2021-10-02 22:31:15 -05:00

310 lines
10 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* scara.cpp
*/
#include "../inc/MarlinConfig.h"
#if IS_SCARA
#include "scara.h"
#include "motion.h"
#include "planner.h"
#if ENABLED(AXEL_TPARA)
#include "endstops.h"
#include "../MarlinCore.h"
#endif
float segments_per_second = TERN(AXEL_TPARA, TPARA_SEGMENTS_PER_SECOND, SCARA_SEGMENTS_PER_SECOND);
#if EITHER(MORGAN_SCARA, MP_SCARA)
static constexpr xy_pos_t scara_offset = { SCARA_OFFSET_X, SCARA_OFFSET_Y };
/**
* Morgan SCARA Forward Kinematics. Results in 'cartes'.
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void forward_kinematics(const_float_t a, const_float_t b) {
const float a_sin = sin(RADIANS(a)) * L1,
a_cos = cos(RADIANS(a)) * L1,
b_sin = sin(RADIANS(SUM_TERN(MP_SCARA, b, a))) * L2,
b_cos = cos(RADIANS(SUM_TERN(MP_SCARA, b, a))) * L2;
cartes.x = a_cos + b_cos + scara_offset.x; // theta
cartes.y = a_sin + b_sin + scara_offset.y; // phi
/*
DEBUG_ECHOLNPGM(
"SCARA FK Angle a=", a,
" b=", b,
" a_sin=", a_sin,
" a_cos=", a_cos,
" b_sin=", b_sin,
" b_cos=", b_cos
);
DEBUG_ECHOLNPGM(" cartes (X,Y) = "(cartes.x, ", ", cartes.y, ")");
//*/
}
#endif
#if ENABLED(MORGAN_SCARA)
void scara_set_axis_is_at_home(const AxisEnum axis) {
if (axis == Z_AXIS)
current_position.z = Z_HOME_POS;
else {
// MORGAN_SCARA uses a Cartesian XY home position
xyz_pos_t homeposition = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS };
//DEBUG_ECHOLNPGM_P(PSTR("homeposition X"), homeposition.x, SP_Y_LBL, homeposition.y);
delta = homeposition;
forward_kinematics(delta.a, delta.b);
current_position[axis] = cartes[axis];
//DEBUG_ECHOLNPGM_P(PSTR("Cartesian X"), current_position.x, SP_Y_LBL, current_position.y);
update_software_endstops(axis);
}
}
/**
* Morgan SCARA Inverse Kinematics. Results are stored in 'delta'.
*
* See https://reprap.org/forum/read.php?185,283327
*
* Maths and first version by QHARLEY.
* Integrated into Marlin and slightly restructured by Joachim Cerny.
*/
void inverse_kinematics(const xyz_pos_t &raw) {
float C2, S2, SK1, SK2, THETA, PSI;
// Translate SCARA to standard XY with scaling factor
const xy_pos_t spos = raw - scara_offset;
const float H2 = HYPOT2(spos.x, spos.y);
if (L1 == L2)
C2 = H2 / L1_2_2 - 1;
else
C2 = (H2 - (L1_2 + L2_2)) / (2.0f * L1 * L2);
LIMIT(C2, -1, 1);
S2 = SQRT(1.0f - sq(C2));
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
SK1 = L1 + L2 * C2;
// Rotated Arm2 gives the distance from Arm1 to Arm2
SK2 = L2 * S2;
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
THETA = ATAN2(SK1, SK2) - ATAN2(spos.x, spos.y);
// Angle of Arm2
PSI = ATAN2(S2, C2);
delta.set(DEGREES(THETA), DEGREES(SUM_TERN(MORGAN_SCARA, PSI, THETA)), raw.z);
/*
DEBUG_POS("SCARA IK", raw);
DEBUG_POS("SCARA IK", delta);
DEBUG_ECHOLNPGM(" SCARA (x,y) ", sx, ",", sy, " C2=", C2, " S2=", S2, " Theta=", THETA, " Psi=", PSI);
//*/
}
#elif ENABLED(MP_SCARA)
void scara_set_axis_is_at_home(const AxisEnum axis) {
if (axis == Z_AXIS)
