/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../platforms.h" #ifdef HAL_STM32 #include "../../inc/MarlinConfig.h" #if ENABLED(SDIO_SUPPORT) #include "sdio.h" #include #include #if defined(STM32F103xE) || defined(STM32F103xG) #include #include #elif defined(STM32F4xx) #include #include #include #include #elif defined(STM32F7xx) #include #include #include #include #elif defined(STM32H7xx) #define SDIO_FOR_STM32H7 #include #include #include #include #else #error "SDIO is only supported with STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx, and STM32H7xx." #endif // SDIO Max Clock (naming from STM Manual, don't change) #define SDIOCLK 48000000 // Target Clock, configurable. Default is 18MHz, from STM32F1 #ifndef SDIO_CLOCK #define SDIO_CLOCK 18000000 // 18 MHz #endif SD_HandleTypeDef hsd; // SDIO structure static uint32_t clock_to_divider(uint32_t clk) { #ifdef SDIO_FOR_STM32H7 // SDMMC_CK frequency = sdmmc_ker_ck / [2 * CLKDIV]. uint32_t sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC); return sdmmc_clk / (2U * SDIO_CLOCK) + (sdmmc_clk % (2U * SDIO_CLOCK) != 0); #else // limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals // Also limited to no more than 48Mhz (SDIOCLK). const uint32_t pclk2 = HAL_RCC_GetPCLK2Freq(); clk = min(clk, (uint32_t)(pclk2 * 8 / 3)); clk = min(clk, (uint32_t)SDIOCLK); // Round up divider, so we don't run the card over the speed supported, // and subtract by 2, because STM32 will add 2, as written in the manual: // SDIO_CK frequency = SDIOCLK / [CLKDIV + 2] return pclk2 / clk + (pclk2 % clk != 0) - 2; #endif } // Start the SDIO clock void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { UNUSED(hsd); #ifdef SDIO_FOR_STM32H7 pinmap_pinout(PC_12, PinMap_SD); pinmap_pinout(PD_2, PinMap_SD); pinmap_pinout(PC_8, PinMap_SD); #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // Define D1-D3 only for 4-bit wide SDIO bus pinmap_pinout(PC_9, PinMap_SD); pinmap_pinout(PC_10, PinMap_SD); pinmap_pinout(PC_11, PinMap_SD); #endif __HAL_RCC_SDMMC1_CLK_ENABLE(); HAL_NVIC_EnableIRQ(SDMMC1_IRQn); #else __HAL_RCC_SDIO_CLK_ENABLE(); #endif } #ifdef SDIO_FOR_STM32H7 #define SD_TIMEOUT 1000 // ms extern "C" void SDMMC1_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); } uint8_t waitingRxCplt = 0, waitingTxCplt = 0; void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsdio) { waitingTxCplt = 0; } void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsdio) { waitingRxCplt = 0; } void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) { __HAL_RCC_SDMMC1_FORCE_RESET(); delay(10); __HAL_RCC_SDMMC1_RELEASE_RESET(); delay(10); } bool SDIO_Init() { HAL_StatusTypeDef sd_state = HAL_OK; if (hsd.Instance == SDMMC1) HAL_SD_DeInit(&hsd); // HAL SD initialization hsd.Instance = SDMMC1; hsd.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING; hsd.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE; hsd.Init.BusWide = SDMMC_BUS_WIDE_1B; hsd.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE; hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK); sd_state = HAL_SD_Init(&hsd); #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) if (sd_state == HAL_OK) sd_state = HAL_SD_ConfigWideBusOperation(&hsd, SDMMC_BUS_WIDE_4B); #endif return (sd_state == HAL_OK); } #else // !SDIO_FOR_STM32H7 #define SD_TIMEOUT 500 // ms // SDIO retries, configurable. Default is 3, from STM32F1 #ifndef SDIO_READ_RETRIES #define SDIO_READ_RETRIES 3 #endif // F4 supports one DMA for RX and another for TX, but Marlin will never // do read and write at same time, so we use the same DMA for both. DMA_HandleTypeDef hdma_sdio; #ifdef STM32F1xx #define DMA_IRQ_HANDLER DMA2_Channel4_5_IRQHandler #elif defined(STM32F4xx) #define DMA_IRQ_HANDLER DMA2_Stream3_IRQHandler #else #error "Unknown STM32 architecture." #endif extern "C" void