/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE * Copyright (c) 2017 Eduardo José Tagle. All right reserved * Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved. */ #ifdef ARDUINO_ARCH_SAM #include "../../inc/MarlinConfig.h" #include "MarlinSerial_Due.h" #include "InterruptVectors_Due.h" #include "../../Marlin.h" // If not using the USB port as serial port #if SERIAL_PORT >= 0 // Based on selected port, use the proper configuration #if SERIAL_PORT == 0 #define HWUART UART #define HWUART_IRQ UART_IRQn #define HWUART_IRQ_ID ID_UART #elif SERIAL_PORT == 1 #define HWUART ((Uart*)USART0) #define HWUART_IRQ USART0_IRQn #define HWUART_IRQ_ID ID_USART0 #elif SERIAL_PORT == 2 #define HWUART ((Uart*)USART1) #define HWUART_IRQ USART1_IRQn #define HWUART_IRQ_ID ID_USART1 #elif SERIAL_PORT == 3 #define HWUART ((Uart*)USART2) #define HWUART_IRQ USART2_IRQn #define HWUART_IRQ_ID ID_USART2 #elif SERIAL_PORT == 4 #define HWUART ((Uart*)USART3) #define HWUART_IRQ USART3_IRQn #define HWUART_IRQ_ID ID_USART3 #endif struct ring_buffer_r { unsigned char buffer[RX_BUFFER_SIZE]; volatile ring_buffer_pos_t head, tail; }; #if TX_BUFFER_SIZE > 0 struct ring_buffer_t { unsigned char buffer[TX_BUFFER_SIZE]; volatile uint8_t head, tail; }; #endif ring_buffer_r rx_buffer = { { 0 }, 0, 0 }; #if TX_BUFFER_SIZE > 0 ring_buffer_t tx_buffer = { { 0 }, 0, 0 }; static bool _written; #endif #if ENABLED(SERIAL_XON_XOFF) constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send // XON / XOFF character definitions constexpr uint8_t XON_CHAR = 17; constexpr uint8_t XOFF_CHAR = 19; uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR; // Validate that RX buffer size is at least 4096 bytes- According to several experiments, on // the original Arduino Due that uses a ATmega16U2 as USB to serial bridge, due to the introduced // latencies, at least 2959 bytes of RX buffering (when transmitting at 250kbits/s) are required // to avoid overflows. #if RX_BUFFER_SIZE < 4096 #error Arduino DUE requires at least 4096 bytes of RX buffer to avoid buffer overflows when using XON/XOFF handshake #endif #endif #if ENABLED(SERIAL_STATS_DROPPED_RX) uint8_t rx_dropped_bytes = 0; #endif #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) ring_buffer_pos_t rx_max_enqueued = 0; #endif // A SW memory barrier, to ensure GCC does not overoptimize loops #define sw_barrier() asm volatile("": : :"memory"); #if ENABLED(EMERGENCY_PARSER) #include "../../feature/emergency_parser.h" #endif FORCE_INLINE void store_rxd_char() { #if ENABLED(EMERGENCY_PARSER) static EmergencyParser::State emergency_state; // = EP_RESET #endif const ring_buffer_pos_t h = rx_buffer.head, i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // Read the character const uint8_t c = HWUART->UART_RHR; // If the character is to be stored at the index just before the tail // (such that the head would advance to the current tail), the buffer is // critical, so don't write the character or advance the head. if (i != rx_buffer.tail) { rx_buffer.buffer[h] = c; rx_buffer.head = i; } #if ENABLED(SERIAL_STATS_DROPPED_RX) else if (!++rx_dropped_bytes) ++rx_dropped_bytes; #endif #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) // calculate count of bytes stored into the RX buffer ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // Keep track of the maximum count of enqueued bytes NOLESS(rx_max_enqueued, rx_count); #endif #if ENABLED(SERIAL_XON_XOFF) // for high speed transfers, we can use XON/XOFF protocol to do // software handshake and avoid overruns. if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) { // calculate count of bytes stored into the RX buffer ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // if we are above 12.5% of RX buffer capacity, send XOFF before // we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to // let the host react and stop sending bytes. This translates to 13mS // propagation time. if (rx_count >= (RX_BUFFER_SIZE) / 8) { // If TX interrupts are disabled and data register is empty, // just write the byte to the data register and be done. This // shortcut helps significantly improve the effective datarate // at high (>500kbit/s) bitrates, where interrupt overhead // becomes a slowdown. if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) { // Send an XOFF character HWUART->UART_THR = XOFF_CHAR; // And remember it was sent xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; } else { // TX interrupts disabled, but buffer still not empty ... or // TX interrupts enabled. Reenable TX ints and schedule XOFF // character to be sent #if TX_BUFFER_SIZE > 0 HWUART->UART_IER = UART_IER_TXRDY; xon_xoff_state = XOFF_CHAR; #else // We are not using TX interrupts, we will have to send this manually while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); }; HWUART->UART_THR = XOFF_CHAR; // And remember we already sent it xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; #endif } } } #endif // SERIAL_XON_XOFF #if ENABLED(EMERGENCY_PARSER) emergency_parser.update(emergency_state, c); #endif } #if TX_BUFFER_SIZE > 0 FORCE_INLINE void _tx_thr_empty_irq(void) { // If interrupts are enabled, there must be more data in the output // buffer. #if ENABLED(SERIAL_XON_XOFF) // Do a priority insertion of an XON/XOFF char, if needed. const uint8_t state = xon_xoff_state; if (!