/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /************** * ui_api.cpp * **************/ /**************************************************************************** * Written By Marcio Teixeira 2018 - Aleph Objects, Inc. * * * * This program is free software: you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation, either version 3 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * To view a copy of the GNU General Public License, go to the following * * location: . * ****************************************************************************/ #include "../../Marlin.h" #if ENABLED(EXTENSIBLE_UI) #include "../../gcode/queue.h" #include "../../module/motion.h" #include "../../module/planner.h" #include "../../module/probe.h" #include "../../module/temperature.h" #include "../../libs/duration_t.h" #include "../../HAL/shared/Delay.h" #if DO_SWITCH_EXTRUDER || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER) #include "../../module/tool_change.h" #endif #if ENABLED(SDSUPPORT) #include "../../sd/cardreader.h" #include "../../feature/emergency_parser.h" #define IFSD(A,B) (A) #else #define IFSD(A,B) (B) #endif #if ENABLED(PRINTCOUNTER) #include "../../core/utility.h" #include "../../module/printcounter.h" #endif #include "ui_api.h" #if ENABLED(BACKLASH_GCODE) extern float backlash_distance_mm[XYZ], backlash_correction; #ifdef BACKLASH_SMOOTHING_MM extern float backlash_smoothing_mm; #endif #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) #include "../../feature/runout.h" #endif inline float clamp(const float value, const float minimum, const float maximum) { return MAX(MIN(value, maximum), minimum); } static bool printer_killed = false; namespace UI { #ifdef __SAM3X8E__ /** * Implement a special millis() to allow time measurement * within an ISR (such as when the printer is killed). * * To keep proper time, must be called at least every 1s. */ uint32_t safe_millis() { // Not killed? Just call millis() if (!printer_killed) return millis(); static uint32_t currTimeHI = 0; /* Current time */ // Machine was killed, reinit SysTick so we are able to compute time without ISRs if (currTimeHI == 0) { // Get the last time the Arduino time computed (from CMSIS) and convert it to SysTick currTimeHI = (uint32_t)((GetTickCount() * (uint64_t)(F_CPU/8000)) >> 24); // Reinit the SysTick timer to maximize its period SysTick->LOAD = SysTick_LOAD_RELOAD_Msk; // get the full range for the systick timer SysTick->VAL = 0; // Load the SysTick Counter Value SysTick->CTRL = // MCLK/8 as source // No interrupts SysTick_CTRL_ENABLE_Msk; // Enable SysTick Timer } // Check if there was a timer overflow from the last read if (SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) { // There was. This means (SysTick_LOAD_RELOAD_Msk * 1000 * 8)/F_CPU ms has elapsed currTimeHI++; } // Calculate current time in milliseconds uint32_t currTimeLO = SysTick_LOAD_RELOAD_Msk - SysTick->VAL; // (in MCLK/8) uint64_t currTime = ((uint64_t)currTimeLO) | (((uint64_t)currTimeHI) << 24); // The ms count is return (uint32_t)(currTime / (F_CPU / 8000)); } #else // TODO: Implement for AVR uint32_t safe_millis() { return millis(); } #endif void delay_us(unsigned long us) { DELAY_US(us); } void delay_ms(unsigned long ms) { if (printer_killed) DELAY_US(ms * 1000); else safe_delay(ms); } void yield() { if (!printer_killed) thermalManager.manage_heater(); } float getActualTemp_celsius(const uint8_t extruder) { return extruder ? thermalManager.degHotend(extruder - 1) : #if HAS_HEATED_BED