Firmware2/Marlin/endstops.cpp
Bob-the-Kuhn 2911aa7ffa code changes to implement G38 commands
1) modified 3 code files
Marlin.h
Marlin_main.cpp
endstops.cpp

2) modified config files so I could test on my machine

Testing was done on an AzteegX3pro based machine.

The probe was hooked to the Z_MIN endstop.

My controller doesn't have a dedicated Z_PROBE input so I couldn't test
that functionality.

Verified that a large file (without any G38 commands) executed the same
before and after the changes.

Verified that the head moves as expected when G38.2 and G38.3 commands
are issued. Single & multiple axis moves were tested along with + and -
directions.

Code was added to the main ISR. In normal operation only one extra IF
statement is evaluated. I didn't notice any performance degradation
because of the added code.

The G38 commands are expected to be issued manually by the operator
during machine setup. The G38 commands wait until the machine is idle
before proceeding. That way the other commands are minimally impacted
by the extra ISR overhead when a G38 command is in the queue.

The G38 commands are very similar to the G28 commands except 1) only the
Z_PROBE is used and movement can be in the + or - direction.

See issue 4677 for a discussion on adding G38 commands to Marlin.
Feature request: add ability to use G38.2 command (CNC)
MarlinFirmware/Marlin#4677
2016-10-01 05:00:53 -05:00

