Firmware2/Marlin/src/gcode/motion/G2_G3.cpp
2021-12-25 00:20:45 -06:00

442 lines
17 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(ARC_SUPPORT)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/temperature.h"
#if ENABLED(DELTA)
#include "../../module/delta.h"
#elif ENABLED(SCARA)
#include "../../module/scara.h"
#endif
#if N_ARC_CORRECTION < 1
#undef N_ARC_CORRECTION
#define N_ARC_CORRECTION 1
#endif
#ifndef MIN_CIRCLE_SEGMENTS
#define MIN_CIRCLE_SEGMENTS 72 // 5° per segment
#endif
#if !defined(MAX_ARC_SEGMENT_MM) && defined(MIN_ARC_SEGMENT_MM)
#define MAX_ARC_SEGMENT_MM MIN_ARC_SEGMENT_MM
#elif !defined(MIN_ARC_SEGMENT_MM) && defined(MAX_ARC_SEGMENT_MM)
#define MIN_ARC_SEGMENT_MM MAX_ARC_SEGMENT_MM
#endif
#define ARC_LIJK_CODE(L,I,J,K) CODE_N(SUB2(LINEAR_AXES),L,I,J,K)
#define ARC_LIJKE_CODE(L,I,J,K,E) ARC_LIJK_CODE(L,I,J,K); CODE_ITEM_E(E)
/**
* Plan an arc in 2 dimensions, with linear motion in the other axes.
* The arc is traced with many small linear segments according to the configuration.
*/
void plan_arc(
const xyze_pos_t &cart, // Destination position
const ab_float_t &offset, // Center of rotation relative to current_position
const bool clockwise, // Clockwise?
const uint8_t circles // Take the scenic route
) {
#if ENABLED(CNC_WORKSPACE_PLANES)
AxisEnum axis_p, axis_q, axis_l;
switch (gcode.workspace_plane) {
default:
case GcodeSuite::PLANE_XY: axis_p = X_AXIS; axis_q = Y_AXIS; axis_l = Z_AXIS; break;
case GcodeSuite::PLANE_YZ: axis_p = Y_AXIS; axis_q = Z_AXIS; axis_l = X_AXIS; break;
case GcodeSuite::PLANE_ZX: axis_p = Z_AXIS; axis_q = X_AXIS; axis_l = Y_AXIS; break;
}
#else
constexpr AxisEnum axis_p = X_AXIS, axis_q = Y_AXIS OPTARG(HAS_Z_AXIS, axis_l = Z_AXIS);
#endif
// Radius vector from center to current location
ab_float_t rvec = -offset;
const float radius = HYPOT(rvec.a, rvec.b),
center_P = current_position[axis_p] - rvec.a,
center_Q = current_position[axis_q] - rvec.b,
rt_X = cart[axis_p] - center_P,
rt_Y = cart[axis_q] - center_Q;
ARC_LIJK_CODE(
const float start_L = current_position[axis_l],
const float start_I = current_position.i,
const float start_J = current_position.j,
const float start_K = current_position.k
);
// Angle of rotation between position and target from the circle center.
float angular_travel, abs_angular_travel;
// Minimum number of segments in an arc move
uint16_t min_segments = 1;
// Do a full circle if starting and ending positions are "identical"
if (NEAR(current_position[axis_p], cart[axis_p]) && NEAR(current_position[axis_q], cart[axis_q])) {
// Preserve direction for circles
angular_travel = clockwise ? -RADIANS(360) : RADIANS(360);
abs_angular_travel = RADIANS(360);
min_segments = MIN_CIRCLE_SEGMENTS;
}
else {
// Calculate the angle
angular_travel = ATAN2(rvec.a * rt_Y - rvec.b * rt_X, rvec.a * rt_X + rvec.b * rt_Y);
// Angular travel too small to detect? Just return.
if (!angular_travel) return;
// Make sure angular travel over 180 degrees goes the other way around.
switch (((angular_travel < 0) << 1) | clockwise) {
case 1: angular_travel -= RADIANS(360); break; // Positive but CW? Reverse direction.
case 2: angular_travel += RADIANS(360); break; // Negative but CCW? Reverse direction.