thermalManager.degBed() #else 0 #endif ; } float getTargetTemp_celsius(const uint8_t extruder) { return extruder ? thermalManager.degTargetHotend(extruder - 1) : #if HAS_HEATED_BED thermalManager.degTargetBed() #else 0 #endif ; } float getFan_percent(const uint8_t fan) { return ((float(fan_speed[fan]) + 1) * 100) / 256; } float getAxisPosition_mm(const axis_t axis) { switch (axis) { case X: case Y: case Z: return current_position[axis]; case E0: case E1: case E2: case E3: case E4: case E5: return current_position[E_AXIS]; default: return 0; } } void setAxisPosition_mm(const axis_t axis, float position, float _feedrate_mm_s) { #if EXTRUDERS > 1 const int8_t old_extruder = active_extruder; #endif switch (axis) { case X: case Y: case Z: break; case E0: case E1: case E2: case E3: case E4: case E5: active_extruder = axis - E0; break; default: return; } set_destination_from_current(); switch (axis) { case X: case Y: case Z: destination[axis] = position; break; case E0: case E1: case E2: case E3: case E4: case E5: destination[E_AXIS] = position; break; } const float old_feedrate = feedrate_mm_s; feedrate_mm_s = _feedrate_mm_s; prepare_move_to_destination(); feedrate_mm_s = old_feedrate; #if EXTRUDERS > 1 active_extruder = old_extruder; #endif } void setActiveTool(uint8_t extruder, bool no_move) { extruder--; // Make zero based #if DO_SWITCH_EXTRUDER || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER) if (extruder != active_extruder) tool_change(extruder, 0, no_move); #endif active_extruder = extruder; } uint8_t getActiveTool() { return active_extruder + 1; } bool isMoving() { return planner.has_blocks_queued(); } float getAxisSteps_per_mm(const axis_t axis) { switch (axis) { case X: case Y: case Z: return planner.settings.axis_steps_per_mm[axis]; case E0: case E1: case E2: case E3: case E4: case E5: return planner.settings.axis_steps_per_mm[E_AXIS_N(axis - E0)]; default: return 0; } } void setAxisSteps_per_mm(const axis_t axis, const float steps_per_mm) { switch (axis) { case X: case Y: case Z: planner.settings.axis_steps_per_mm[axis] = steps_per_mm; break; case E0: case E1: case E2: case E3: case E4: case E5: planner.settings.axis_steps_per_mm[E_AXIS_N(axis - E0)] = steps_per_mm; break; } } float getAxisMaxFeedrate_mm_s(const axis_t axis) { switch (axis) { case X: case Y: case Z: return planner.settings.max_feedrate_mm_s[axis]; case E0: case E1: case E2: case E3: case E4: case E5: return planner.settings.max_feedrate_mm_s[E_AXIS_N(axis - E0)]; default: return 0; } } void setAxisMaxFeedrate_mm_s(const axis_t axis, const float max_feedrate_mm_s) { switch (axis) { case X: case Y: case Z: planner.settings.max_feedrate_mm_s[axis] = max_feedrate_mm_s; break; case E0: case E1: case E2: case E3: case E4: case E5: planner.settings.max_feedrate_mm_s[E_AXIS_N(axis - E0)] = max_feedrate_mm_s; break; default: return; } } float getAxisMaxAcceleration_mm_s2(const axis_t axis) { switch (axis) { case X: case Y: case Z: return planner.settings.max_acceleration_mm_per_s2[axis]; case E0: case E1: case E2: case E3: case E4: case E5: return planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(axis - E0)]; default: return 0; } } void setAxisMaxAcceleration_mm_s2(const axis_t axis, const float max_acceleration_mm_per_s2) { switch (axis) { case X: case Y: case Z: planner.settings.max_acceleration_mm_per_s2[axis] = max_acceleration_mm_per_s2; break; case E0: case E1: case E2: case E3: case E4: case E5: planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(axis - E0)] = max_acceleration_mm_per_s2; break; default: