 200UL; idle(); } #if N_ARC_CORRECTION > 1 if (--arc_recalc_count) { // Apply vector rotation matrix to previous rvec.a / 1 const float r_new_Y = rvec.a * sin_T + rvec.b * cos_T; rvec.a = rvec.a * cos_T - rvec.b * sin_T; rvec.b = r_new_Y; } else #endif { #if N_ARC_CORRECTION > 1 arc_recalc_count = N_ARC_CORRECTION; #endif // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. // Compute exact location by applying transformation matrix from initial radius vector(=-offset). // To reduce stuttering, the sin and cos could be computed at different times. // For now, compute both at the same time. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment); rvec.a = -offset[0] * cos_Ti + offset[1] * sin_Ti; rvec.b = -offset[0] * sin_Ti - offset[1] * cos_Ti; } // Update raw location raw[p_axis] = center_P + rvec.a; raw[q_axis] = center_Q + rvec.b; #if ENABLED(AUTO_BED_LEVELING_UBL) raw[l_axis] = start_L; UNUSED(linear_per_segment); #else raw[l_axis] += linear_per_segment; #endif raw.e += extruder_per_segment; apply_motion_limits(raw); #if HAS_LEVELING && !PLANNER_LEVELING planner.apply_leveling(raw); #endif if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, seg_length #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif )) break; } // Ensure last segment arrives at target location. raw = cart; #if ENABLED(AUTO_BED_LEVELING_UBL) raw[l_axis] = start_L; #endif apply_motion_limits(raw); #if HAS_LEVELING && !PLANNER_LEVELING planner.apply_leveling(raw); #endif planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, seg_length #if ENABLED(SCARA_FEEDRATE_SCALING) , inv_duration #endif ); #if ENABLED(AUTO_BED_LEVELING_UBL) raw[l_axis] = start_L; #endif current_position = raw; } // plan_arc /** * G2: Clockwise Arc * G3: Counterclockwise Arc * * This command has two forms: IJ-form (JK, KI) and R-form. * * - Depending on the current Workspace Plane orientation, * use parameters IJ/JK/KI to specify the XY/YZ/ZX offsets. * At least one of the IJ/JK/KI parameters is required. * XY/YZ/ZX can be omitted to do a complete circle. * The given XY/YZ/ZX is not error-checked. The arc ends * based on the angle of the destination. * Mixing IJ/JK/KI with R will throw an error. * * - R specifies the radius. X or Y (Y or Z / Z or X) is required. * Omitting both XY/YZ/ZX will throw an error. * XY/YZ/ZX must differ from the current XY/YZ/ZX. * Mixing R with IJ/JK/KI will throw an error. * * - P specifies the number of full circles to do * before the specified arc move. * * Examples: * * G2 I10 ; CW circle centered at X+10 * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12 */ void GcodeSuite::G2_G3(const bool clockwise) { if (MOTION_CONDITIONS) { #if ENABLED(SF_ARC_FIX) const bool relative_mode_backup = relative_mode; relative_mode = true; #endif get_destination_from_command(); #if ENABLED(SF_ARC_FIX) relative_mode = relative_mode_backup; #endif ab_float_t arc_offset = { 0, 0 }; if (parser.seenval('R')) { const float r = parser.value_linear_units(); if (r) { const xy_pos_t p1 = current_position, p2 = destination; if (p1 != p2) { const xy_pos_t d2 = (p2 - p1) * 0.5f; // XY vector to midpoint of move from current const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1 len = d2.magnitude(), // Distance to mid-point of move from current h2 = (r - len) * (r + len), // factored to reduce rounding error h = (h2 >= 0) ? SQRT(h2) : 0.0f; // Distance to the arc pivot-point from midpoint const xy_pos_t s = { -d2.y, d2.x }; // Perpendicular bisector. (Divide by len for unit vector.) arc_offset = d2 + s / len * e * h; // The calculated offset (mid-point if |r| <= len) } } } else { #if ENABLED(CNC_WORKSPACE_PLANES) char achar, bchar; switch (gcode.workspace_plane) { default: case GcodeSuite::PLANE_XY: achar = 'I'; bchar = 'J'; break; case GcodeSuite::PLANE_YZ: achar = 'J'; bchar = 'K'; break; case GcodeSuite::PLANE_ZX: achar = 'K'; bchar = 'I'; break; } #else constexpr char achar = 'I', bchar = 'J'; #endif if (parser.seenval(achar)) arc_offset.a = parser.value_linear_units(); if (parser.seenval(bchar)) arc_offset.b = parser.value_linear_units(); } if (arc_offset) { #if ENABLED(ARC_P_CIRCLES) // P indicates number of circles to do int8_t circles_to_do = parser.byteval('P'); if (!WITHIN(circles_to_do, 0, 100)) SERIAL_ERROR_MSG(STR_ERR_ARC_ARGS); while (circles_to_do--) plan_arc(current_position, arc_offset, clockwise); #endif // Send the arc to the planner plan_arc(destination, arc_offset, clockwise); reset_stepper_timeout(); } else SERIAL_ERROR_MSG(STR_ERR_ARC_ARGS); } } #endif // ARC_SUPPORT