(state & XON_XOFF_CHAR_SENT)) { HWUART->UART_THR = state & XON_XOFF_CHAR_MASK; xon_xoff_state = state | XON_XOFF_CHAR_SENT; } else #endif { // Send the next byte const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t]; tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1); HWUART->UART_THR = c; } // Disable interrupts if the buffer is empty if (tx_buffer.head == tx_buffer.tail) HWUART->UART_IDR = UART_IDR_TXRDY; } #endif // TX_BUFFER_SIZE > 0 static void UART_ISR(void) { uint32_t status = HWUART->UART_SR; // Did we receive data? if (status & UART_SR_RXRDY) store_rxd_char(); #if TX_BUFFER_SIZE > 0 // Do we have something to send, and TX interrupts are enabled (meaning something to send) ? if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq(); #endif // Acknowledge errors if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) { // TODO: error reporting outside ISR HWUART->UART_CR = UART_CR_RSTSTA; } } // Public Methods void MarlinSerial::begin(const long baud_setting) { // Disable UART interrupt in NVIC NVIC_DisableIRQ( HWUART_IRQ ); // Disable clock pmc_disable_periph_clk( HWUART_IRQ_ID ); // Configure PMC pmc_enable_periph_clk( HWUART_IRQ_ID ); // Disable PDC channel HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS; // Reset and disable receiver and transmitter HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS; // Configure mode: 8bit, No parity, 1 bit stop HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO; // Configure baudrate (asynchronous, no oversampling) HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4)); // Configure interrupts HWUART->UART_IDR = 0xFFFFFFFF; HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME; // Install interrupt handler install_isr(HWUART_IRQ, UART_ISR); // Configure priority. We need a very high priority to avoid losing characters // and we need to be able to preempt the Stepper ISR and everything else! // (this could probably be fixed by using DMA with the Serial port) NVIC_SetPriority(HWUART_IRQ, 1); // Enable UART interrupt in NVIC NVIC_EnableIRQ(HWUART_IRQ); // Enable receiver and transmitter HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN; #if TX_BUFFER_SIZE > 0 _written = false; #endif } void MarlinSerial::end() { // Disable UART interrupt in NVIC NVIC_DisableIRQ( HWUART_IRQ ); pmc_disable_periph_clk( HWUART_IRQ_ID ); } void MarlinSerial::checkRx(void) { if (HWUART->UART_SR & UART_SR_RXRDY) { CRITICAL_SECTION_START; store_rxd_char(); CRITICAL_SECTION_END; } } int MarlinSerial::peek(void) { CRITICAL_SECTION_START; const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail]; CRITICAL_SECTION_END; return v; } int MarlinSerial::read(void) { int v; CRITICAL_SECTION_START; const ring_buffer_pos_t t = rx_buffer.tail; if (rx_buffer.head == t) v = -1; else { v = rx_buffer.buffer[t]; rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); #if ENABLED(SERIAL_XON_XOFF) if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { // Get count of bytes in the RX buffer ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); // When below 10% of RX buffer capacity, send XON before // running out of RX buffer bytes if (rx_count < (RX_BUFFER_SIZE) / 10) { xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; CRITICAL_SECTION_END; // End critical section before returning! writeNoHandshake(XON_CHAR); return v; } } #endif } CRITICAL_SECTION_END; return v; } ring_buffer_pos_t MarlinSerial::available(void) { CRITICAL_SECTION_START; const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail; CRITICAL_SECTION_END; return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1); } void MarlinSerial::flush(void) { // Don't change this order of operations. If the RX interrupt occurs between // reading rx_buffer_head and updating rx_buffer_tail, the previous rx_buffer_head // may be written to rx_buffer_tail, making the buffer appear full rather than empty. CRITICAL_SECTION_START; rx_buffer.head = rx_buffer.tail; CRITICAL_SECTION_END; #if ENABLED(SERIAL_XON_XOFF) if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; writeNoHandshake(XON_CHAR); } #endif } #if TX_BUFFER_SIZE > 0 uint8_t MarlinSerial::availableForWrite(void) { CRITICAL_SECTION_START; const uint8_t h = tx_buffer.head, t = tx_buffer.tail; CRITICAL_SECTION_END; return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1); } void MarlinSerial::write(const uint8_t c) { #if ENABLED(SERIAL_XON_XOFF) const uint8_t state = xon_xoff_state; if (!