}
abs_angular_travel = ABS(angular_travel);
// Apply minimum segments to the arc
const float portion_of_circle = abs_angular_travel / RADIANS(360); // Portion of a complete circle (0 < N < 1)
min_segments = CEIL((MIN_CIRCLE_SEGMENTS) * portion_of_circle); // Minimum segments for the arc
}
ARC_LIJKE_CODE(
float travel_L = cart[axis_l] - start_L,
float travel_I = cart.i - start_I,
float travel_J = cart.j - start_J,
float travel_K = cart.k - start_K,
float travel_E = cart.e - current_position.e
);
// If "P" specified circles, call plan_arc recursively then continue with the rest of the arc
if (TERN0(ARC_P_CIRCLES, circles)) {
const float total_angular = abs_angular_travel + circles * RADIANS(360), // Total rotation with all circles and remainder
part_per_circle = RADIANS(360) / total_angular; // Each circle's part of the total
ARC_LIJKE_CODE(
const float per_circle_L = travel_L * part_per_circle, // L movement per circle
const float per_circle_I = travel_I * part_per_circle,
const float per_circle_J = travel_J * part_per_circle,
const float per_circle_K = travel_K * part_per_circle,
const float per_circle_E = travel_E * part_per_circle // E movement per circle
);
xyze_pos_t temp_position = current_position;
for (uint16_t n = circles; n--;) {
ARC_LIJKE_CODE( // Destination Linear Axes
temp_position[axis_l] += per_circle_L,
temp_position.i += per_circle_I,
temp_position.j += per_circle_J,
temp_position.k += per_circle_K,
temp_position.e += per_circle_E // Destination E axis
);
plan_arc(temp_position, offset, clockwise, 0); // Plan a single whole circle
}
ARC_LIJKE_CODE(
travel_L = cart[axis_l] - current_position[axis_l],
travel_I = cart.i - current_position.i,
travel_J = cart.j - current_position.j,
travel_K = cart.k - current_position.k,
travel_E = cart.e - current_position.e
);
}
// Millimeters in the arc, assuming it's flat
const float flat_mm = radius * abs_angular_travel;
// Return if the move is near zero
if (flat_mm < 0.0001f
GANG_N(SUB2(LINEAR_AXES),
&& travel_L < 0.0001f,
&& travel_I < 0.0001f,
&& travel_J < 0.0001f,
&& travel_K < 0.0001f
)
) return;
// Feedrate for the move, scaled by the feedrate multiplier
const feedRate_t scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
// Get the nominal segment length based on settings
const float nominal_segment_mm = (
#if ARC_SEGMENTS_PER_SEC // Length based on segments per second and feedrate
constrain(scaled_fr_mm_s * RECIPROCAL(ARC_SEGMENTS_PER_SEC), MIN_ARC_SEGMENT_MM, MAX_ARC_SEGMENT_MM)
#else
MAX_ARC_SEGMENT_MM // Length using the maximum segment size
#endif
);
// Number of whole segments based on the nominal segment length
const float nominal_segments = _MAX(FLOOR(flat_mm / nominal_segment_mm), min_segments);
// A new segment length based on the required minimum
const float segment_mm = constrain(flat_mm / nominal_segments, MIN_ARC_SEGMENT_MM, MAX_ARC_SEGMENT_MM);
// The number of whole segments in the arc, ignoring the remainder
uint16_t segments = FLOOR(flat_mm / segment_mm);
// Are the segments now too few to reach the destination?
const float segmented_length = segment_mm * segments;
const bool tooshort = segmented_length < flat_mm - 0.0001f;
const float proportion = tooshort ? segmented_length / flat_mm : 1.0f;
/**
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
* r_T = [cos(phi) -sin(phi);
* sin(phi) cos(phi)] * r ;
*
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
* defined from the circle center to the initial position. Each line segment is formed by successive
* vector rotations. This requires only two cos() and sin() computations to form the rotation
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
* all double numbers are single precision on the Arduino. (True double precision will not have
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
* tool precision in some cases. Therefore, arc path correction is implemented.
