/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * delta.cpp */ #include "../inc/MarlinConfig.h" #if ENABLED(DELTA) #include "delta.h" #include "motion.h" // For homing: #include "planner.h" #include "endstops.h" #include "../lcd/ultralcd.h" #include "../Marlin.h" #if ENABLED(SENSORLESS_HOMING) #include "../feature/tmc_util.h" #endif // Initialized by settings.load() float delta_height, delta_endstop_adj[ABC] = { 0 }, delta_radius, delta_diagonal_rod, delta_segments_per_second, delta_calibration_radius, delta_tower_angle_trim[ABC]; float delta_tower[ABC][2], delta_diagonal_rod_2_tower[ABC], delta_clip_start_height = Z_MAX_POS; float delta_safe_distance_from_top(); /** * Recalculate factors used for delta kinematics whenever * settings have been changed (e.g., by M665). */ void recalc_delta_settings() { const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER, drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER; delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]); delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]); delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]); update_software_endstops(Z_AXIS); axis_homed = 0; } /** * Delta Inverse Kinematics * * Calculate the tower positions for a given machine * position, storing the result in the delta[] array. * * This is an expensive calculation, requiring 3 square * roots per segmented linear move, and strains the limits * of a Mega2560 with a Graphical Display. * * Suggested optimizations include: * * - Disable the home_offset (M206) and/or position_shift (G92) * features to remove up to 12 float additions. * * - Use a fast-inverse-sqrt function and add the reciprocal. * (see above) */ #if ENABLED(DELTA_FAST_SQRT) && defined(__AVR__) /** * Fast inverse sqrt from Quake III Arena * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root */ float Q_rsqrt(float number) { long i; float x2, y; const float threehalfs = 1.5f; x2 = number * 0.5f; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5F3759DF - ( i >> 1 ); // what the f***? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; } #endif #define DELTA_DEBUG(VAR) do { \ SERIAL_ECHOPAIR("cartesian X:", VAR[X_AXIS]); \ SERIAL_ECHOPAIR(" Y:", VAR[Y_AXIS]); \ SERIAL_ECHOLNPAIR(" Z:", VAR[Z_AXIS]); \ SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \ SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \ SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \ }while(0) void inverse_kinematics(const float raw[XYZ]) { #if HOTENDS > 1 // Delta hotend offsets must be applied in Cartesian space with no "spoofing" const float pos[XYZ] = { raw[X_AXIS] - hotend_offset[X_AXIS][active_extruder], raw[Y_AXIS] - hotend_offset[Y_AXIS][active_extruder], raw[Z_AXIS] }; DELTA_IK(pos); //DELTA_DEBUG(pos); #else DELTA_IK(raw); //DELTA_DEBUG(raw); #endif } /** * Calculate the highest Z position where the * effector has the full range of XY motion. */ float delta_safe_distance_from_top() { float cartesian[XYZ] = { 0, 0, 0 }; inverse_kinematics(cartesian); float centered_extent = delta[A_AXIS]; cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; inverse_kinematics(cartesian); return ABS(centered_extent - delta[A_AXIS]); } /** * Delta Forward Kinematics * * See the Wikipedia article "Trilateration" * https://en.wikipedia.org/wiki/Trilateration * * Establish a new coordinate system in the plane of the * three carriage points. This system has its origin at * tower1, with tower2 on the X axis. Tower3 is in the X-Y * plane with a Z component of zero. * We will define unit vectors in this coordinate system * in our original coordinate system. Then when we calculate * the Xnew, Ynew and Znew values, we can translate back into * the original system by moving along those unit vectors * by the corresponding values. * * Variable names matched to Marlin, c-version, and avoid the * use of any vector library. * * by Andreas Hardtung 2016-06-07 * based on a Java function from "Delta Robot Kinematics V3" * by Steve Graves * * The result is stored in the cartes[] array. */ void forward_kinematics_DELTA(float z1, float z2, float z3) { // Create a vector in old coordinates along x axis of new coordinate float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 }; // Get the Magnitude of vector. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) ); // Create unit vector by dividing by magnitude. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d }; // Get the vector from the origin of the new system to the third point. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 }; // Use the dot product to find the component of this vector on the X axis. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2]; // Create a vector along the x axis that represents the x component of p13. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i }; // Subtract the X component from the original vector leaving only Y. We use the // variable that will be the unit vector after we scale it. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] }; // The magnitude of Y component float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) ); // Convert to a unit vector ey[0] /= j; ey[1] /= j; ey[2] /= j; // The cross product of the unit x and y is the unit z // float[] ez = vectorCrossProd(ex, ey); float ez[3] = { ex[1] * ey[2] - ex[2] * ey[1], ex[2] * ey[0] - ex[0] * ey[2], ex[0] * ey[1] - ex[1] * ey[0] }; // We now have the d, i and j values defined in Wikipedia. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2), Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j, Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew)); // Start from the origin of the old coordinates and add vectors in the // old coords that represent the Xnew, Ynew and Znew to find the point // in the old system. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew; cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew; cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew; } #if ENABLED(SENSORLESS_HOMING) inline void delta_sensorless_homing(const bool on=true) { sensorless_homing_per_axis(A_AXIS, on); sensorless_homing_per_axis(B_AXIS, on); sensorless_homing_per_axis(C_AXIS, on); } #endif /** * A delta can only safely home all axes at the same time * This is like quick_home_xy() but for 3 towers. */ void home_delta() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position); #endif // Init the current position of all carriages to 0,0,0 ZERO(current_position); sync_plan_position(); // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) delta_sensorless_homing(); #endif // Move all carriages together linearly until an endstop is hit. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10); feedrate_mm_s = homing_feedrate(X_AXIS); line_to_current_position(); planner.synchronize(); // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) delta_sensorless_homing(false); #endif endstops.validate_homing_move(); // At least one carriage has reached the top. // Now re-home each carriage separately. homeaxis(A_AXIS); homeaxis(B_AXIS); homeaxis(C_AXIS); // Set all carriages to their home positions // Do this here all at once for Delta, because // XYZ isn't ABC. Applying this per-tower would // give the impression that they are the same. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i); SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position); #endif } #endif // DELTA