/** * Marlin 3D Printer Firmware * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(PRUSA_MMU2) #include "mmu2.h" #include "../../lcd/menu/menu_mmu2.h" MMU2 mmu2; #include "../../gcode/gcode.h" #include "../../lcd/ultralcd.h" #include "../../libs/buzzer.h" #include "../../libs/nozzle.h" #include "../../module/temperature.h" #include "../../module/planner.h" #include "../../module/stepper_indirection.h" #include "../../Marlin.h" #if ENABLED(HOST_PROMPT_SUPPORT) #include "../../feature/host_actions.h" #endif #define MMU_TODELAY 100 #define MMU_TIMEOUT 10 #define MMU_CMD_TIMEOUT 60000ul //5min timeout for mmu commands (except P0) #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds #define MMU_CMD_NONE 0 #define MMU_CMD_T0 0x10 #define MMU_CMD_T1 0x11 #define MMU_CMD_T2 0x12 #define MMU_CMD_T3 0x13 #define MMU_CMD_T4 0x14 #define MMU_CMD_L0 0x20 #define MMU_CMD_L1 0x21 #define MMU_CMD_L2 0x22 #define MMU_CMD_L3 0x23 #define MMU_CMD_L4 0x24 #define MMU_CMD_C0 0x30 #define MMU_CMD_U0 0x40 #define MMU_CMD_E0 0x50 #define MMU_CMD_E1 0x51 #define MMU_CMD_E2 0x52 #define MMU_CMD_E3 0x53 #define MMU_CMD_E4 0x54 #define MMU_CMD_R0 0x60 #define MMU_CMD_F0 0x70 #define MMU_CMD_F1 0x71 #define MMU_CMD_F2 0x72 #define MMU_CMD_F3 0x73 #define MMU_CMD_F4 0x74 #if ENABLED(MMU2_MODE_12V) #define MMU_REQUIRED_FW_BUILDNR 132 #else #define MMU_REQUIRED_FW_BUILDNR 126 #endif #define MMU2_NO_TOOL 99 #define MMU_BAUD 115200 #define mmuSerial MMU2_SERIAL bool MMU2::enabled, MMU2::ready, MMU2::mmu_print_saved; uint8_t MMU2::cmd, MMU2::cmd_arg, MMU2::last_cmd, MMU2::extruder; int8_t MMU2::state = 0; volatile int8_t MMU2::finda = 1; volatile bool MMU2::findaRunoutValid; int16_t MMU2::version = -1, MMU2::buildnr = -1; millis_t MMU2::last_request, MMU2::next_P0_request; char MMU2::rx_buffer[16], MMU2::tx_buffer[16]; #if HAS_LCD_MENU && ENABLED(MMU2_MENUS) struct E_Step { float extrude; //!< extrude distance in mm float feedRate; //!< feed rate in mm/s }; static constexpr E_Step ramming_sequence[] PROGMEM = { MMU2_RAMMING_SEQUENCE }; static constexpr E_Step loadToNozzle_sequence[] PROGMEM = { MMU2_LOAD_TO_NOZZLE_SEQUENCE }; #endif // MMU2_MENUS MMU2::MMU2() { rx_buffer[0] = '\0'; } void MMU2::init() { set_runout_valid(false); #if PIN_EXISTS(MMU2_RST) // TODO use macros for this WRITE(MMU2_RST_PIN, HIGH); SET_OUTPUT(MMU2_RST_PIN); #endif mmuSerial.begin(MMU_BAUD); extruder = MMU2_NO_TOOL; safe_delay(10); reset(); rx_buffer[0] = '\0'; state = -1; } void MMU2::reset() { #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU <= reset"); #endif #if PIN_EXISTS(MMU2_RST) WRITE(MMU2_RST_PIN, LOW); safe_delay(20); WRITE(MMU2_RST_PIN, HIGH); #else tx_str_P(PSTR("X0\n")); // Send soft reset #endif } uint8_t MMU2::getCurrentTool() { return extruder == MMU2_NO_TOOL ? -1 : extruder; } void MMU2::mmuLoop() { switch (state) { case 0: break; case -1: if (rx_start()) { #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU => 'start'"); SERIAL_ECHOLNPGM("MMU <= 'S1'"); #endif // send "read version" request tx_str_P(PSTR("S1\n")); state = -2; } else if (millis() > 3000000) { SERIAL_ECHOLNPGM("MMU not responding - DISABLED"); state = 0; } break; case -2: if (rx_ok()) { sscanf(rx_buffer, "%uok\n", &version); #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPAIR("MMU => ", version); SERIAL_ECHOLNPGM("MMU <= 'S2'"); #endif tx_str_P(PSTR("S2\n")); // read build number state = -3; } break; case -3: if (rx_ok()) { sscanf(rx_buffer, "%uok\n", &buildnr); #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPAIR("MMU => ", buildnr); #endif checkVersion(); #if ENABLED(MMU2_MODE_12V) #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU <= 'M1'"); #endif tx_str_P(PSTR("M1\n")); // switch to stealth mode state = -5; #else #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU <= 'P0'"); #endif tx_str_P(PSTR("P0\n")); // read finda state = -4; #endif } break; case -5: // response to M1 if (rx_ok()) { #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU => ok"); #endif checkVersion(); #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU <= 'P0'"); #endif tx_str_P(PSTR("P0\n")); // read finda state = -4; } break; case -4: if (rx_ok()) { sscanf(rx_buffer, "%hhuok\n", &finda); #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPAIR("MMU => ", finda); SERIAL_ECHOLNPGM("MMU - ENABLED"); #endif enabled = true; state = 1; } break; case 1: if (cmd) { if (WITHIN(cmd, MMU_CMD_T0, MMU_CMD_T4)) { // tool change int filament = cmd - MMU_CMD_T0; #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPAIR("MMU <= T", filament); #endif tx_printf_P(PSTR("T%d\n"), filament); state = 3; // wait for response } else if (WITHIN(cmd, MMU_CMD_L0, MMU_CMD_L4)) { // load int filament = cmd - MMU_CMD_L0; #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPAIR("MMU <= L", filament); #endif tx_printf_P(PSTR("L%d\n"), filament); state = 3; // wait for response } else if (cmd == MMU_CMD_C0) { // continue loading #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU <= 'C0'"); #endif tx_str_P(PSTR("C0\n")); state = 3; // wait for response } else if (cmd == MMU_CMD_U0) { // unload current #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU <= 'U0'"); #endif tx_str_P(PSTR("U0\n")); state = 3; // wait for response } else if (WITHIN(cmd, MMU_CMD_E0, MMU_CMD_E4)) { // eject filament int filament = cmd - MMU_CMD_E0; #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPAIR("MMU <= E", filament); #endif tx_printf_P(PSTR("E%d\n"), filament); state = 3; // wait for response } else if (cmd == MMU_CMD_R0) { // recover after eject #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU <= 'R0'"); #endif tx_str_P(PSTR("R0\n")); state = 3; // wait for response } else if (WITHIN(cmd, MMU_CMD_F0, MMU_CMD_F4)) { // filament type int filament = cmd - MMU_CMD_F0; #if ENABLED(MMU2_DEBUG) SERIAL_ECHOPAIR("MMU <= F", filament); SERIAL_ECHOPGM(" "); SERIAL_ECHO_F(cmd_arg, DEC); SERIAL_ECHOPGM("\n"); #endif tx_printf_P(PSTR("F%d %d\n"), filament, cmd_arg); state = 3; // wait for response } last_cmd = cmd; cmd = MMU_CMD_NONE; } else if (ELAPSED(millis(), next_P0_request)) { // read FINDA tx_str_P(PSTR("P0\n")); state = 2; // wait for response } break; case 2: // response to command P0 if (rx_ok()) { sscanf(rx_buffer, "%hhuok\n", &finda); #if ENABLED(MMU2_DEBUG) // This is super annoying. Only activate if necessary /* if (findaRunoutValid) { SERIAL_ECHOLNPGM("MMU <= 'P0'"); SERIAL_ECHOPGM("MMU => "); SERIAL_ECHO_F(finda, DEC); SERIAL_ECHOPGM("\n"); } */ #endif state = 1; if (cmd == 0) ready = true; if (!finda && findaRunoutValid) filamentRunout(); } else if (ELAPSED(millis(), last_request + MMU_P0_TIMEOUT)) // Resend request after timeout (30s) state = 1; break; case 3: // response to mmu commands if (rx_ok()) { #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU => 'ok'"); #endif ready = true; state = 