SDIO_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); } extern "C" void DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&hdma_sdio); } /* SDIO_INIT_CLK_DIV is 118 SDIO clock frequency is 48MHz / (TRANSFER_CLOCK_DIV + 2) SDIO init clock frequency should not exceed 400kHz = 48MHz / (118 + 2) Default TRANSFER_CLOCK_DIV is 2 (118 / 40) Default SDIO clock frequency is 48MHz / (2 + 2) = 12 MHz This might be too fast for stable SDIO operations MKS Robin SDIO seems stable with BusWide 1bit and ClockDiv 8 (i.e., 4.8MHz SDIO clock frequency) More testing is required as there are clearly some 4bit init problems. */ void go_to_transfer_speed() { /* Default SDIO peripheral configuration for SD card initialization */ hsd.Init.ClockEdge = hsd.Init.ClockEdge; hsd.Init.ClockBypass = hsd.Init.ClockBypass; hsd.Init.ClockPowerSave = hsd.Init.ClockPowerSave; hsd.Init.BusWide = hsd.Init.BusWide; hsd.Init.HardwareFlowControl = hsd.Init.HardwareFlowControl; hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK); /* Initialize SDIO peripheral interface with default configuration */ SDIO_Init(hsd.Instance, hsd.Init); } void SD_LowLevel_Init() { uint32_t tempreg; // Enable GPIO clocks __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = 1; // GPIO_NOPULL GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; #if DISABLED(STM32F1xx) GPIO_InitStruct.Alternate = GPIO_AF12_SDIO; #endif GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_12; // D0 & SCK HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11; // D1-D3 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); #endif // Configure PD.02 CMD line GPIO_InitStruct.Pin = GPIO_PIN_2; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); // Setup DMA #ifdef STM32F1xx hdma_sdio.Init.Mode = DMA_NORMAL; hdma_sdio.Instance = DMA2_Channel4; HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn); #elif defined(STM32F4xx) hdma_sdio.Init.Mode = DMA_PFCTRL; hdma_sdio.Instance = DMA2_Stream3; hdma_sdio.Init.Channel = DMA_CHANNEL_4; hdma_sdio.Init.FIFOMode = DMA_FIFOMODE_ENABLE; hdma_sdio.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_sdio.Init.MemBurst = DMA_MBURST_INC4; hdma_sdio.Init.PeriphBurst = DMA_PBURST_INC4; HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); #endif HAL_NVIC_EnableIRQ(SDIO_IRQn); hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sdio.Init.MemInc = DMA_MINC_ENABLE; hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; hdma_sdio.Init.Priority = DMA_PRIORITY_LOW; __HAL_LINKDMA(&hsd, hdmarx, hdma_sdio); __HAL_LINKDMA(&hsd, hdmatx, hdma_sdio); #ifdef STM32F1xx __HAL_RCC_SDIO_CLK_ENABLE(); __HAL_RCC_DMA2_CLK_ENABLE(); #else __HAL_RCC_SDIO_FORCE_RESET(); delay(2); __HAL_RCC_SDIO_RELEASE_RESET(); delay(2); __HAL_RCC_SDIO_CLK_ENABLE(); __HAL_RCC_DMA2_FORCE_RESET(); delay(2); __HAL_RCC_DMA2_RELEASE_RESET(); delay(2); __HAL_RCC_DMA2_CLK_ENABLE(); #endif // Initialize the SDIO (with initial <400Khz Clock) tempreg = 0 // Reset value | SDIO_CLKCR_CLKEN // Clock enabled | SDIO_INIT_CLK_DIV; // Clock Divider. Clock = 48000 / (118 + 2) = 400Khz // Keep the rest at 0 => HW_Flow Disabled, Rising Clock Edge, Disable CLK ByPass, Bus Width = 0, Power save Disable SDIO->CLKCR = tempreg; // Power up the SDIO SDIO_PowerState_ON(SDIO); hsd.Instance = SDIO; } bool SDIO_Init() { uint8_t retryCnt = SDIO_READ_RETRIES; bool status; hsd.Instance = SDIO; hsd.State = HAL_SD_STATE_RESET; SD_LowLevel_Init(); uint8_t retry_Cnt = retryCnt; for (;;) { hal.watchdog_refresh(); status = (bool) HAL_SD_Init(&hsd); if (!status) break; if (!--retry_Cnt) return false; // return failing status if retries are exhausted } go_to_transfer_speed(); #if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // go to 4 bit wide mode if pins are defined retry_Cnt = retryCnt; for (;;) { hal.watchdog_refresh(); if (!HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B)) break; // some cards are only 1 bit wide so a pass here is not required if (!