/** * Marlin 3D Printer Firmware * * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * SAMD51 HAL developed by Giuliano Zaro (AKA GMagician) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #ifdef __SAMD51__ #include "../../inc/MarlinConfig.h" #include #include // ------------------------ // Local defines // ------------------------ #if HAS_TEMP_ADC_0 #define GET_TEMP_0_ADC() PIN_TO_ADC(TEMP_0_PIN) #else #define GET_TEMP_0_ADC() -1 #endif #if HAS_TEMP_ADC_1 #define GET_TEMP_1_ADC() PIN_TO_ADC(TEMP_1_PIN) #else #define GET_TEMP_1_ADC() -1 #endif #if HAS_TEMP_ADC_2 #define GET_TEMP_2_ADC() PIN_TO_ADC(TEMP_2_PIN) #else #define GET_TEMP_2_ADC() -1 #endif #if HAS_TEMP_ADC_3 #define GET_TEMP_3_ADC() PIN_TO_ADC(TEMP_3_PIN) #else #define GET_TEMP_3_ADC() -1 #endif #if HAS_TEMP_ADC_4 #define GET_TEMP_4_ADC() PIN_TO_ADC(TEMP_4_PIN) #else #define GET_TEMP_4_ADC() -1 #endif #if HAS_TEMP_ADC_5 #define GET_TEMP_5_ADC() PIN_TO_ADC(TEMP_5_PIN) #else #define GET_TEMP_5_ADC() -1 #endif #if HAS_TEMP_ADC_6 #define GET_TEMP_6_ADC() PIN_TO_ADC(TEMP_6_PIN) #else #define GET_TEMP_6_ADC() -1 #endif #if HAS_TEMP_ADC_7 #define GET_TEMP_7_ADC() PIN_TO_ADC(TEMP_7_PIN) #else #define GET_TEMP_7_ADC() -1 #endif #if HAS_TEMP_PROBE #define GET_PROBE_ADC() PIN_TO_ADC(TEMP_PROBE_PIN) #else #define GET_PROBE_ADC() -1 #endif #if HAS_TEMP_ADC_BED #define GET_BED_ADC() PIN_TO_ADC(TEMP_BED_PIN) #else #define GET_BED_ADC() -1 #endif #if HAS_TEMP_ADC_CHAMBER #define GET_CHAMBER_ADC() PIN_TO_ADC(TEMP_CHAMBER_PIN) #else #define GET_CHAMBER_ADC() -1 #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) #define GET_FILAMENT_WIDTH_ADC() PIN_TO_ADC(FILWIDTH_PIN) #else #define GET_FILAMENT_WIDTH_ADC() -1 #endif #if HAS_ADC_BUTTONS #define GET_BUTTONS_ADC() PIN_TO_ADC(ADC_KEYPAD_PIN) #else #define GET_BUTTONS_ADC() -1 #endif #define IS_ADC_REQUIRED(n) ( \ GET_TEMP_0_ADC() == n || GET_TEMP_1_ADC() == n || GET_TEMP_2_ADC() == n || GET_TEMP_3_ADC() == n \ || GET_TEMP_4_ADC() == n || GET_TEMP_5_ADC() == n || GET_TEMP_6_ADC() == n || GET_TEMP_7_ADC() == n \ || GET_PROBE_ADC() == n \ || GET_BED_ADC() == n \ || GET_CHAMBER_ADC() == n \ || GET_FILAMENT_WIDTH_ADC() == n \ || GET_BUTTONS_ADC() == n \ ) #define ADC0_IS_REQUIRED IS_ADC_REQUIRED(0) #define ADC1_IS_REQUIRED IS_ADC_REQUIRED(1) #define ADC_IS_REQUIRED (ADC0_IS_REQUIRED || ADC1_IS_REQUIRED) #if ADC0_IS_REQUIRED #define FIRST_ADC 0 #else #define FIRST_ADC 1 #endif #if ADC1_IS_REQUIRED #define LAST_ADC 1 #else #define LAST_ADC 0 #endif #define DMA_IS_REQUIRED ADC_IS_REQUIRED // ------------------------ // Types // ------------------------ #if DMA_IS_REQUIRED // Struct must be 32 bits aligned because of DMA accesses but fields needs to be 8 bits packed typedef struct __attribute__((aligned(4), packed)) { ADC_INPUTCTRL_Type INPUTCTRL; } HAL_DMA_DAC_Registers; // DMA transfered registers #endif // ------------------------ // Private Variables // ------------------------ uint16_t HAL_adc_result; #if ADC_IS_REQUIRED // Pins used by ADC inputs. Order must be ADC0 inputs first then ADC1 const uint8_t adc_pins[] = { // ADC0 pins #if GET_TEMP_0_ADC() == 0 TEMP_0_PIN, #endif #if