return; } } #if ENABLED(FILAMENT_RUNOUT_SENSOR) bool isFilamentRunoutEnabled() { return runout.enabled; } void toggleFilamentRunout(const bool state) { runout.enabled = state; } #if FILAMENT_RUNOUT_DISTANCE_MM > 0 float getFilamentRunoutDistance_mm() { return RunoutResponseDelayed::runout_distance_mm; } void setFilamentRunoutDistance_mm(const float distance) { RunoutResponseDelayed::runout_distance_mm = clamp(distance, 0, 999); } #endif #endif #if ENABLED(LIN_ADVANCE) float getLinearAdvance_mm_mm_s(const uint8_t extruder) { return (extruder < EXTRUDERS) ? planner.extruder_advance_K[extruder] : 0; } void setLinearAdvance_mm_mm_s(const uint8_t extruder, const float k) { if (extruder < EXTRUDERS) planner.extruder_advance_K[extruder] = clamp(k, 0, 999); } #endif #if ENABLED(JUNCTION_DEVIATION) float getJunctionDeviation_mm() { return planner.junction_deviation_mm; } void setJunctionDeviation_mm(const float junc_dev) { planner.junction_deviation_mm = clamp(junc_dev, 0.01, 0.3); planner.recalculate_max_e_jerk(); } #else float getAxisMaxJerk_mm_s(const axis_t axis) { switch (axis) { case X: case Y: case Z: return planner.max_jerk[axis]; case E0: case E1: case E2: case E3: case E4: case E5: return planner.max_jerk[E_AXIS]; default: return 0; } } void setAxisMaxJerk_mm_s(const axis_t axis, const float max_jerk) { switch (axis) { case X: case Y: case Z: planner.max_jerk[axis] = max_jerk; break; case E0: case E1: case E2: case E3: case E4: case E5: planner.max_jerk[E_AXIS] = max_jerk; break; default: return; } } #endif float getMinFeedrate_mm_s() { return planner.settings.min_feedrate_mm_s; } float getMinTravelFeedrate_mm_s() { return planner.settings.min_travel_feedrate_mm_s; } float getPrintingAcceleration_mm_s2() { return planner.settings.acceleration; } float getRetractAcceleration_mm_s2() { return planner.settings.retract_acceleration; } float getTravelAcceleration_mm_s2() { return planner.settings.travel_acceleration; } void setMinFeedrate_mm_s(const float fr) { planner.settings.min_feedrate_mm_s = fr; } void setMinTravelFeedrate_mm_s(const float fr) { planner.settings.min_travel_feedrate_mm_s = fr; } void setPrintingAcceleration_mm_s2(const float acc) { planner.settings.acceleration = acc; } void setRetractAcceleration_mm_s2(const float acc) { planner.settings.retract_acceleration = acc; } void setTravelAcceleration_mm_s2(const float acc) { planner.settings.travel_acceleration = acc; } #if ENABLED(BABYSTEP_ZPROBE_OFFSET) float getZOffset_mm() { #if ENABLED(BABYSTEP_HOTEND_Z_OFFSET) if (active_extruder != 0) return hotend_offset[Z_AXIS][active_extruder]; else #endif return zprobe_zoffset; } void setZOffset_mm(const float zoffset_mm) { const float diff = (zoffset_mm - getZOffset_mm()) / planner.steps_to_mm[Z_AXIS]; incrementZOffset_steps(diff > 0 ? ceil(diff) : floor(diff)); } void incrementZOffset_steps(int16_t babystep_increment) { #if ENABLED(BABYSTEP_HOTEND_Z_OFFSET) const bool do_probe = (active_extruder == 0); #else constexpr bool do_probe = true; #endif const float diff = planner.steps_to_mm[Z_AXIS] * babystep_increment, new_probe_offset = zprobe_zoffset + diff, new_offs = #if ENABLED(BABYSTEP_HOTEND_Z_OFFSET) do_probe ? new_probe_offset : hotend_offset[Z_AXIS][active_extruder] - diff #else new_probe_offset #endif ; if (WITHIN(new_offs, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) { thermalManager.babystep_axis(Z_AXIS, babystep_increment); if (do_probe) zprobe_zoffset = new_offs; #if ENABLED(BABYSTEP_HOTEND_Z_OFFSET) else