1; last_cmd = MMU_CMD_NONE; } else if (ELAPSED(millis(), last_request + MMU_CMD_TIMEOUT)) { // resend request after timeout if (last_cmd) { #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("MMU retry"); #endif cmd = last_cmd; last_cmd = MMU_CMD_NONE; } state = 1; } break; } } /** * Check if MMU was started */ bool MMU2::rx_start() { // check for start message if (rx_str_P(PSTR("start\n"))) { next_P0_request = millis() + 300; return true; } return false; } /** * Check if the data received ends with the given string. */ bool MMU2::rx_str_P(const char* str) { uint8_t i = strlen(rx_buffer); while (mmuSerial.available()) { rx_buffer[i++] = mmuSerial.read(); rx_buffer[i] = '\0'; if (i == sizeof(rx_buffer) - 1) { #if ENABLED(MMU2_DEBUG) SERIAL_ECHOLNPGM("rx buffer overrun"); #endif break; } } uint8_t len = strlen_P(str); if (i < len) return false; str += len; while (len--) { char c0 = pgm_read_byte(str--), c1 = rx_buffer[i--]; if (c0 == c1) continue; if (c0 == '\r' && c1 == '\n') continue; // match cr as lf if (c0 == '\n' && c1 == '\r') continue; // match lf as cr return false; } return true; } /** * Transfer data to MMU, no argument */ void MMU2::tx_str_P(const char* str) { clear_rx_buffer(); uint8_t len = strlen_P(str); for (uint8_t i = 0; i < len; i++) mmuSerial.write(pgm_read_byte(str++)); rx_buffer[0] = '\0'; last_request = millis(); } /** * Transfer data to MMU, single argument */ void MMU2::tx_printf_P(const char* format, int argument = -1) { clear_rx_buffer(); uint8_t len = sprintf_P(tx_buffer, format, argument); for (uint8_t i = 0; i < len; i++) mmuSerial.write(tx_buffer[i]); rx_buffer[0] = '\0'; last_request = millis(); } /** * Transfer data to MMU, two arguments */ void MMU2::tx_printf_P(const char* format, int argument1, int argument2) { clear_rx_buffer(); uint8_t len = sprintf_P(tx_buffer, format, argument1, argument2); for (uint8_t i = 0; i < len; i++) mmuSerial.write(tx_buffer[i]); rx_buffer[0] = '\0'; last_request = millis(); } /** * Empty the rx buffer */ void MMU2::clear_rx_buffer() { while (mmuSerial.available()) mmuSerial.read(); rx_buffer[0] = '\0'; } /** * Check if we received 'ok' from MMU */ bool MMU2::rx_ok() { if (rx_str_P(PSTR("ok\n"))) { next_P0_request = millis() + 300; return true; } return false; } /** * Check if MMU has compatible firmware */ void MMU2::checkVersion() { if (buildnr < MMU_REQUIRED_FW_BUILDNR) { SERIAL_ERROR_START(); SERIAL_ECHOPGM("MMU2 firmware version invalid. Required version >= "); SERIAL_ECHOLN(MMU_REQUIRED_FW_BUILDNR); kill(MSG_MMU2_WRONG_FIRMWARE); } } /** * Handle tool change */ void MMU2::toolChange(uint8_t index) { if (!enabled) return; set_runout_valid(false); if (index != extruder) { KEEPALIVE_STATE(IN_HANDLER); disable_E0(); ui.status_printf_P(0, PSTR(MSG_MMU2_LOADING_FILAMENT), int(index + 1)); command(MMU_CMD_T0 + index); manageResponse(true, true); KEEPALIVE_STATE(IN_HANDLER); command(MMU_CMD_C0); extruder = index; //filament change is finished active_extruder = 0; enable_E0(); SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(extruder)); ui.reset_status(); KEEPALIVE_STATE(NOT_BUSY); } set_runout_valid(true); } /** * * Handle special T?