GET_TEMP_1_ADC() == 0 TEMP_1_PIN, #endif #if GET_TEMP_2_ADC() == 0 TEMP_2_PIN, #endif #if GET_TEMP_3_ADC() == 0 TEMP_3_PIN, #endif #if GET_TEMP_4_ADC() == 0 TEMP_4_PIN, #endif #if GET_TEMP_5_ADC() == 0 TEMP_5_PIN, #endif #if GET_TEMP_6_ADC() == 0 TEMP_6_PIN, #endif #if GET_TEMP_7_ADC() == 0 TEMP_7_PIN, #endif #if GET_PROBE_ADC() == 0 TEMP_PROBE_PIN, #endif #if GET_BED_ADC() == 0 TEMP_BED_PIN, #endif #if GET_CHAMBER_ADC() == 0 TEMP_CHAMBER_PIN, #endif #if GET_FILAMENT_WIDTH_ADC() == 0 FILWIDTH_PIN, #endif #if GET_BUTTONS_ADC() == 0 ADC_KEYPAD_PIN, #endif // ADC1 pins #if GET_TEMP_0_ADC() == 1 TEMP_0_PIN, #endif #if GET_TEMP_1_ADC() == 1 TEMP_1_PIN, #endif #if GET_TEMP_2_ADC() == 1 TEMP_2_PIN, #endif #if GET_TEMP_3_ADC() == 1 TEMP_3_PIN, #endif #if GET_TEMP_4_ADC() == 1 TEMP_4_PIN, #endif #if GET_TEMP_5_ADC() == 1 TEMP_5_PIN, #endif #if GET_TEMP_6_ADC() == 1 TEMP_6_PIN, #endif #if GET_TEMP_7_ADC() == 1 TEMP_7_PIN, #endif #if GET_PROBE_ADC() == 1 TEMP_PROBE_PIN, #endif #if GET_BED_ADC() == 1 TEMP_BED_PIN, #endif #if GET_CHAMBER_ADC() == 1 TEMP_CHAMBER_PIN, #endif #if GET_FILAMENT_WIDTH_ADC() == 1 FILWIDTH_PIN, #endif #if GET_BUTTONS_ADC() == 1 ADC_KEYPAD_PIN, #endif }; uint16_t HAL_adc_results[COUNT(adc_pins)]; #if ADC0_IS_REQUIRED Adafruit_ZeroDMA adc0DMAProgram, adc0DMARead; const HAL_DMA_DAC_Registers adc0_dma_regs_list[] = { #if GET_TEMP_0_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_0_PIN) }, #endif #if GET_TEMP_1_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_1_PIN) }, #endif #if GET_TEMP_2_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_2_PIN) }, #endif #if GET_TEMP_3_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_3_PIN) }, #endif #if GET_TEMP_4_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_4_PIN) }, #endif #if GET_TEMP_5_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_5_PIN) }, #endif #if GET_TEMP_6_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_6_PIN) }, #endif #if GET_TEMP_7_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_7_PIN) }, #endif #if GET_PROBE_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_PROBE_PIN) }, #endif #if GET_BED_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_BED_PIN) }, #endif #if GET_CHAMBER_ADC() == 0 { PIN_TO_INPUTCTRL(TEMP_CHAMBER_PIN) }, #endif #if GET_FILAMENT_WIDTH_ADC() == 0 { PIN_TO_INPUTCTRL(FILWIDTH_PIN) }, #endif #if GET_BUTTONS_ADC() == 0 { PIN_TO_INPUTCTRL(ADC_KEYPAD_PIN) }, #endif }; #define ADC0_AINCOUNT COUNT(adc0_dma_regs_list) #endif // ADC0_IS_REQUIRED #if ADC1_IS_REQUIRED Adafruit_ZeroDMA adc1DMAProgram, adc1DMARead; const HAL_DMA_DAC_Registers adc1_dma_regs_list[] = { #if GET_TEMP_0_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_0_PIN) }, #endif #if GET_TEMP_1_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_1_PIN) }, #endif #if GET_TEMP_2_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_2_PIN) }, #endif #if GET_TEMP_3_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_3_PIN) }, #endif #if GET_TEMP_4_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_4_PIN) }, #endif #if GET_TEMP_5_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_5_PIN) }, #endif #if GET_TEMP_6_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_6_PIN) }, #endif #if GET_TEMP_7_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_7_PIN) }, #endif #if GET_PROBE_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_PROBE_PIN) }, #endif #if GET_BED_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_BED_PIN) }, #endif #if GET_CHAMBER_ADC() == 1 { PIN_TO_INPUTCTRL(TEMP_CHAMBER_PIN) }, #endif #if GET_FILAMENT_WIDTH_ADC() == 1 { PIN_TO_INPUTCTRL(FILWIDTH_PIN) }, #endif #if GET_BUTTONS_ADC() == 1 { PIN_TO_INPUTCTRL(ADC_KEYPAD_PIN) }, #endif }; #define ADC1_AINCOUNT COUNT(adc1_dma_regs_list) #endif // ADC1_IS_REQUIRED #endif // ADC_IS_REQUIRED // ------------------------ // Private functions // ------------------------ #if DMA_IS_REQUIRED void dma_init() { DmacDescriptor *descriptor; #if ADC0_IS_REQUIRED adc0DMAProgram.setTrigger(ADC0_DMAC_ID_SEQ); adc0DMAProgram.setAction(DMA_TRIGGER_ACTON_BEAT); adc0DMAProgram.loop(true); if (adc0DMAProgram.allocate() == DMA_STATUS_OK) { descriptor = adc0DMAProgram.addDescriptor( (void *)adc0_dma_regs_list, // SRC (void *)&ADC0->DSEQDATA.reg, // DEST sizeof(adc0_dma_regs_list) / 4, // CNT DMA_BEAT_SIZE_WORD, true, // SRCINC false, // DSTINC DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE DMA_STEPSEL_SRC // STEPSEL ); if (descriptor != nullptr) descriptor->BTCTRL.bit.EVOSEL = DMA_EVENT_OUTPUT_BEAT; adc0DMAProgram.startJob(); } adc0DMARead.setTrigger(ADC0_DMAC_ID_RESRDY); adc0DMARead.setAction(DMA_TRIGGER_ACTON_BEAT); adc0DMARead.loop(true); if (adc0DMARead.allocate() == DMA_STATUS_OK) { adc0DMARead.addDescriptor( (void *)&ADC0->RESULT.reg, // SRC &HAL_adc_results, // DEST ADC0_AINCOUNT, // CNT DMA_BEAT_SIZE_HWORD, false, // SRCINC true, // DSTINC DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE DMA_STEPSEL_DST // STEPSEL ); adc0DMARead.startJob(); } #endif #if ADC1_IS_REQUIRED adc1DMAProgram.setTrigger(ADC1_DMAC_ID_SEQ); adc1DMAProgram.setAction(DMA_TRIGGER_ACTON_BEAT); adc1DMAProgram.loop(true); if (adc1DMAProgram.allocate() == DMA_STATUS_OK) { descriptor = adc1DMAProgram.addDescriptor( (void *)adc1_dma_regs_list, // SRC (void *)&ADC1->DSEQDATA.reg, // DEST sizeof(adc1_dma_regs_list) / 4, // CNT DMA_BEAT_SIZE_WORD, true, // SRCINC false, // DSTINC DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE DMA_STEPSEL_SRC // STEPSEL ); if (descriptor != nullptr) descriptor->BTCTRL.bit.EVOSEL = DMA_EVENT_OUTPUT_BEAT; adc1DMAProgram.startJob(); } adc1DMARead.setTrigger(ADC1_DMAC_ID_RESRDY); adc1DMARead.setAction(DMA_TRIGGER_ACTON_BEAT); adc1DMARead.loop(true); if (adc1DMARead.allocate() == DMA_STATUS_OK) { adc1DMARead.addDescriptor( (void *)&ADC1->RESULT.reg, // SRC &HAL_adc_results[ADC0_AINCOUNT], // DEST ADC1_AINCOUNT, // CNT DMA_BEAT_SIZE_HWORD, false, // SRCINC true, // DSTINC DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE DMA_STEPSEL_DST // STEPSEL ); adc1DMARead.startJob(); } #endif DMAC->PRICTRL0.bit.RRLVLEN0 = true; // Activate round robin for DMA channels required by ADCs } #endif // DMA_IS_REQUIRED // ------------------------ // Public functions // ------------------------ // HAL initialization task void