Firmware2/Marlin/src/HAL/STM32F1/MarlinSerial.cpp
DerAndere c1fca91103 🏗️ Support for up to 6 linear axes (#19112)
Co-authored-by: Scott Lahteine <github@thinkyhead.com>
2021-06-15 00:05:03 -05:00

205 lines
6.4 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef __STM32F1__
#include "../../inc/MarlinConfig.h"
#include "MarlinSerial.h"
#include <libmaple/usart.h>
// Copied from ~/.platformio/packages/framework-arduinoststm32-maple/STM32F1/system/libmaple/usart_private.h
// Changed to handle Emergency Parser
static inline __always_inline void my_usart_irq(ring_buffer *rb, ring_buffer *wb, usart_reg_map *regs, MSerialT &serial) {
/* Handle RXNEIE and TXEIE interrupts.
* RXNE signifies availability of a byte in DR.
*
* See table 198 (sec 27.4, p809) in STM document RM0008 rev 15.
* We enable RXNEIE.
*/
uint32_t srflags = regs->SR, cr1its = regs->CR1;
if ((cr1its & USART_CR1_RXNEIE) && (srflags & USART_SR_RXNE)) {
if (srflags & USART_SR_FE || srflags & USART_SR_PE ) {
// framing error or parity error
regs->DR; // Read and throw away the data, which also clears FE and PE
}
else {
uint8_t c = (uint8)regs->DR;
#ifdef USART_SAFE_INSERT
// If the buffer is full and the user defines USART_SAFE_INSERT,
// ignore new bytes.
rb_safe_insert(rb, c);
#else
// By default, push bytes around in the ring buffer.
rb_push_insert(rb, c);
#endif
#if ENABLED(EMERGENCY_PARSER)
if (serial.emergency_parser_enabled())
emergency_parser.update(serial.emergency_state, c);
#endif
}
}
else if (srflags & USART_SR_ORE) {
// overrun and empty data, just do a dummy read to clear ORE
// and prevent a raise condition where a continuous interrupt stream (due to ORE set) occurs
// (see chapter "Overrun error" ) in STM32 reference manual
regs->DR;
}
// TXE signifies readiness to send a byte to DR.
if ((cr1its & USART_CR1_TXEIE) && (srflags & USART_SR_TXE)) {
if (!rb_is_empty(wb))
regs->DR=rb_remove(wb);
else
regs->CR1 &= ~((uint32)USART_CR1_TXEIE); // disable TXEIE
}
}
// Not every MarlinSerial port should handle emergency parsing.
// It would not make sense to parse GCode from TMC responses, for example.
constexpr bool serial_handles_emergency(int port) {
return false
#ifdef SERIAL_PORT
|| (SERIAL_PORT) == port
#endif
#ifdef SERIAL_PORT_2
|| (SERIAL_PORT_2) == port
#endif
#ifdef LCD_SERIAL_PORT
|| (LCD_SERIAL_PORT) == port
#endif
;
}
#define DEFINE_HWSERIAL_MARLIN(name, n) \
MSerialT name(serial_handles_emergency(n),\
USART##n, \
BOARD_USART##n##_TX_PIN, \
BOARD_USART##n##_RX_PIN); \
extern "C" void __irq_usart##n(void) { \
my_usart_irq(USART##n->rb, USART##n->wb, USART##n##_BASE, MSerial##n); \
}
#define DEFINE_HWSERIAL_UART_MARLIN(name, n) \
MSerialT name(serial_handles_emergency(n), \
UART##n, \
BOARD_USART##n##_TX_PIN, \
BOARD_USART##n##_RX_PIN); \
extern "C" void __irq_usart##n(void) { \
my_usart_irq(UART##n->rb, UART##n->wb, UART##n##_BASE, MSerial##n); \
}
// Instantiate all UARTs even if they are not needed
// This avoids a bunch of logic to figure out every serial
// port which may be in use on the system.