hotend_offset[Z_AXIS][active_extruder] = new_offs; #endif } } #endif // ENABLED(BABYSTEP_ZPROBE_OFFSET) #if HOTENDS > 1 float getNozzleOffset_mm(const axis_t axis, uint8_t extruder) { if (extruder >= HOTENDS) return 0; return hotend_offset[axis][extruder]; } void setNozzleOffset_mm(const axis_t axis, uint8_t extruder, float offset) { if (extruder >= HOTENDS) return; hotend_offset[axis][extruder] = offset; } #endif #if ENABLED(BACKLASH_GCODE) float getAxisBacklash_mm(const axis_t axis) {return backlash_distance_mm[axis];} void setAxisBacklash_mm(const axis_t axis, float distance) {backlash_distance_mm[axis] = clamp(distance,0,5);} float getBacklashCorrection_percent() {return backlash_correction*100;} void setBacklashCorrection_percent(float percent) {backlash_correction = clamp(percent, 0, 100)/100;} #ifdef BACKLASH_SMOOTHING_MM float getBacklashSmoothing_mm() {return backlash_smoothing_mm;} void setBacklashSmoothing_mm(float distance) {backlash_smoothing_mm = clamp(distance,0,999);} #endif #endif uint8_t getProgress_percent() { return IFSD(card.percentDone(), 0); } uint32_t getProgress_seconds_elapsed() { const duration_t elapsed = print_job_timer.duration(); return elapsed.value; } #if ENABLED(PRINTCOUNTER) char* getTotalPrints_str(char buffer[21]) { strcpy(buffer,itostr3left(print_job_timer.getStats().totalPrints)); return buffer; } char* getFinishedPrints_str(char buffer[21]) { strcpy(buffer,itostr3left(print_job_timer.getStats().finishedPrints)); return buffer; } char* getTotalPrintTime_str(char buffer[21]) { duration_t(print_job_timer.getStats().printTime).toString(buffer); return buffer; } char* getLongestPrint_str(char buffer[21]) { duration_t(print_job_timer.getStats().printTime).toString(buffer); return buffer; } char* getFilamentUsed_str(char buffer[21]) { printStatistics stats = print_job_timer.getStats(); sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10); return buffer; } #endif float getFeedRate_percent() { return feedrate_percentage; } void enqueueCommands(progmem_str gcode) { enqueue_and_echo_commands_P((PGM_P)gcode); } bool isAxisPositionKnown(const axis_t axis) { switch (axis) { case X: case Y: case Z: return TEST(axis_known_position, axis); default: return true; } } progmem_str getFirmwareName() { return F("Marlin " SHORT_BUILD_VERSION); } void setTargetTemp_celsius(const uint8_t extruder, float temp) { if (extruder) thermalManager.setTargetHotend(clamp(temp,0,500), extruder-1); #if HAS_HEATED_BED else thermalManager.setTargetBed(clamp(temp,0,200)); #endif } void setFan_percent(const uint8_t fan, float percent) { if (fan < FAN_COUNT) fan_speed[fan] = clamp(round(percent * 255 / 100), 0, 255); } void setFeedrate_percent(const float percent) { feedrate_percentage = clamp(percent, 10, 500); } void printFile(const char *filename) { IFSD(card.openAndPrintFile(filename), NOOP); } bool isPrintingFromMediaPaused() { return IFSD(isPrintingFromMedia() && !card.sdprinting, false); } bool isPrintingFromMedia() { return IFSD(card.cardOK && card.isFileOpen(), false); } bool isPrinting() { return (planner.movesplanned() || IS_SD_PRINTING() || isPrintingFromMedia()); } bool isMediaInserted() { return IFSD(IS_SD_INSERTED() && card.cardOK, false); } void pausePrint() { #if ENABLED(SDSUPPORT) card.pauseSDPrint(); print_job_timer.pause(); #if ENABLED(PARK_HEAD_ON_PAUSE) enqueue_and_echo_commands_P(PSTR("M125")); #endif UI::onStatusChanged(PSTR(MSG_PRINT_PAUSED)); #endif } void resumePrint() { #if ENABLED(SDSUPPORT) #if ENABLED(PARK_HEAD_ON_PAUSE) enqueue_and_echo_commands_P(PSTR("M24")); #else