HAL_init() { #if DMA_IS_REQUIRED dma_init(); #endif #if ENABLED(SDSUPPORT) // SD_DETECT_PIN may be removed if NO_SD_HOST_DRIVE is not defined in Configuration_adv.h #if SD_CONNECTION_IS(ONBOARD) && PIN_EXISTS(SD_DETECT) SET_INPUT_PULLUP(SD_DETECT_PIN); #endif OUT_WRITE(SDSS, HIGH); // Try to set SDSS inactive before any other SPI users start up #endif } // HAL idle task /* void HAL_idletask() { } */ void HAL_clear_reset_source() { } #pragma push_macro("WDT") #undef WDT // Required to be able to use '.bit.WDT'. Compiler wrongly replace struct field with WDT define uint8_t HAL_get_reset_source() { RSTC_RCAUSE_Type resetCause; resetCause.reg = REG_RSTC_RCAUSE; if (resetCause.bit.POR) return RST_POWER_ON; else if (resetCause.bit.EXT) return RST_EXTERNAL; else if (resetCause.bit.BODCORE || resetCause.bit.BODVDD) return RST_BROWN_OUT; else if (resetCause.bit.WDT) return RST_WATCHDOG; else if (resetCause.bit.SYST || resetCause.bit.NVM) return RST_SOFTWARE; else if (resetCause.bit.BACKUP) return RST_BACKUP; return 0; } #pragma pop_macro("WDT") extern "C" { void * _sbrk(int incr); extern unsigned int __bss_end__; // end of bss section } // Return free memory between end of heap (or end bss) and whatever is current int freeMemory() { int free_memory, heap_end = (int)_sbrk(0); return (int)&free_memory - (heap_end ?: (int)&__bss_end__); } // ------------------------ // ADC // ------------------------ void HAL_adc_init() { #if ADC_IS_REQUIRED memset(HAL_adc_results, 0xFF, sizeof(HAL_adc_results)); // Fill result with invalid values for (uint8_t pi = 0; pi < COUNT(adc_pins); ++pi) pinPeripheral(adc_pins[pi], PIO_ANALOG); for (uint8_t ai = FIRST_ADC; ai <= LAST_ADC; ++ai) { Adc* adc = ((Adc*[])ADC_INSTS)[ai]; // ADC clock setup GCLK->PCHCTRL[ADC0_GCLK_ID + ai].bit.CHEN = false; SYNC(GCLK->PCHCTRL[ADC0_GCLK_ID + ai].bit.CHEN); GCLK->PCHCTRL[ADC0_GCLK_ID + ai].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN; // 48MHz startup code programmed SYNC(!GCLK->PCHCTRL[ADC0_GCLK_ID + ai].bit.CHEN); adc->CTRLA.bit.PRESCALER = ADC_CTRLA_PRESCALER_DIV32_Val; // 1.5MHZ adc clock // ADC setup // Preloaded data (fixed for all ADC instances hence not loaded by DMA) adc->REFCTRL.bit.REFSEL = ADC_REFCTRL_REFSEL_AREFA_Val; // VRefA pin SYNC(adc->SYNCBUSY.bit.REFCTRL); adc->CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_12BIT_Val; SYNC(adc->SYNCBUSY.bit.CTRLB); adc->SAMPCTRL.bit.SAMPLEN = (6 - 1); // Sampling clocks adc->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_16 | ADC_AVGCTRL_ADJRES(4); // 16 Accumulated conversions and shift 4 to get oversampled 12 bits result SYNC(adc->SYNCBUSY.bit.AVGCTRL); // Registers loaded by DMA adc->DSEQCTRL.bit.INPUTCTRL = true; adc->DSEQCTRL.bit.AUTOSTART = true; // Start conversion after DMA sequence adc->CTRLA.bit.ENABLE = true; // Enable ADC SYNC(adc->SYNCBUSY.bit.ENABLE); } #endif // ADC_IS_REQUIRED } void HAL_adc_start_conversion(const uint8_t adc_pin) { #if ADC_IS_REQUIRED for (uint8_t pi = 0; pi < COUNT(adc_pins); ++pi) { if (adc_pin == adc_pins[pi]) { HAL_adc_result = HAL_adc_results[pi]; return; } } #endif HAL_adc_result = 0xFFFF; } #endif // __SAMD51__