current_position.z = Z_HOME_POS;
else {
// MP_SCARA uses arm angles for AB home position
#ifndef SCARA_OFFSET_THETA1
#define SCARA_OFFSET_THETA1 12 // degrees
#endif
#ifndef SCARA_OFFSET_THETA2
#define SCARA_OFFSET_THETA2 131 // degrees
#endif
ab_float_t homeposition = { SCARA_OFFSET_THETA1, SCARA_OFFSET_THETA2 };
//DEBUG_ECHOLNPGM("homeposition A:", homeposition.a, " B:", homeposition.b);
inverse_kinematics(homeposition);
forward_kinematics(delta.a, delta.b);
current_position[axis] = cartes[axis];
//DEBUG_ECHOLNPGM_P(PSTR("Cartesian X"), current_position.x, SP_Y_LBL, current_position.y);
update_software_endstops(axis);
}
}
void inverse_kinematics(const xyz_pos_t &raw) {
const float x = raw.x, y = raw.y, c = HYPOT(x, y),
THETA3 = ATAN2(y, x),
THETA1 = THETA3 + ACOS((sq(c) + sq(L1) - sq(L2)) / (2.0f * c * L1)),
THETA2 = THETA3 - ACOS((sq(c) + sq(L2) - sq(L1)) / (2.0f * c * L2));
delta.set(DEGREES(THETA1), DEGREES(THETA2), raw.z);
/*
DEBUG_POS("SCARA IK", raw);
DEBUG_POS("SCARA IK", delta);
SERIAL_ECHOLNPGM(" SCARA (x,y) ", x, ",", y," Theta1=", THETA1, " Theta2=", THETA2);
//*/
}
#elif ENABLED(AXEL_TPARA)
static constexpr xyz_pos_t robot_offset = { TPARA_OFFSET_X, TPARA_OFFSET_Y, TPARA_OFFSET_Z };
void scara_set_axis_is_at_home(const AxisEnum axis) {
if (axis == Z_AXIS)
current_position.z = Z_HOME_POS;
else {
xyz_pos_t homeposition = { X_HOME_POS, Y_HOME_POS, Z_HOME_POS };
//DEBUG_ECHOLNPGM_P(PSTR("homeposition X"), homeposition.x, SP_Y_LBL, homeposition.y, SP_Z_LBL, homeposition.z);
inverse_kinematics(homeposition);
forward_kinematics(delta.a, delta.b, delta.c);
current_position[axis] = cartes[axis];
//DEBUG_ECHOLNPGM_P(PSTR("Cartesian X"), current_position.x, SP_Y_LBL, current_position.y);
update_software_endstops(axis);
}
}
// Convert ABC inputs in degrees to XYZ outputs in mm
void forward_kinematics(const_float_t a, const_float_t b, const_float_t c) {
const float w = c - b,
r = L1 * cos(RADIANS(b)) + L2 * sin(RADIANS(w - (90 - b))),
x = r * cos(RADIANS(a)),
y = r * sin(RADIANS(a)),
rho2 = L1_2 + L2_2 - 2.0f * L1 * L2 * cos(RADIANS(w));
cartes = robot_offset + xyz_pos_t({ x, y, SQRT(rho2 - sq(x) - sq(y)) });
}
// Home YZ together, then X (or all at once). Based on quick_home_xy & home_delta
void home_TPARA() {
// Init the current position of all carriages to 0,0,0
current_position.reset();
destination.reset();
sync_plan_position();
// Disable stealthChop if used. Enable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
TERN_(X_SENSORLESS, sensorless_t stealth_states_x = start_sensorless_homing_per_axis(X_AXIS));
TERN_(Y_SENSORLESS, sensorless_t stealth_states_y = start_sensorless_homing_per_axis(Y_AXIS));
TERN_(Z_SENSORLESS, sensorless_t stealth_states_z = start_sensorless_homing_per_axis(Z_AXIS));
#endif
//const int x_axis_home_dir = TOOL_X_HOME_DIR(active_extruder);
//const xy_pos_t pos { max_length(X_AXIS) , max_length(Y_AXIS) };
//const float mlz = max_length(X_AXIS),
// Move all carriages together linearly until an endstop is hit.
