/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * G76_M871.cpp - Temperature calibration/compensation for z-probing */ #include "../../inc/MarlinConfig.h" #if HAS_PTC #include "../gcode.h" #include "../../module/motion.h" #include "../../module/planner.h" #include "../../module/probe.h" #include "../../feature/bedlevel/bedlevel.h" #include "../../module/temperature.h" #include "../../module/probe.h" #include "../../feature/probe_temp_comp.h" #include "../../lcd/marlinui.h" /** * G76: calibrate probe and/or bed temperature offsets * Notes: * - When calibrating probe, bed temperature is held constant. * Compensation values are deltas to first probe measurement at probe temp. = 30°C. * - When calibrating bed, probe temperature is held constant. * Compensation values are deltas to first probe measurement at bed temp. = 60°C. * - The hotend will not be heated at any time. * - On my Průša MK3S clone I put a piece of paper between the probe and the hotend * so the hotend fan would not cool my probe constantly. Alternatively you could just * make sure the fan is not running while running the calibration process. * * Probe calibration: * - Moves probe to cooldown point. * - Heats up bed to 100°C. * - Moves probe to probing point (1mm above heatbed). * - Waits until probe reaches target temperature (30°C). * - Does a z-probing (=base value) and increases target temperature by 5°C. * - Waits until probe reaches increased target temperature. * - Does a z-probing (delta to base value will be a compensation value) and increases target temperature by 5°C. * - Repeats last two steps until max. temperature reached or timeout (i.e. probe does not heat up any further). * - Compensation values of higher temperatures will be extrapolated (using linear regression first). * While this is not exact by any means it is still better than simply using the last compensation value. * * Bed calibration: * - Moves probe to cooldown point. * - Heats up bed to 60°C. * - Moves probe to probing point (1mm above heatbed). * - Waits until probe reaches target temperature (30°C). * - Does a z-probing (=base value) and increases bed temperature by 5°C. * - Moves probe to cooldown point. * - Waits until probe is below 30°C and bed has reached target temperature. * - Moves probe to probing point and waits until it reaches target temperature (30°C). * - Does a z-probing (delta to base value will be a compensation value) and increases bed temperature by 5°C. * - Repeats last four points until max. bed temperature reached (110°C) or timeout. * - Compensation values of higher temperatures will be extrapolated (using linear regression first). * While this is not exact by any means it is still better than simply using the last compensation value. * * G76 [B | P] * - no flag - Both calibration procedures will be run. * - `B` - Run bed temperature calibration. * - `P` - Run probe temperature calibration. */ #if BOTH(PTC_PROBE, PTC_BED) static void say_waiting_for() { SERIAL_ECHOPGM("Waiting for "); } static void say_waiting_for_probe_heating() { say_waiting_for(); SERIAL_ECHOLNPGM("probe heating."); } static void say_successfully_calibrated() { SERIAL_ECHOPGM("Successfully calibrated"); } static void say_failed_to_calibrate() { SERIAL_ECHOPGM("!Failed to calibrate"); } void GcodeSuite::G76() { auto report_temps = [](millis_t &ntr, millis_t timeout=0) { idle_no_sleep(); const millis_t ms = millis(); if (ELAPSED(ms, ntr)) { ntr = ms + 1000; thermalManager.print_heater_states(active_extruder); } return (timeout && ELAPSED(ms, timeout)); }; auto wait_for_temps = [&](const celsius_t tb, const celsius_t tp, millis_t &ntr, const millis_t timeout=0) { say_waiting_for(); SERIAL_ECHOLNPGM("bed and probe temperature."); while (thermalManager.wholeDegBed() != tb || thermalManager.wholeDegProbe() > tp) if (report_temps(ntr, timeout)) return true; return false; }; auto g76_probe = [](const TempSensorID sid, celsius_t &targ, const xy_pos_t &nozpos) { do_z_clearance(5.0); // Raise nozzle before probing ptc.set_enabled(false); const float measured_z = probe.probe_at_point(nozpos, PROBE_PT_STOW, 0, false); // verbose=0, probe_relative=false ptc.set_enabled(true); if (isnan(measured_z)) SERIAL_ECHOLNPGM("!Received NAN. Aborting."); else { SERIAL_ECHOLNPAIR_F("Measured: ", measured_z); if (targ == ProbeTempComp::cali_info[sid].start_temp) ptc.prepare_new_calibration(measured_z); else ptc.push_back_new_measurement(sid, measured_z); targ += ProbeTempComp::cali_info[sid].temp_resolution; } return measured_z; }; #if ENABLED(BLTOUCH) // Make sure any BLTouch error condition is cleared bltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY); set_bltouch_deployed(false); #endif bool do_bed_cal = parser.boolval('B'), do_probe_cal = parser.boolval('P'); if (!do_bed_cal && !do_probe_cal) do_bed_cal = do_probe_cal = true; // Synchronize with planner planner.synchronize(); #ifndef PTC_PROBE_HEATING_OFFSET #define PTC_PROBE_HEATING_OFFSET 0 #endif const xyz_pos_t parkpos = PTC_PARK_POS, probe_pos_xyz = xyz_pos_t(PTC_PROBE_POS) + xyz_pos_t({ 0.0f, 0.0f, PTC_PROBE_HEATING_OFFSET }), noz_pos_xyz = probe_pos_xyz - probe.offset_xy; // Nozzle position based on probe position if (do_bed_cal || do_probe_cal) { // Ensure park position is reachable bool reachable = position_is_reachable(parkpos) || WITHIN(parkpos.z, Z_MIN_POS - fslop, Z_MAX_POS + fslop); if (!reachable) SERIAL_ECHOLNPGM("!Park"); else { // Ensure probe position is reachable reachable = probe.can_reach(probe_pos_xyz); if (!reachable) SERIAL_ECHOLNPGM("!Probe"); } if (!reachable) { SERIAL_ECHOLNPGM(" position unreachable - aborting."); return; } process_subcommands_now(FPSTR(G28_STR)); } remember_feedrate_scaling_off(); /****************************************** * Calibrate bed temperature offsets ******************************************/ // Report temperatures every second and handle heating timeouts millis_t next_temp_report = millis() + 1000; auto report_targets = [&](const celsius_t tb, const celsius_t tp) { SERIAL_ECHOLNPGM("Target Bed:", tb, " Probe:", tp); }; if (do_bed_cal) { celsius_t target_bed = PTC_BED_START, target_probe = PTC_PROBE_TEMP; say_waiting_for(); SERIAL_ECHOLNPGM(" cooling."); while (thermalManager.wholeDegBed() > target_bed || thermalManager.wholeDegProbe() > target_probe) report_temps(next_temp_report); // Disable leveling so it won't mess with us TERN_(HAS_LEVELING, set_bed_leveling_enabled(false)); for (uint8_t idx = 0; idx <= PTC_BED_COUNT; idx++) { thermalManager.setTargetBed(target_bed); report_targets(target_bed, target_probe); // Park nozzle do_blocking_move_to(parkpos); // Wait for heatbed to reach target temp and probe to cool below target temp if (wait_for_temps(target_bed, target_probe, next_temp_report, millis() + MIN_TO_MS(15))) { SERIAL_ECHOLNPGM("!Bed heating timeout."); break; } // Move the nozzle to the probing point and wait for the probe to reach target temp do_blocking_move_to(noz_pos_xyz); say_waiting_for_probe_heating(); SERIAL_EOL(); while (thermalManager.wholeDegProbe() < target_probe) report_temps(next_temp_report); const float measured_z = g76_probe(TSI_BED, target_bed, noz_pos_xyz); if (isnan(measured_z) || target_bed > (BED_MAX_TARGET)) break; } SERIAL_ECHOLNPGM("Retrieved measurements: ", ptc.get_index()); if (ptc.finish_calibration(TSI_BED)) { say_successfully_calibrated(); SERIAL_ECHOLNPGM(" bed."); } else { say_failed_to_calibrate(); SERIAL_ECHOLNPGM(" bed. Values reset."); } // Cleanup thermalManager.setTargetBed(0); TERN_(HAS_LEVELING, set_bed_leveling_enabled(true)); } // do_bed_cal /******************************************** * Calibrate probe temperature offsets ********************************************/ if (do_probe_cal) { // Park nozzle do_blocking_move_to(parkpos); // Initialize temperatures const celsius_t target_bed = BED_MAX_TARGET; thermalManager.setTargetBed(target_bed); celsius_t target_probe = PTC_PROBE_START; report_targets(target_bed, target_probe); // Wait for heatbed to reach target temp and probe to cool below target temp wait_for_temps(target_bed, target_probe, next_temp_report); // Disable leveling so it won't mess with us TERN_(HAS_LEVELING, set_bed_leveling_enabled(false)); bool timeout = false; for (uint8_t idx = 0; idx <= PTC_PROBE_COUNT; idx++) { // Move probe to probing point and wait for it to reach target temperature do_blocking_move_to(noz_pos_xyz); say_waiting_for_probe_heating(); SERIAL_ECHOLNPGM(" Bed:", target_bed, " Probe:", target_probe); const millis_t probe_timeout_ms = millis() + SEC_TO_MS(900UL); while (thermalManager.degProbe() < target_probe) { if (report_temps(next_temp_report, probe_timeout_ms)) { SERIAL_ECHOLNPGM("!Probe heating timed out."); timeout = true; break; } } if (timeout) break; const float measured_z = g76_probe(TSI_PROBE, target_probe, noz_pos_xyz); if (isnan(measured_z)) break; } SERIAL_ECHOLNPGM("Retrieved measurements: ", ptc.get_index()); if (ptc.finish_calibration(TSI_PROBE)) say_successfully_calibrated(); else say_failed_to_calibrate(); SERIAL_ECHOLNPGM(" probe."); // Cleanup thermalManager.setTargetBed(0); TERN_(HAS_LEVELING, set_bed_leveling_enabled(true)); SERIAL_ECHOLNPGM("Final compensation values:"); ptc.print_offsets(); } // do_probe_cal restore_feedrate_and_scaling(); } #endif // PTC_PROBE && PTC_BED /** * M871: Report / reset temperature compensation offsets. * Note: This does not affect values in EEPROM until M500. * * M871 [ R | B | P | E ] * * No Parameters - Print current offset values. * * Select only one of these flags: * R - Reset all offsets to zero (i.e., disable compensation). * B - Manually set offset for bed * P - Manually set offset for probe * E - Manually set offset for extruder * * With B, P, or E: * I[index] - Index in the array * V[value] - Adjustment in µm */ void GcodeSuite::M871() { if (parser.seen('R')) { // Reset z-probe offsets to factory defaults ptc.clear_all_offsets(); SERIAL_ECHOLNPGM("Offsets reset to default."); } else if (parser.seen("BPE")) { if (!parser.seenval('V')) return; const int16_t offset_val = parser.value_int(); if (!parser.seenval('I')) return; const int16_t idx = parser.value_int(); const TempSensorID mod = TERN_(PTC_BED, parser.seen_test('B') ? TSI_BED :) TERN_(PTC_HOTEND, parser.seen_test('E') ? TSI_EXT :) TERN_(PTC_PROBE, parser.seen_test('P') ? TSI_PROBE :) TSI_COUNT; if (mod == TSI_COUNT) SERIAL_ECHOLNPGM("!Invalid sensor."); else if (idx > 0 && ptc.set_offset(mod, idx - 1, offset_val)) SERIAL_ECHOLNPGM("Set value: ", offset_val); else SERIAL_ECHOLNPGM("!Invalid index. Failed to set value (note: value at index 0 is constant)."); } else // Print current Z-probe adjustments. Note: Values in EEPROM might differ. ptc.print_offsets(); } #endif // HAS_PTC