/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#pragma once
#include "../../inc/MarlinConfigPre.h"
/**
* Busy wait delay cycles routines:
*
* DELAY_CYCLES(count): Delay execution in cycles
* DELAY_NS(count): Delay execution in nanoseconds
* DELAY_US(count): Delay execution in microseconds
*/
#include "../../core/macros.h"
void calibrate_delay_loop();
#if defined(__arm__) || defined(__thumb__)
// We want to have delay_cycle function with the lowest possible overhead, so we adjust at the function at runtime based on the current CPU best feature
typedef void (*DelayImpl)(uint32_t);
extern DelayImpl DelayCycleFnc;
// I've measured 36 cycles on my system to call the cycle waiting method, but it shouldn't change much to have a bit more margin, it only consume a bit more flash
#define TRIP_POINT_FOR_CALLING_FUNCTION 40
// A simple recursive template class that output exactly one 'nop' of code per recursion
template struct NopWriter {
FORCE_INLINE static void build() {
__asm__ __volatile__("nop");
NopWriter::build();
}
};
// End the loop
template <> struct NopWriter<0> { FORCE_INLINE static void build() {} };
namespace Private {
// Split recursing template in 2 different class so we don't reach the maximum template instantiation depth limit
template struct Helper {
FORCE_INLINE static void build() {
DelayCycleFnc(N - 2); // Approximative cost of calling the function (might be off by one or 2 cycles)
}
};
template struct Helper {
FORCE_INLINE static void build() {
NopWriter::build();
}
};
template <> struct Helper {
FORCE_INLINE static void build() {}
};
}
// Select a behavior based on the constexpr'ness of the parameter
// If called with a compile-time parameter, then write as many NOP as required to reach the asked cycle count
// (there is some tripping point here to start looping when it's more profitable than gruntly executing NOPs)
// If not called from a compile-time parameter, fallback to a runtime loop counting version instead
template
struct SmartDelay {
FORCE_INLINE SmartDelay(int) {
if (Cycles == 0) return;
Private::Helper::build();
}
};
// Runtime version below. There is no way this would run under less than ~TRIP_POINT_FOR_CALLING_FUNCTION cycles
template
struct SmartDelay {
FORCE_INLINE SmartDelay(int v) { DelayCycleFnc(v); }
};
#define DELAY_CYCLES(X) do { SmartDelay _smrtdly_X(X); } while(0)
// For delay in microseconds, no smart delay selection is required, directly call the delay function
// Teensy compiler is too old and does not accept smart delay compile-time / run-time selection correctly
#define DELAY_US(x) DelayCycleFnc((x) * ((F_CPU) / 1000000UL))
#elif defined(__AVR__)
#define nop() __asm__ __volatile__("nop;\n\t":::)
FORCE_INLINE static void __delay_4cycles(uint8_t cy) {
__asm__ __volatile__(
L("1")
A("dec %[cnt]")
A("nop")
A("brne 1b")
: [cnt] "+r"(cy) // output: +r means input+output
: // input:
: "cc" // clobbers:
);
}
// Delay in cycles
FORCE_INLINE static void DELAY_CYCLES(uint16_t x) {
if (__builtin_constant_p(x)) {
#define MAXNOPS 4
if (x <= (MAXNOPS)) {
switch (x) { case 4: nop(); case 3: nop(); case 2: nop(); case 1: nop(); }
}
else {
const uint32_t rem = (x) % (MAXNOPS);
switch (rem) { case 3: nop(); case 2: nop(); case 1: nop(); }
if ((x = (x) / (MAXNOPS)))
__delay_4cycles(x); // if need more then 4 nop loop is more optimal
}
#undef MAXNOPS
}
else if ((x >>= 2))
__delay_4cycles(x);
}
#undef nop
// Delay in microseconds
#define DELAY_US(x) DELAY_CYCLES((x) * ((F_CPU) / 1000000UL))
#elif defined(__PLAT_LINUX__) || defined(ESP32)
// DELAY_CYCLES specified inside platform
// Delay in microseconds
#define DELAY_US(x) DELAY_CYCLES((x) * ((F_CPU) / 1000000UL))
#else
#error "Unsupported MCU architecture"
#endif
/**************************************************************
* Delay in nanoseconds. Requires the F_CPU macro.
* These macros follow avr-libc delay conventions.
*
* For AVR there are three possible operation modes, due to its
* slower clock speeds and thus coarser delay resolution. For
* example, when F_CPU = 16000000 the resolution is 62.5ns.
*
* Round up (default)
* Round up the delay according to the CPU clock resolution.
* e.g., 100 will give a delay of 2 cycles (125ns).
*
* Round down (DELAY_NS_ROUND_DOWN)
* Round down the delay according to the CPU clock resolution.
* e.g., 100 will be rounded down to 1 cycle (62.5ns).
*
* Nearest (DELAY_NS_ROUND_CLOSEST)
* Round the delay to the nearest number of clock cycles.
* e.g., 165 will be rounded up to 3 cycles (187.5ns) because
* it's closer to the requested delay than 2 cycle (125ns).
*/
#ifndef __AVR__
#undef DELAY_NS_ROUND_DOWN
#undef DELAY_NS_ROUND_CLOSEST
#endif
#if ENABLED(DELAY_NS_ROUND_DOWN)
#define DELAY_NS(x) DELAY_CYCLES((x) * ((F_CPU) / 1000000UL) / 1000UL) // floor
#elif ENABLED(DELAY_NS_ROUND_CLOSEST)
#define DELAY_NS(x) DELAY_CYCLES(((x) * ((F_CPU) / 1000000UL) + 500) / 1000UL) // round
#else
#define DELAY_NS(x) DELAY_CYCLES(((x) * ((F_CPU) / 1000000UL) + 999) / 1000UL) // "ceil"
#endif