*
* Small angle approximation may be used to reduce computation overhead further. This approximation
* holds for everything, but very small circles and large MAX_ARC_SEGMENT_MM values. In other words,
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
* issue for CNC machines with the single precision Arduino calculations.
*
* This approximation also allows plan_arc to immediately insert a line segment into the planner
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
* This is important when there are successive arc motions.
*/
// Vector rotation matrix values
xyze_pos_t raw;
const float theta_per_segment = proportion * angular_travel / segments,
sq_theta_per_segment = sq(theta_per_segment),
sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
cos_T = 1 - 0.5f * sq_theta_per_segment; // Small angle approximation
#if DISABLED(AUTO_BED_LEVELING_UBL)
ARC_LIJK_CODE(
const float per_segment_L = proportion * travel_L / segments,
const float per_segment_I = proportion * travel_I / segments,
const float per_segment_J = proportion * travel_J / segments,
const float per_segment_K = proportion * travel_K / segments
);
#endif
CODE_ITEM_E(const float extruder_per_segment = proportion * travel_E / segments);
// For shortened segments, run all but the remainder in the loop
if (tooshort) segments++;
// Initialize all linear axes and E
ARC_LIJKE_CODE(
raw[axis_l] = current_position[axis_l],
raw.i = current_position.i,
raw.j = current_position.j,
raw.k = current_position.k,
raw.e = current_position.e
);
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float inv_duration = scaled_fr_mm_s / segment_mm;
#endif
millis_t next_idle_ms = millis() + 200UL;
#if N_ARC_CORRECTION > 1
int8_t arc_recalc_count = N_ARC_CORRECTION;
#endif
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
thermalManager.manage_heater();
const millis_t ms = millis();
if (ELAPSED(ms, next_idle_ms)) {
next_idle_ms = ms + 200UL;
idle();
}
#if N_ARC_CORRECTION > 1
if (--arc_recalc_count) {
// Apply vector rotation matrix to previous rvec.a / 1
const float r_new_Y = rvec.a * sin_T + rvec.b * cos_T;
rvec.a = rvec.a * cos_T - rvec.b * sin_T;
rvec.b = r_new_Y;
}
else
#endif
{
#if N_ARC_CORRECTION > 1
arc_recalc_count = N_ARC_CORRECTION;
#endif
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time.
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
rvec.a = -offset[0] * cos_Ti + offset[1] * sin_Ti;
rvec.b = -offset[0] * sin_Ti - offset[1] * cos_Ti;
}
// Update raw location
raw[axis_p] = center_P + rvec.a;
raw[axis_q] = center_Q + rvec.b;
ARC_LIJKE_CODE(
#if ENABLED(AUTO_BED_LEVELING_UBL)
raw[axis_l] = start_L, raw.i = start_I, raw.j = start_J, raw.k = start_K
#else
raw[axis_l] += per_segment_L, raw.i += per_segment_I, raw.j += per_segment_J, raw.k += per_segment_K
#endif
, raw.e += extruder_per_segment
);
apply_motion_limits(raw);
#if HAS_LEVELING && !PLANNER_LEVELING
planner.apply_leveling(raw);
#endif
if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, 0 OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)))
break;
}
// Ensure last segment arrives at target location.
raw = cart;
#if ENABLED(AUTO_BED_LEVELING_UBL)
ARC_LIJK_CODE(raw[axis_l] = start_L, raw.i = start_I, raw.j = start_J, raw.k = start_K);
#endif
apply_motion_limits(raw);
#if HAS_LEVELING && !PLANNER_LEVELING
planner.apply_leveling(raw);
#endif
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, 0 OPTARG(SCARA_FEEDRATE_SCALING, inv_duration));
#if ENABLED(AUTO_BED_LEVELING_UBL)
ARC_LIJK_CODE(raw[axis_l] = start_L, raw.i = start_I, raw.j = start_J, raw.k = start_K);
#endif
current_position = raw;
} // plan_arc
/**
* G2: Clockwise Arc
* G3: Counterclockwise Arc
*
* This command has two forms: IJ-form (JK, KI) and R-form.