#if DISABLED(MKS_WIFI_MODULE)
DEFINE_HWSERIAL_MARLIN(MSerial1, 1);
#endif
DEFINE_HWSERIAL_MARLIN(MSerial2, 2);
DEFINE_HWSERIAL_MARLIN(MSerial3, 3);
#if EITHER(STM32_HIGH_DENSITY, STM32_XL_DENSITY)
DEFINE_HWSERIAL_UART_MARLIN(MSerial4, 4);
DEFINE_HWSERIAL_UART_MARLIN(MSerial5, 5);
#endif
// Check the type of each serial port by passing it to a template function.
// HardwareSerial is known to sometimes hang the controller when an error occurs,
// so this case will fail the static assert. All other classes are assumed to be ok.
template <typename T>
constexpr bool IsSerialClassAllowed(const T&) { return true; }
constexpr bool IsSerialClassAllowed(const HardwareSerial&) { return false; }
#define CHECK_CFG_SERIAL(A) static_assert(IsSerialClassAllowed(A), STRINGIFY(A) " is defined incorrectly");
#define CHECK_AXIS_SERIAL(A) static_assert(IsSerialClassAllowed(A##_HARDWARE_SERIAL), STRINGIFY(A) "_HARDWARE_SERIAL must be defined in the form MSerial1, rather than Serial1");
// If you encounter this error, replace SerialX with MSerialX, for example MSerial3.
// Non-TMC ports were already validated in HAL.h, so do not require verbose error messages.
#ifdef MYSERIAL1
CHECK_CFG_SERIAL(MYSERIAL1);
#endif
#ifdef MYSERIAL2
CHECK_CFG_SERIAL(MYSERIAL2);
#endif
#ifdef LCD_SERIAL
CHECK_CFG_SERIAL(LCD_SERIAL);
#endif
#if AXIS_HAS_HW_SERIAL(X)
CHECK_AXIS_SERIAL(X);
#endif
#if AXIS_HAS_HW_SERIAL(X2)
CHECK_AXIS_SERIAL(X2);
#endif
#if AXIS_HAS_HW_SERIAL(Y)
CHECK_AXIS_SERIAL(Y);
#endif
#if AXIS_HAS_HW_SERIAL(Y2)
CHECK_AXIS_SERIAL(Y2);
#endif
#if AXIS_HAS_HW_SERIAL(Z)
CHECK_AXIS_SERIAL(Z);
#endif
#if AXIS_HAS_HW_SERIAL(Z2)
CHECK_AXIS_SERIAL(Z2);
#endif
#if AXIS_HAS_HW_SERIAL(Z3)
CHECK_AXIS_SERIAL(Z3);
#endif
#if AXIS_HAS_HW_SERIAL(Z4)
CHECK_AXIS_SERIAL(Z4);
#endif
#if AXIS_HAS_HW_SERIAL(I)
CHECK_AXIS_SERIAL(I);
#endif
#if AXIS_HAS_HW_SERIAL(J)
CHECK_AXIS_SERIAL(J);
#endif
#if AXIS_HAS_HW_SERIAL(K)
CHECK_AXIS_SERIAL(K);
#endif
#if AXIS_HAS_HW_SERIAL(E0)
CHECK_AXIS_SERIAL(E0);
#endif
#if AXIS_HAS_HW_SERIAL(E1)
CHECK_AXIS_SERIAL(E1);
#endif
#if AXIS_HAS_HW_SERIAL(E2)
CHECK_AXIS_SERIAL(E2);
#endif
#if AXIS_HAS_HW_SERIAL(E3)
CHECK_AXIS_SERIAL(E3);
#endif
#if AXIS_HAS_HW_SERIAL(E4)
CHECK_AXIS_SERIAL(E4);
#endif
#if AXIS_HAS_HW_SERIAL(E5)
CHECK_AXIS_SERIAL(E5);
#endif
#if AXIS_HAS_HW_SERIAL(E6)
CHECK_AXIS_SERIAL(E6);
#endif
#if AXIS_HAS_HW_SERIAL(E7)
CHECK_AXIS_SERIAL(E7);
#endif
#endif // __STM32F1__