--retry_Cnt) break; } if (!retry_Cnt) { // wide bus failed, go back to one bit wide mode hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET SD_LowLevel_Init(); retry_Cnt = retryCnt; for (;;) { hal.watchdog_refresh(); status = (bool) HAL_SD_Init(&hsd); if (!status) break; if (!--retry_Cnt) return false; // return failing status if retries are exhausted } go_to_transfer_speed(); } #endif return true; } /** * @brief Read or Write a block * @details Read or Write a block with SDIO * * @param block The block index * @param src The data buffer source for a write * @param dst The data buffer destination for a read * * @return true on success */ static bool SDIO_ReadWriteBlock_DMA(uint32_t block, const uint8_t *src, uint8_t *dst) { if (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) return false; hal.watchdog_refresh(); HAL_StatusTypeDef ret; if (src) { hdma_sdio.Init.Direction = DMA_MEMORY_TO_PERIPH; HAL_DMA_Init(&hdma_sdio); ret = HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t*)src, block, 1); } else { hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY; HAL_DMA_Init(&hdma_sdio); ret = HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t*)dst, block, 1); } if (ret != HAL_OK) { HAL_DMA_Abort_IT(&hdma_sdio); HAL_DMA_DeInit(&hdma_sdio); return false; } millis_t timeout = millis() + SD_TIMEOUT; // Wait the transfer while (hsd.State != HAL_SD_STATE_READY) { if (ELAPSED(millis(), timeout)) { HAL_DMA_Abort_IT(&hdma_sdio); HAL_DMA_DeInit(&hdma_sdio); return false; } } while (__HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TC_FLAG_INDEX(&hdma_sdio)) != 0 || __HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TE_FLAG_INDEX(&hdma_sdio)) != 0) { /* nada */ } HAL_DMA_Abort_IT(&hdma_sdio); HAL_DMA_DeInit(&hdma_sdio); timeout = millis() + SD_TIMEOUT; while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) if (ELAPSED(millis(), timeout)) return false; return true; } #endif // !SDIO_FOR_STM32H7 /** * @brief Read a block * @details Read a block from media with SDIO * * @param block The block index * @param src The block buffer * * @return true on success */ bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) { #ifdef SDIO_FOR_STM32H7 uint32_t timeout = HAL_GetTick() + SD_TIMEOUT; while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) if (HAL_GetTick() >= timeout) return false; waitingRxCplt = 1; if (HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t*)dst, block, 1) != HAL_OK) return false; timeout = HAL_GetTick() + SD_TIMEOUT; while (waitingRxCplt) if (HAL_GetTick() >= timeout) return false; return true; #else uint8_t retries = SDIO_READ_RETRIES; while (retries--) if (SDIO_ReadWriteBlock_DMA(block, nullptr, dst)) return true; return false; #endif } /** * @brief Write a block * @details Write a block to media with SDIO * * @param block The block index * @param src The block data * * @return true on success */ bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) { #ifdef SDIO_FOR_STM32H7 uint32_t timeout = HAL_GetTick() + SD_TIMEOUT; while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) if (HAL_GetTick() >= timeout) return false; waitingTxCplt = 1; if (HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t*)src, block, 1) != HAL_OK) return false; timeout = HAL_GetTick() + SD_TIMEOUT; while (waitingTxCplt) if (HAL_GetTick() >= timeout) return false; return true; #else uint8_t retries = SDIO_READ_RETRIES; while (retries--) if (SDIO_ReadWriteBlock_DMA(block, src, nullptr)) return true; return false; #endif } bool SDIO_IsReady() { return hsd.State == HAL_SD_STATE_READY; } uint32_t SDIO_GetCardSize() { return (uint32_t)(hsd.SdCard.BlockNbr) * (hsd.SdCard.BlockSize); } #endif // SDIO_SUPPORT #endif // HAL_STM32