*
* - Depending on the current Workspace Plane orientation,
* use parameters IJ/JK/KI to specify the XY/YZ/ZX offsets.
* At least one of the IJ/JK/KI parameters is required.
* XY/YZ/ZX can be omitted to do a complete circle.
* The given XY/YZ/ZX is not error-checked. The arc ends
* based on the angle of the destination.
* Mixing IJ/JK/KI with R will throw an error.
*
* - R specifies the radius. X or Y (Y or Z / Z or X) is required.
* Omitting both XY/YZ/ZX will throw an error.
* XY/YZ/ZX must differ from the current XY/YZ/ZX.
* Mixing R with IJ/JK/KI will throw an error.
*
* - P specifies the number of full circles to do
* before the specified arc move.
*
* Examples:
*
* G2 I10 ; CW circle centered at X+10
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
*/
void GcodeSuite::G2_G3(const bool clockwise) {
if (MOTION_CONDITIONS) {
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_RUNNING));
#if ENABLED(SF_ARC_FIX)
const bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
get_destination_from_command(); // Get X Y [Z[I[J[K]]]] [E] F (and set cutter power)
TERN_(SF_ARC_FIX, relative_mode = relative_mode_backup);
ab_float_t arc_offset = { 0, 0 };
if (parser.seenval('R')) {
const float r = parser.value_linear_units();
if (r) {
const xy_pos_t p1 = current_position, p2 = destination;
if (p1 != p2) {
const xy_pos_t d2 = (p2 - p1) * 0.5f; // XY vector to midpoint of move from current
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
len = d2.magnitude(), // Distance to mid-point of move from current
h2 = (r - len) * (r + len), // factored to reduce rounding error
h = (h2 >= 0) ? SQRT(h2) : 0.0f; // Distance to the arc pivot-point from midpoint
const xy_pos_t s = { -d2.y, d2.x }; // Perpendicular bisector. (Divide by len for unit vector.)
arc_offset = d2 + s / len * e * h; // The calculated offset (mid-point if |r| <= len)
}
}
}
else {
#if ENABLED(CNC_WORKSPACE_PLANES)
char achar, bchar;
switch (workspace_plane) {
default:
case GcodeSuite::PLANE_XY: achar = 'I'; bchar = 'J'; break;
case GcodeSuite::PLANE_YZ: achar = 'J'; bchar = 'K'; break;
case GcodeSuite::PLANE_ZX: achar = 'K'; bchar = 'I'; break;
}
#else
constexpr char achar = 'I', bchar = 'J';
#endif
if (parser.seenval(achar)) arc_offset.a = parser.value_linear_units();
if (parser.seenval(bchar)) arc_offset.b = parser.value_linear_units();
}
if (arc_offset) {
#if ENABLED(ARC_P_CIRCLES)
// P indicates number of circles to do
const int8_t circles_to_do = parser.byteval('P');
if (!WITHIN(circles_to_do, 0, 100))
SERIAL_ERROR_MSG(STR_ERR_ARC_ARGS);
#else
constexpr uint8_t circles_to_do = 0;
#endif
// Send the arc to the planner
plan_arc(destination, arc_offset, clockwise, circles_to_do);
reset_stepper_timeout();
}
else
SERIAL_ERROR_MSG(STR_ERR_ARC_ARGS);
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_IDLE));
}
}
#endif // ARC_SUPPORT