403 lines
12 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* endstops.cpp - A singleton object to manage endstops
*/
#include "Marlin.h"
#include "cardreader.h"
#include "endstops.h"
#include "temperature.h"
#include "stepper.h"
#include "ultralcd.h"
// TEST_ENDSTOP: test the old and the current status of an endstop
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
Endstops endstops;
// public:
bool Endstops::enabled = true,
Endstops::enabled_globally =
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
(true)
#else
(false)
#endif
;
volatile char Endstops::endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
#if ENABLED(Z_DUAL_ENDSTOPS)
uint16_t
#else
byte
#endif
Endstops::current_endstop_bits = 0,
Endstops::old_endstop_bits = 0;
#if HAS_BED_PROBE
volatile bool Endstops::z_probe_enabled = false;
#endif
/**
* Class and Instance Methods
*/
void Endstops::init() {
#if HAS_X_MIN
SET_INPUT(X_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_XMIN)
WRITE(X_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Y_MIN
SET_INPUT(Y_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_YMIN)
WRITE(Y_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Z_MIN
SET_INPUT(Z_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN)
WRITE(Z_MIN_PIN,HIGH);
#endif
#endif
#if HAS_Z2_MIN
SET_INPUT(Z2_MIN_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN)
WRITE(Z2_MIN_PIN,HIGH);
#endif
#endif
#if HAS_X_MAX
SET_INPUT(X_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_XMAX)
WRITE(X_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Y_MAX
SET_INPUT(Y_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_YMAX)
WRITE(Y_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Z_MAX
SET_INPUT(Z_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMAX)
WRITE(Z_MAX_PIN,HIGH);
#endif
#endif
#if HAS_Z2_MAX
SET_INPUT(Z2_MAX_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMAX)
WRITE(Z2_MAX_PIN,HIGH);
#endif
#endif
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
SET_INPUT(Z_MIN_PROBE_PIN);
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
WRITE(Z_MIN_PROBE_PIN,HIGH);
#endif
#endif
} // Endstops::init
void Endstops::report_state() {
if (endstop_hit_bits) {
#if ENABLED(ULTRA_LCD)
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
#define _SET_STOP_CHAR(A,C) (chr## A = C)
#else
#define _SET_STOP_CHAR(A,C) ;
#endif
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \
_SET_STOP_CHAR(A,C); }while(0)
#define _ENDSTOP_HIT_TEST(A,C) \
if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
_ENDSTOP_HIT_ECHO(A,C)
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
_ENDSTOP_HIT_TEST(X, 'X');
_ENDSTOP_HIT_TEST(Y, 'Y');
_ENDSTOP_HIT_TEST(Z, 'Z');
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define P_AXIS Z_AXIS
if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
#endif
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
lcd_setstatus(msg);
#endif
hit_on_purpose();
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
if (stepper.abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
quickstop_stepper();
thermalManager.disable_all_heaters(); // switch off all heaters.
}
#endif
}
} // Endstops::report_state
void Endstops::M119() {
SERIAL_PROTOCOLLNPGM(MSG_M119_REPORT);
#if HAS_X_MIN
SERIAL_PROTOCOLPGM(MSG_X_MIN);
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_X_MAX
SERIAL_PROTOCOLPGM(MSG_X_MAX);
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Y_MIN
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Y_MAX
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_MIN
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_MAX
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z2_MAX
SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
#endif
} // Endstops::M119
#if ENABLED(Z_DUAL_ENDSTOPS)
// Pass the result of the endstop test
void Endstops::test_dual_z_endstops(EndstopEnum es1, EndstopEnum es2) {
byte z_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Z, bit 1 for Z2
if (stepper.current_block->steps[Z_AXIS] > 0) {
stepper.endstop_triggered(Z_AXIS);
SBI(endstop_hit_bits, Z_MIN);
if (!stepper.performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
stepper.kill_current_block();
}
}
#endif
// Check endstops - Called from ISR!
void Endstops::update() {
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
// UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
#if defined(G38_2_3) && defined(Z_MIN_PIN) && Z_MIN_PIN > -1 // If G38 command then check Z_MIN for every axis and every direction
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \
stepper.endstop_triggered(_AXIS(AXIS)); \
} \
if (G38_flag) {\
UPDATE_ENDSTOP_BIT(Z, MIN); \
if (TEST_ENDSTOP(_ENDSTOP(Z, MIN)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \
stepper.endstop_triggered(_AXIS(AXIS)); \
G38_flag_pass = true;\
} \
} \
} while(0)
#else
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \
stepper.endstop_triggered(_AXIS(AXIS)); \
} \
} while(0)
#endif
#if ENABLED(COREXY) || ENABLED(COREXZ)
// Head direction in -X axis for CoreXY and CoreXZ bots.
// If DeltaA == -DeltaB, the movement is only in Y or Z axis
if ((stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(CORE_AXIS_1) == stepper.motor_direction(CORE_AXIS_2))) {
if (stepper.motor_direction(X_HEAD))
#else
if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot)
#endif
{ // -direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == -1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if HAS_X_MIN
UPDATE_ENDSTOP(X, MIN);
#endif
}
}
else { // +direction
#if ENABLED(DUAL_X_CARRIAGE)
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR == 1) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if HAS_X_MAX
UPDATE_ENDSTOP(X, MAX);
#endif
}
}
#if ENABLED(COREXY) || ENABLED(COREXZ)
}
#endif
#if ENABLED(COREXY) || ENABLED(COREYZ)
// Head direction in -Y axis for CoreXY / CoreYZ bots.
// If DeltaA == DeltaB, the movement is only in X or Y axis
if ((stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(CORE_AXIS_1) != stepper.motor_direction(CORE_AXIS_2))) {
if (stepper.motor_direction(Y_HEAD))
#else
if (stepper.motor_direction(Y_AXIS)) // -direction
#endif
{ // -direction
#if HAS_Y_MIN
UPDATE_ENDSTOP(Y, MIN);
#endif
}
else { // +direction
#if HAS_Y_MAX
UPDATE_ENDSTOP(Y, MAX);
#endif
}
#if ENABLED(COREXY) || ENABLED(COREYZ)
}
#endif
#if ENABLED(COREXZ) || ENABLED(COREYZ)
// Head direction in -Z axis for CoreXZ or CoreYZ bots.
// If DeltaA == DeltaB, the movement is only in X or Y axis
if ((stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2]) || (stepper.motor_direction(CORE_AXIS_1) != stepper.motor_direction(CORE_AXIS_2))) {
if (stepper.motor_direction(Z_HEAD))
#else
if (stepper.motor_direction(Z_AXIS))
#endif
{ // Z -direction. Gantry down, bed up.
#if HAS_Z_MIN
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Z, MIN);
#if HAS_Z2_MIN
UPDATE_ENDSTOP_BIT(Z2, MIN);
#else
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
#endif
test_dual_z_endstops(Z_MIN, Z2_MIN);
#else // !Z_DUAL_ENDSTOPS
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN);
#else
UPDATE_ENDSTOP(Z, MIN);
#endif
#endif // !Z_DUAL_ENDSTOPS
#endif // HAS_Z_MIN
// When closing the gap check the enabled probe
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
if (z_probe_enabled) {
UPDATE_ENDSTOP(Z, MIN_PROBE);
if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
}
#endif
}
else { // Z +direction. Gantry up, bed down.
#if HAS_Z_MAX
// Check both Z dual endstops
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Z, MAX);
#if HAS_Z2_MAX
UPDATE_ENDSTOP_BIT(Z2, MAX);
#else
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
#endif
test_dual_z_endstops(Z_MAX, Z2_MAX);
// If this pin is not hijacked for the bed probe
// then it belongs to the Z endstop
#elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN
UPDATE_ENDSTOP(Z, MAX);
#endif // !Z_MIN_PROBE_PIN...
#endif // Z_MAX_PIN
}
#if ENABLED(COREXZ)
}
#endif
old_endstop_bits = current_endstop_bits;
} // Endstops::update()