//do_blocking_move_to_xy_z(pos, mlz, homing_feedrate(Z_AXIS));
current_position.x = 0 ;
current_position.y = 0 ;
current_position.z = max_length(Z_AXIS) ;
line_to_current_position(homing_feedrate(Z_AXIS));
planner.synchronize();
// Re-enable stealthChop if used. Disable diag1 pin on driver.
#if ENABLED(SENSORLESS_HOMING)
TERN_(X_SENSORLESS, end_sensorless_homing_per_axis(X_AXIS, stealth_states_x));
TERN_(Y_SENSORLESS, end_sensorless_homing_per_axis(Y_AXIS, stealth_states_y));
TERN_(Z_SENSORLESS, end_sensorless_homing_per_axis(Z_AXIS, stealth_states_z));
#endif
endstops.validate_homing_move();
// At least one motor has reached its endstop.
// Now re-home each motor separately.
homeaxis(A_AXIS);
homeaxis(C_AXIS);
homeaxis(B_AXIS);
// Set all carriages to their home positions
// Do this here all at once for Delta, because
// XYZ isn't ABC. Applying this per-tower would
// give the impression that they are the same.
LOOP_LINEAR_AXES(i) set_axis_is_at_home((AxisEnum)i);
sync_plan_position();
}
void inverse_kinematics(const xyz_pos_t &raw) {
const xyz_pos_t spos = raw - robot_offset;
const float RXY = SQRT(HYPOT2(spos.x, spos.y)),
RHO2 = NORMSQ(spos.x, spos.y, spos.z),
//RHO = SQRT(RHO2),
LSS = L1_2 + L2_2,
LM = 2.0f * L1 * L2,
CG = (LSS - RHO2) / LM,
SG = SQRT(1 - POW(CG, 2)), // Method 2
K1 = L1 - L2 * CG,
K2 = L2 * SG,
// Angle of Body Joint
THETA = ATAN2(spos.y, spos.x),
// Angle of Elbow Joint
//GAMMA = ACOS(CG),
GAMMA = ATAN2(SG, CG), // Method 2
// Angle of Shoulder Joint, elevation angle measured from horizontal (r+)
//PHI = asin(spos.z/RHO) + asin(L2 * sin(GAMMA) / RHO),
PHI = ATAN2(spos.z, RXY) + ATAN2(K2, K1), // Method 2
// Elbow motor angle measured from horizontal, same frame as shoulder (r+)
PSI = PHI + GAMMA;
delta.set(DEGREES(THETA), DEGREES(PHI), DEGREES(PSI));
//SERIAL_ECHOLNPGM(" SCARA (x,y,z) ", spos.x , ",", spos.y, ",", spos.z, " Rho=", RHO, " Rho2=", RHO2, " Theta=", THETA, " Phi=", PHI, " Psi=", PSI, " Gamma=", GAMMA);
}
#endif
void scara_report_positions() {
SERIAL_ECHOLNPGM("SCARA Theta:", planner.get_axis_position_degrees(A_AXIS)
#if ENABLED(AXEL_TPARA)
, " Phi:", planner.get_axis_position_degrees(B_AXIS)
, " Psi:", planner.get_axis_position_degrees(C_AXIS)
#else
, " Psi" TERN_(MORGAN_SCARA, "+Theta") ":", planner.get_axis_position_degrees(B_AXIS)
#endif
);
SERIAL_EOL();
}
#endif // IS_SCARA