(state & XON_XOFF_CHAR_SENT)) { // Send 2 chars: XON/XOFF, then a user-specified char writeNoHandshake(state & XON_XOFF_CHAR_MASK); xon_xoff_state = state | XON_XOFF_CHAR_SENT; } #endif writeNoHandshake(c); } void MarlinSerial::writeNoHandshake(const uint8_t c) { _written = true; CRITICAL_SECTION_START; bool emty = (tx_buffer.head == tx_buffer.tail); CRITICAL_SECTION_END; // If the buffer and the data register is empty, just write the byte // to the data register and be done. This shortcut helps // significantly improve the effective datarate at high (> // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown. if (emty && (HWUART->UART_SR & UART_SR_TXRDY)) { CRITICAL_SECTION_START; HWUART->UART_THR = c; HWUART->UART_IER = UART_IER_TXRDY; CRITICAL_SECTION_END; return; } const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1); // If the output buffer is full, there's nothing for it other than to // wait for the interrupt handler to empty it a bit while (i == tx_buffer.tail) { if (__get_PRIMASK()) { // Interrupts are disabled, so we'll have to poll the data // register empty flag ourselves. If it is set, pretend an // interrupt has happened and call the handler to free up // space for us. if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq(); } else { // nop, the interrupt handler will free up space for us } sw_barrier(); } tx_buffer.buffer[tx_buffer.head] = c; { CRITICAL_SECTION_START; tx_buffer.head = i; HWUART->UART_IER = UART_IER_TXRDY; CRITICAL_SECTION_END; } return; } void MarlinSerial::flushTX(void) { // TX // If we have never written a byte, no need to flush. if (!_written) return; while ((HWUART->UART_IMR & UART_IMR_TXRDY) || !(HWUART->UART_SR & UART_SR_TXEMPTY)) { if (__get_PRIMASK()) if ((HWUART->UART_SR & UART_SR_TXRDY)) _tx_thr_empty_irq(); sw_barrier(); } // If we get here, nothing is queued anymore (TX interrupts are disabled) and // the hardware finished tranmission (TXEMPTY is set). } #else // TX_BUFFER_SIZE == 0 void MarlinSerial::write(const uint8_t c) { #if ENABLED(SERIAL_XON_XOFF) // Do a priority insertion of an XON/XOFF char, if needed. const uint8_t state = xon_xoff_state; if (!(state & XON_XOFF_CHAR_SENT)) { writeNoHandshake(state & XON_XOFF_CHAR_MASK); xon_xoff_state = state | XON_XOFF_CHAR_SENT; } #endif writeNoHandshake(c); } void MarlinSerial::writeNoHandshake(const uint8_t c) { while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); }; HWUART->UART_THR = c; } #endif // TX_BUFFER_SIZE == 0 /** * Imports from print.h */ void MarlinSerial::print(char c, int base) { print((long)c, base); } void MarlinSerial::print(unsigned char b, int base) { print((unsigned long)b, base); } void MarlinSerial::print(int n, int base) { print((long)n, base); } void MarlinSerial::print(unsigned int n, int base) { print((unsigned long)n, base); } void MarlinSerial::print(long n, int base) { if (base == 0) write(n); else if (base == 10) { if (n < 0) { print('-'); n = -n; } printNumber(n, 10); } else printNumber(n, base); } void MarlinSerial::print(unsigned long n, int base) { if (base == 0) write(n); else printNumber(n, base); } void MarlinSerial::print(double n, int digits) { printFloat(n, digits); } void MarlinSerial::println(void) { print('\r'); print('\n'); } void MarlinSerial::println(const String& s) { print(s); println(); } void MarlinSerial::println(const char c[]) { print(c); println(); } void MarlinSerial::println(char c, int base) { print(c, base); println(); } void MarlinSerial::println(unsigned char b, int base) { print(b, base); println(); } void MarlinSerial::println(int n, int base) { print(n, base); println(); } void MarlinSerial::println(unsigned int n, int base) { print(n, base); println(); } void MarlinSerial::println(long n, int base) { print(n, base); println(); } void MarlinSerial::println(unsigned long n, int base) { print(n, base); println(); } void MarlinSerial::println(double n, int digits) { print(n, digits); println(); } // Private Methods void MarlinSerial::printNumber(unsigned long n, uint8_t base) { if (n) { unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 int8_t i = 0; while (n) { buf[i++] = n % base; n /= base; } while (i--) print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); } else print('0'); } void MarlinSerial::printFloat(double number, uint8_t digits) { // Handle negative numbers if (number < 0.0) { print('-'); number = -number; } // Round correctly so that print(1.999, 2) prints as "2.00" double rounding = 0.5; for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1; number += rounding; // Extract the integer part of the number and print it unsigned long int_part = (unsigned long)number; double remainder = number - (double)int_part; print(int_part); // Print the decimal point, but only if there are digits beyond if (digits) { print('.'); // Extract digits from the remainder one at a time while (digits--) { remainder *= 10.0; int toPrint = int(remainder); print(toPrint); remainder -= toPrint; } } } // Preinstantiate MarlinSerial customizedSerial; #endif #endif // ARDUINO_ARCH_SAM