card.startFileprint(); print_job_timer.start(); #endif UI::onStatusChanged(PSTR(MSG_PRINTING)); #endif } void stopPrint() { #if ENABLED(SDSUPPORT) wait_for_heatup = wait_for_user = false; card.abort_sd_printing = true; UI::onStatusChanged(PSTR(MSG_PRINT_ABORTED)); #endif } FileList::FileList() { refresh(); } void FileList::refresh() { num_files = 0xFFFF; } bool FileList::seek(uint16_t pos, bool skip_range_check) { #if ENABLED(SDSUPPORT) if (!skip_range_check && pos > (count() - 1)) return false; const uint16_t nr = #if ENABLED(SDCARD_RATHERRECENTFIRST) && DISABLED(SDCARD_SORT_ALPHA) count() - 1 - #endif pos; #if ENABLED(SDCARD_SORT_ALPHA) card.getfilename_sorted(nr); #else card.getfilename(nr); #endif return card.filename && card.filename[0] != '\0'; #endif } const char* FileList::filename() { return IFSD(card.longFilename && card.longFilename[0] ? card.longFilename : card.filename, ""); } const char* FileList::shortFilename() { return IFSD(card.filename, ""); } const char* FileList::longFilename() { return IFSD(card.longFilename, ""); } bool FileList::isDir() { return IFSD(card.filenameIsDir, false); } uint16_t FileList::count() { return IFSD((num_files = (num_files == 0xFFFF ? card.get_num_Files() : num_files)), 0); } bool FileList::isAtRootDir() { #if ENABLED(SDSUPPORT) card.getWorkDirName(); return card.filename[0] == '/'; #else return true; #endif } void FileList::upDir() { #if ENABLED(SDSUPPORT) card.updir(); num_files = 0xFFFF; #endif } void FileList::changeDir(const char *dirname) { #if ENABLED(SDSUPPORT) card.chdir(dirname); num_files = 0xFFFF; #endif } } // namespace UI // At the moment, we piggy-back off the ultralcd calls, but this could be cleaned up in the future void lcd_init() { #if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT) SET_INPUT_PULLUP(SD_DETECT_PIN); #endif UI::onStartup(); } void lcd_update() { #if ENABLED(SDSUPPORT) static bool last_sd_status; const bool sd_status = IS_SD_INSERTED(); if (sd_status != last_sd_status) { last_sd_status = sd_status; if (sd_status) { card.initsd(); if (card.cardOK) UI::onMediaInserted(); else UI::onMediaError(); } else { const bool ok = card.cardOK; card.release(); if (ok) UI::onMediaRemoved(); } } #endif // SDSUPPORT UI::onIdle(); } bool lcd_hasstatus() { return true; } bool lcd_detected() { return true; } void lcd_reset_alert_level() {} void lcd_refresh() {} void lcd_setstatus(const char * const message, const bool persist /* = false */) { UI::onStatusChanged(message); } void lcd_setstatusPGM(const char * const message, int8_t level /* = 0 */) { UI::onStatusChanged((progmem_str)message); } void lcd_setalertstatusPGM(const char * const message) { lcd_setstatusPGM(message, 0); } void lcd_reset_status() { static const char paused[] PROGMEM = MSG_PRINT_PAUSED; static const char printing[] PROGMEM = MSG_PRINTING; static const char welcome[] PROGMEM = WELCOME_MSG; PGM_P msg; if (print_job_timer.isPaused()) msg = paused; #if ENABLED(SDSUPPORT) else if (card.sdprinting) return lcd_setstatus(card.longest_filename(), true); #endif else if (print_job_timer.isRunning()) msg = printing; else msg = welcome; lcd_setstatusPGM(msg, -1); } void lcd_status_printf_P(const uint8_t level, const char * const fmt, ...) { char buff[64]; va_list args; va_start(args, fmt); vsnprintf_P(buff, sizeof(buff), fmt, args); va_end(args); buff[63] = '\0'; UI::onStatusChanged(buff); } void kill_screen(PGM_P msg) { if (!printer_killed) { printer_killed = true; UI::onPrinterKilled(msg); } } #endif // EXTENSIBLE_UI