/Tx/Tc commands * * T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically * Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load. * Tc Load to nozzle after filament was prepared by Tx and extruder nozzle is already heated. * */ void MMU2::toolChange(const char* special) { if (!enabled) return; #if ENABLED(MMU2_MENUS) set_runout_valid(false); KEEPALIVE_STATE(IN_HANDLER); switch(*special) { case '?': { uint8_t index = mmu2_chooseFilament(); while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100); loadFilamentToNozzle(index); } break; case 'x': { planner.synchronize(); uint8_t index = mmu2_chooseFilament(); disable_E0(); command(MMU_CMD_T0 + index); manageResponse(true, true); command(MMU_CMD_C0); mmuLoop(); enable_E0(); extruder = index; active_extruder = 0; } break; case 'c': { while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100); executeExtruderSequence((const E_Step *)loadToNozzle_sequence, COUNT(loadToNozzle_sequence)); } break; } KEEPALIVE_STATE(NOT_BUSY); set_runout_valid(true); #endif } /** * Set next command */ void MMU2::command(const uint8_t mmu_cmd) { if (!enabled) return; cmd = mmu_cmd; ready = false; } /** * Wait for response from MMU */ bool MMU2::getResponse(void) { while (cmd != MMU_CMD_NONE) idle(); while (!ready) { idle(); if (state != 3) break; } const bool ret = ready; ready = false; return ret; } /** * Wait for response and deal with timeout if nexcessary */ void MMU2::manageResponse(bool move_axes, bool turn_off_nozzle) { bool response = false; mmu_print_saved = false; point_t park_point = NOZZLE_PARK_POINT; float resume_position[XYZE]; int16_t resume_hotend_temp; while (!response) { response = getResponse(); //wait for "ok" from mmu if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater planner.synchronize(); mmu_print_saved = true; SERIAL_ECHOLNPGM("MMU not responding"); resume_hotend_temp = thermalManager.degTargetHotend(active_extruder); COPY(resume_position, current_position); if (move_axes && all_axes_homed()) Nozzle::park(2, park_point /*= NOZZLE_PARK_POINT*/); if (turn_off_nozzle) thermalManager.setTargetHotend(0, active_extruder); LCD_MESSAGEPGM(MSG_MMU2_NOT_RESPONDING); BUZZ(100, 659); BUZZ(200, 698); BUZZ(100, 659); BUZZ(300, 440); BUZZ(100, 659); KEEPALIVE_STATE(PAUSED_FOR_USER); } } else if (mmu_print_saved) { SERIAL_ECHOLNPGM("MMU starts responding\n"); KEEPALIVE_STATE(IN_HANDLER); if (turn_off_nozzle && resume_hotend_temp) { thermalManager.setTargetHotend(resume_hotend_temp, active_extruder); LCD_MESSAGEPGM(MSG_HEATING); BUZZ(200, 40); while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(1000); } if (move_axes && all_axes_homed()) { LCD_MESSAGEPGM(MSG_MMU2_RESUMING); BUZZ(200, 404); BUZZ(200, 404); // Move XY to starting position, then Z do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], NOZZLE_PARK_XY_FEEDRATE); // Move Z_AXIS to saved position do_blocking_move_to_z(resume_position[Z_AXIS], NOZZLE_PARK_Z_FEEDRATE); } else { BUZZ(200, 404); BUZZ(200, 404); LCD_MESSAGEPGM(MSG_MMU2_RESUMING); } } } } void MMU2::setFilamentType(uint8_t index, uint8_t filamentType) { if (!enabled) return; KEEPALIVE_STATE(IN_HANDLER); cmd_arg = filamentType; command(MMU_CMD_F0 + index); manageResponse(true, true); KEEPALIVE_STATE(NOT_BUSY); } void MMU2::filamentRunout() { enqueue_and_echo_commands_P(PSTR(MMU2_FILAMENT_RUNOUT_SCRIPT)); planner.synchronize(); } #if HAS_LCD_MENU && ENABLED(MMU2_MENUS) // Load filament into MMU2 void MMU2::loadFilament(uint8_t index) { if (!enabled) return; command(MMU_CMD_L0 + index); manageResponse(false, false); BUZZ(200, 404); } /** * * Switch material and load to nozzle * */ bool MMU2::loadFilamentToNozzle(uint8_t index) { if (!enabled) return false; if (thermalManager.tooColdToExtrude(active_extruder)) { BUZZ(200, 404); LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD); return false; } else { KEEPALIVE_STATE(IN_HANDLER); command(MMU_CMD_T0 + index); manageResponse(true, true); command(MMU_CMD_C0); mmuLoop(); extruder = index; active_extruder = 0; loadToNozzle(); BUZZ(200, 404); KEEPALIVE_STATE(NOT_BUSY); return true; } } /** * * Load filament to nozzle of multimaterial printer * * This function is used only only after T? (user select filament) and M600 (change filament). * It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading * filament to nozzle. */ void MMU2::loadToNozzle() { if (!enabled) return; executeExtruderSequence((const E_Step *)loadToNozzle_sequence, COUNT(loadToNozzle_sequence)); } bool MMU2::ejectFilament(uint8_t index, bool recover) { if (!enabled) return false; if (thermalManager.tooColdToExtrude(active_extruder)) { BUZZ(200, 404); LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD); return false; } KEEPALIVE_STATE(IN_HANDLER); LCD_MESSAGEPGM(MSG_MMU2_EJECTING_FILAMENT); const bool saved_e_relative_mode = gcode.axis_relative_modes[E_AXIS]; gcode.axis_relative_modes[E_AXIS] = true; enable_E0(); current_position[E_AXIS] -= MMU2_FILAMENTCHANGE_EJECT_FEED; planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder); planner.synchronize(); command(MMU_CMD_E0 + index); manageResponse(false, false); if (recover) { LCD_MESSAGEPGM(MSG_MMU2_EJECT_RECOVER); BUZZ(200, 404); wait_for_user = true; #if ENABLED(HOST_PROMPT_SUPPORT) host_prompt_do(PROMPT_USER_CONTINUE, PSTR("MMU2 Eject Recover"), PSTR("Continue")); #endif while (wait_for_user) idle(); BUZZ(200, 404); BUZZ(200, 404); command(MMU_CMD_R0); manageResponse(false, false); } ui.reset_status(); // no active tool extruder = MMU2_NO_TOOL; set_runout_valid(false); BUZZ(200, 404); KEEPALIVE_STATE(NOT_BUSY); gcode.axis_relative_modes[E_AXIS] = saved_e_relative_mode; disable_E0(); return true; } /** * * unload from hotend and retract to MMU * */ bool MMU2::unload() { if (!enabled) return false; if (thermalManager.tooColdToExtrude(active_extruder)) { BUZZ(200, 404); LCD_ALERTMESSAGEPGM(MSG_HOTEND_TOO_COLD); return false; } KEEPALIVE_STATE(IN_HANDLER); filamentRamming(); command(MMU_CMD_U0); manageResponse(false, true); BUZZ(200, 404); // no active tool extruder = MMU2_NO_TOOL; set_runout_valid(false); KEEPALIVE_STATE(NOT_BUSY); return true; } /** * Unload sequence to optimize shape of the tip of the unloaded filament */ void MMU2::filamentRamming() { executeExtruderSequence((const E_Step *)ramming_sequence, sizeof(ramming_sequence) / sizeof(E_Step)); } void MMU2::executeExtruderSequence(const E_Step * sequence, int steps) { planner.synchronize(); enable_E0(); const bool saved_e_relative_mode = gcode.axis_relative_modes[E_AXIS]; gcode.axis_relative_modes[E_AXIS] = true; const E_Step* step = sequence; for (uint8_t i = 0; i < steps; i++) { const float es = pgm_read_float(&(step->extrude)), fr = pgm_read_float(&(step->feedRate)); #if ENABLED(MMU2_DEBUG) SERIAL_ECHO_START(); SERIAL_ECHOPAIR("E step ", es); SERIAL_CHAR('/'); SERIAL_ECHOLN(fr); #endif current_position[E_AXIS] += es; planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(fr), active_extruder); planner.synchronize(); step++; } gcode.axis_relative_modes[E_AXIS] = saved_e_relative_mode; disable_E0(); } #endif // HAS_LCD_MENU && MMU2_MENUS #endif // PRUSA_MMU2