/* stepper.c - stepper motor driver: executes motion plans using stepper motors Part of Grbl Copyright (c) 2009-2011 Simen Svale Skogsrud Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith and Philipp Tiefenbacher. */ #include "stepper.h" #include "Configuration.h" #include "Marlin.h" #include "planner.h" #include "pins.h" #include "fastio.h" #include "temperature.h" #include "ultralcd.h" #include "speed_lookuptable.h" //=========================================================================== //=============================public variables ============================ //=========================================================================== block_t *current_block; // A pointer to the block currently being traced //=========================================================================== //=============================private variables ============================ //=========================================================================== //static makes it inpossible to be called from outside of this file by extern.! // Variables used by The Stepper Driver Interrupt static unsigned char out_bits; // The next stepping-bits to be output static long counter_x, // Counter variables for the bresenham line tracer counter_y, counter_z, counter_e; volatile static unsigned long step_events_completed; // The number of step events executed in the current block #ifdef ADVANCE static long advance_rate, advance, final_advance = 0; static long old_advance = 0; #endif static long e_steps; static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler. static long acceleration_time, deceleration_time; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; static unsigned short acc_step_rate; // needed for deccelaration start point static char step_loops; static unsigned short OCR1A_nominal; volatile long endstops_trigsteps[3]={0,0,0}; volatile long endstops_stepsTotal,endstops_stepsDone; static volatile bool endstop_x_hit=false; static volatile bool endstop_y_hit=false; static volatile bool endstop_z_hit=false; static bool old_x_min_endstop=false; static bool old_x_max_endstop=false; static bool old_y_min_endstop=false; static bool old_y_max_endstop=false; static bool old_z_min_endstop=false; static bool old_z_max_endstop=false; volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; //=========================================================================== //=============================functions ============================ //=========================================================================== // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result #define MultiU16X8toH16(intRes, charIn1, intIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %A1, %A2 \n\t" \ "add %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r0 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (charIn1), \ "d" (intIn2) \ : \ "r26" \ ) // intRes = longIn1 * longIn2 >> 24 // uses: // r26 to store 0 // r27 to store the byte 1 of the 48bit result #define MultiU24X24toH16(intRes, longIn1, longIn2) \ asm volatile ( \ "clr r26 \n\t" \ "mul %A1, %B2 \n\t" \ "mov r27, r1 \n\t" \ "mul %B1, %C2 \n\t" \ "movw %A0, r0 \n\t" \ "mul %C1, %C2 \n\t" \ "add %B0, r0 \n\t" \ "mul %C1, %B2 \n\t" \ "add %A0, r0 \n\t" \ "adc %B0, r1 \n\t" \ "mul %A1, %C2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %B2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %C1, %A2 \n\t" \ "add r27, r0 \n\t" \ "adc %A0, r1 \n\t" \ "adc %B0, r26 \n\t" \ "mul %B1, %A2 \n\t" \ "add r27, r1 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "lsr r27 \n\t" \ "adc %A0, r26 \n\t" \ "adc %B0, r26 \n\t" \ "clr r1 \n\t" \ : \ "=&r" (intRes) \ : \ "d" (longIn1), \ "d" (longIn2) \ : \ "r26" , "r27" \ ) // Some useful constants #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1< // // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates // first block->accelerate_until step_events_completed, then keeps going at constant speed until // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // The slope of acceleration is calculated with the leib ramp alghorithm. void st_wake_up() { // TCNT1 = 0; if(busy == false) ENABLE_STEPPER_DRIVER_INTERRUPT(); } FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2)&0x3fff; step_loops = 4; } else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times step_rate = (step_rate >> 1)&0x7fff; step_loops = 2; } else { step_loops = 1; } if(step_rate < 32) step_rate = 32; step_rate -= 32; // Correct for minimal speed if(step_rate >= (8*256)){ // higher step rate unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); MultiU16X8toH16(timer, tmp_step_rate, gain); timer = (unsigned short)pgm_read_word_near(table_address) - timer; } else { // lower step rates unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0]; table_address += ((step_rate)>>1) & 0xfffc; timer = (unsigned short)pgm_read_word_near(table_address); timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3); } if(timer < 100) { timer = 100; MSerial.print("Steprate to high : "); MSerial.println(step_rate); }//(20kHz this should never happen) return timer; } // Initializes the trapezoid generator from the current block. Called whenever a new // block begins. FORCE_INLINE void trapezoid_generator_reset() { #ifdef ADVANCE advance = current_block->initial_advance; final_advance = current_block->final_advance; // Do E steps + advance steps e_steps += ((advance >>8) - old_advance); old_advance = advance >>8; #endif deceleration_time = 0; // step_rate to timer interval acc_step_rate = current_block->initial_rate; acceleration_time = calc_timer(acc_step_rate); OCR1A = acceleration_time; OCR1A_nominal = calc_timer(current_block->nominal_rate); // SERIAL_ECHO_START; // SERIAL_ECHOPGM("advance :"); // SERIAL_ECHO(current_block->advance/256.0); // SERIAL_ECHOPGM("advance rate :"); // SERIAL_ECHO(current_block->advance_rate/256.0); // SERIAL_ECHOPGM("initial advance :"); // SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOLN(current_block->final_advance/256.0); } // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. ISR(TIMER1_COMPA_vect) { // If there is no current block, attempt to pop one from the buffer if (current_block == NULL) { // Anything in the buffer? current_block = plan_get_current_block(); if (current_block != NULL) { trapezoid_generator_reset(); counter_x = -(current_block->step_event_count >> 1); counter_y = counter_x; counter_z = counter_x; counter_e = counter_x; step_events_completed = 0; // #ifdef ADVANCE e_steps = 0; // #endif } else { OCR1A=2000; // 1kHz. } } if (current_block != NULL) { // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt out_bits = current_block->direction_bits; // Set direction en check limit switches if ((out_bits & (1< -1 bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstop_x_hit=true; step_events_completed = current_block->step_event_count; } old_x_min_endstop = x_min_endstop; #endif } else { // +direction WRITE(X_DIR_PIN,!INVERT_X_DIR); count_direction[X_AXIS]=1; #if X_MAX_PIN > -1 bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstop_x_hit=true; step_events_completed = current_block->step_event_count; } old_x_max_endstop = x_max_endstop; #endif } if ((out_bits & (1< -1 bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; step_events_completed = current_block->step_event_count; } old_y_min_endstop = y_min_endstop; #endif } else { // +direction WRITE(Y_DIR_PIN,!INVERT_Y_DIR); count_direction[Y_AXIS]=1; #if Y_MAX_PIN > -1 bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstop_y_hit=true; step_events_completed = current_block->step_event_count; } old_y_max_endstop = y_max_endstop; #endif } if ((out_bits & (1< -1 bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; step_events_completed = current_block->step_event_count; } old_z_min_endstop = z_min_endstop; #endif } else { // +direction WRITE(Z_DIR_PIN,!INVERT_Z_DIR); count_direction[Z_AXIS]=1; #if Z_MAX_PIN > -1 bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstop_z_hit=true; step_events_completed = current_block->step_event_count; } old_z_max_endstop = z_max_endstop; #endif } #ifndef ADVANCE if ((out_bits & (1<steps_e; if (counter_e > 0) { counter_e -= current_block->step_event_count; if ((out_bits & (1<steps_x; if (counter_x > 0) { WRITE(X_STEP_PIN, HIGH); counter_x -= current_block->step_event_count; WRITE(X_STEP_PIN, LOW); count_position[X_AXIS]+=count_direction[X_AXIS]; } counter_y += current_block->steps_y; if (counter_y > 0) { WRITE(Y_STEP_PIN, HIGH); counter_y -= current_block->step_event_count; WRITE(Y_STEP_PIN, LOW); count_position[Y_AXIS]+=count_direction[Y_AXIS]; } counter_z += current_block->steps_z; if (counter_z > 0) { WRITE(Z_STEP_PIN, HIGH); counter_z -= current_block->step_event_count; WRITE(Z_STEP_PIN, LOW); count_position[Z_AXIS]+=count_direction[Z_AXIS]; } #ifndef ADVANCE counter_e += current_block->steps_e; if (counter_e > 0) { WRITE(E_STEP_PIN, HIGH); counter_e -= current_block->step_event_count; WRITE(E_STEP_PIN, LOW); count_position[E_AXIS]+=count_direction[E_AXIS]; } #endif //!ADVANCE step_events_completed += 1; if(step_events_completed >= current_block->step_event_count) break; } // Calculare new timer value unsigned short timer; unsigned short step_rate; if (step_events_completed <= current_block->accelerate_until) { MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); acc_step_rate += current_block->initial_rate; // upper limit if(acc_step_rate > current_block->nominal_rate) acc_step_rate = current_block->nominal_rate; // step_rate to timer interval timer = calc_timer(acc_step_rate); OCR1A = timer; acceleration_time += timer; #ifdef ADVANCE for(int8_t i=0; i < step_loops; i++) { advance += advance_rate; } //if(advance > current_block->advance) advance = current_block->advance; // Do E steps + advance steps e_steps += ((advance >>8) - old_advance); old_advance = advance >>8; #endif } else if (step_events_completed > current_block->decelerate_after) { MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); if(step_rate > acc_step_rate) { // Check step_rate stays positive step_rate = current_block->final_rate; } else { step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point. } // lower limit if(step_rate < current_block->final_rate) step_rate = current_block->final_rate; // step_rate to timer interval timer = calc_timer(step_rate); OCR1A = timer; deceleration_time += timer; #ifdef ADVANCE for(int8_t i=0; i < step_loops; i++) { advance -= advance_rate; } if(advance < final_advance) advance = final_advance; // Do E steps + advance steps e_steps += ((advance >>8) - old_advance); old_advance = advance >>8; #endif //ADVANCE } else { OCR1A = OCR1A_nominal; } // If current block is finished, reset pointer if (step_events_completed >= current_block->step_event_count) { current_block = NULL; plan_discard_current_block(); } } } #ifdef ADVANCE unsigned char old_OCR0A; // Timer interrupt for E. e_steps is set in the main routine; // Timer 0 is shared with millies ISR(TIMER0_COMPA_vect) { old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz) OCR0A = old_OCR0A; // Set E direction (Depends on E direction + advance) for(unsigned char i=0; i<4;) { WRITE(E_STEP_PIN, LOW); if (e_steps == 0) break; i++; if (e_steps < 0) { WRITE(E_DIR_PIN,INVERT_E_DIR); e_steps++; WRITE(E_STEP_PIN, HIGH); } else if (e_steps > 0) { WRITE(E_DIR_PIN,!INVERT_E_DIR); e_steps--; WRITE(E_STEP_PIN, HIGH); } } } #endif // ADVANCE void st_init() { //Initialize Dir Pins #if X_DIR_PIN > -1 SET_OUTPUT(X_DIR_PIN); #endif #if Y_DIR_PIN > -1 SET_OUTPUT(Y_DIR_PIN); #endif #if Z_DIR_PIN > -1 SET_OUTPUT(Z_DIR_PIN); #endif #if E_DIR_PIN > -1 SET_OUTPUT(E_DIR_PIN); #endif //Initialize Enable Pins - steppers default to disabled. #if (X_ENABLE_PIN > -1) SET_OUTPUT(X_ENABLE_PIN); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); #endif #if (Y_ENABLE_PIN > -1) SET_OUTPUT(Y_ENABLE_PIN); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); #endif #if (Z_ENABLE_PIN > -1) SET_OUTPUT(Z_ENABLE_PIN); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); #endif #if (E_ENABLE_PIN > -1) SET_OUTPUT(E_ENABLE_PIN); if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH); #endif //endstops and pullups #ifdef ENDSTOPPULLUPS #if X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); WRITE(X_MIN_PIN,HIGH); #endif #if X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); WRITE(X_MAX_PIN,HIGH); #endif #if Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); WRITE(Y_MIN_PIN,HIGH); #endif #if Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); WRITE(Y_MAX_PIN,HIGH); #endif #if Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); WRITE(Z_MIN_PIN,HIGH); #endif #if Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); WRITE(Z_MAX_PIN,HIGH); #endif #else //ENDSTOPPULLUPS #if X_MIN_PIN > -1 SET_INPUT(X_MIN_PIN); #endif #if X_MAX_PIN > -1 SET_INPUT(X_MAX_PIN); #endif #if Y_MIN_PIN > -1 SET_INPUT(Y_MIN_PIN); #endif #if Y_MAX_PIN > -1 SET_INPUT(Y_MAX_PIN); #endif #if Z_MIN_PIN > -1 SET_INPUT(Z_MIN_PIN); #endif #if Z_MAX_PIN > -1 SET_INPUT(Z_MAX_PIN); #endif #endif //ENDSTOPPULLUPS //Initialize Step Pins #if (X_STEP_PIN > -1) SET_OUTPUT(X_STEP_PIN); #endif #if (Y_STEP_PIN > -1) SET_OUTPUT(Y_STEP_PIN); #endif #if (Z_STEP_PIN > -1) SET_OUTPUT(Z_STEP_PIN); #endif #if (E_STEP_PIN > -1) SET_OUTPUT(E_STEP_PIN); #endif // waveform generation = 0100 = CTC TCCR1B &= ~(1<