3376 lines
109 KiB
C++
3376 lines
109 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* temperature.cpp - temperature control
|
|
*/
|
|
|
|
// Useful when debugging thermocouples
|
|
//#define IGNORE_THERMOCOUPLE_ERRORS
|
|
|
|
#include "temperature.h"
|
|
#include "endstops.h"
|
|
|
|
#include "../MarlinCore.h"
|
|
#include "planner.h"
|
|
#include "../HAL/shared/Delay.h"
|
|
|
|
#include "../lcd/ultralcd.h"
|
|
|
|
#if ENABLED(DWIN_CREALITY_LCD)
|
|
#include "../lcd/dwin/dwin.h"
|
|
#endif
|
|
|
|
#if ENABLED(EXTENSIBLE_UI)
|
|
#include "../lcd/extui/ui_api.h"
|
|
#endif
|
|
|
|
#if ENABLED(MAX6675_IS_MAX31865)
|
|
#include <Adafruit_MAX31865.h>
|
|
#ifndef MAX31865_CS_PIN
|
|
#define MAX31865_CS_PIN MAX6675_SS_PIN // HW:49 SW:65 for example
|
|
#endif
|
|
#ifndef MAX31865_MOSI_PIN
|
|
#define MAX31865_MOSI_PIN MOSI_PIN // 63
|
|
#endif
|
|
#ifndef MAX31865_MISO_PIN
|
|
#define MAX31865_MISO_PIN MAX6675_DO_PIN // 42
|
|
#endif
|
|
#ifndef MAX31865_SCK_PIN
|
|
#define MAX31865_SCK_PIN MAX6675_SCK_PIN // 40
|
|
#endif
|
|
Adafruit_MAX31865 max31865 = Adafruit_MAX31865(MAX31865_CS_PIN
|
|
#if MAX31865_CS_PIN != MAX6675_SS_PIN
|
|
, MAX31865_MOSI_PIN // For software SPI also set MOSI/MISO/SCK
|
|
, MAX31865_MISO_PIN
|
|
, MAX31865_SCK_PIN
|
|
#endif
|
|
);
|
|
#endif
|
|
|
|
#define MAX6675_SEPARATE_SPI (EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675) && PINS_EXIST(MAX6675_SCK, MAX6675_DO))
|
|
|
|
#if MAX6675_SEPARATE_SPI
|
|
#include "../libs/private_spi.h"
|
|
#endif
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
|
|
#include "../feature/babystep.h"
|
|
#endif
|
|
|
|
#include "printcounter.h"
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
#include "../feature/filwidth.h"
|
|
#endif
|
|
|
|
#if HAS_POWER_MONITOR
|
|
#include "../feature/power_monitor.h"
|
|
#endif
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
#include "../feature/e_parser.h"
|
|
#endif
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
#include "../feature/leds/printer_event_leds.h"
|
|
#endif
|
|
|
|
#if ENABLED(JOYSTICK)
|
|
#include "../feature/joystick.h"
|
|
#endif
|
|
|
|
#if ENABLED(SINGLENOZZLE)
|
|
#include "tool_change.h"
|
|
#endif
|
|
|
|
#if USE_BEEPER
|
|
#include "../libs/buzzer.h"
|
|
#endif
|
|
|
|
#if HOTEND_USES_THERMISTOR
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
static const temp_entry_t* heater_ttbl_map[2] = { HEATER_0_TEMPTABLE, HEATER_1_TEMPTABLE };
|
|
static constexpr uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
|
|
#else
|
|
#define NEXT_TEMPTABLE(N) ,HEATER_##N##_TEMPTABLE
|
|
#define NEXT_TEMPTABLE_LEN(N) ,HEATER_##N##_TEMPTABLE_LEN
|
|
static const temp_entry_t* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE));
|
|
static constexpr uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN REPEAT_S(1, HOTENDS, NEXT_TEMPTABLE_LEN));
|
|
#endif
|
|
#endif
|
|
|
|
Temperature thermalManager;
|
|
|
|
const char str_t_thermal_runaway[] PROGMEM = STR_T_THERMAL_RUNAWAY,
|
|
str_t_heating_failed[] PROGMEM = STR_T_HEATING_FAILED;
|
|
|
|
/**
|
|
* Macros to include the heater id in temp errors. The compiler's dead-code
|
|
* elimination should (hopefully) optimize out the unused strings.
|
|
*/
|
|
|
|
#if HAS_HEATED_BED
|
|
#define _BED_PSTR(h) (h) == H_BED ? GET_TEXT(MSG_BED) :
|
|
#else
|
|
#define _BED_PSTR(h)
|
|
#endif
|
|
#if HAS_HEATED_CHAMBER
|
|
#define _CHAMBER_PSTR(h) (h) == H_CHAMBER ? GET_TEXT(MSG_CHAMBER) :
|
|
#else
|
|
#define _CHAMBER_PSTR(h)
|
|
#endif
|
|
#define _E_PSTR(h,N) ((HOTENDS) > N && (h) == N) ? PSTR(LCD_STR_E##N) :
|
|
#define HEATER_PSTR(h) _BED_PSTR(h) _CHAMBER_PSTR(h) _E_PSTR(h,1) _E_PSTR(h,2) _E_PSTR(h,3) _E_PSTR(h,4) _E_PSTR(h,5) PSTR(LCD_STR_E0)
|
|
|
|
// public:
|
|
|
|
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
|
|
bool Temperature::adaptive_fan_slowing = true;
|
|
#endif
|
|
|
|
#if HAS_HOTEND
|
|
hotend_info_t Temperature::temp_hotend[HOTEND_TEMPS]; // = { 0 }
|
|
const uint16_t Temperature::heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP, HEATER_5_MAXTEMP, HEATER_6_MAXTEMP, HEATER_7_MAXTEMP);
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_POWER_E_FANS)
|
|
uint8_t Temperature::autofan_speed[HOTENDS]; // = { 0 }
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_POWER_CHAMBER_FAN)
|
|
uint8_t Temperature::chamberfan_speed; // = 0
|
|
#endif
|
|
|
|
#if HAS_FAN
|
|
|
|
uint8_t Temperature::fan_speed[FAN_COUNT]; // = { 0 }
|
|
|
|
#if ENABLED(EXTRA_FAN_SPEED)
|
|
uint8_t Temperature::old_fan_speed[FAN_COUNT], Temperature::new_fan_speed[FAN_COUNT];
|
|
|
|
void Temperature::set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp) {
|
|
switch (tmp_temp) {
|
|
case 1:
|
|
set_fan_speed(fan, old_fan_speed[fan]);
|
|
break;
|
|
case 2:
|
|
old_fan_speed[fan] = fan_speed[fan];
|
|
set_fan_speed(fan, new_fan_speed[fan]);
|
|
break;
|
|
default:
|
|
new_fan_speed[fan] = _MIN(tmp_temp, 255U);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
|
|
bool Temperature::fans_paused; // = false;
|
|
uint8_t Temperature::saved_fan_speed[FAN_COUNT]; // = { 0 }
|
|
#endif
|
|
|
|
#if ENABLED(ADAPTIVE_FAN_SLOWING)
|
|
uint8_t Temperature::fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128);
|
|
#endif
|
|
|
|
/**
|
|
* Set the print fan speed for a target extruder
|
|
*/
|
|
void Temperature::set_fan_speed(uint8_t target, uint16_t speed) {
|
|
|
|
NOMORE(speed, 255U);
|
|
|
|
#if ENABLED(SINGLENOZZLE_STANDBY_FAN)
|
|
if (target != active_extruder) {
|
|
if (target < EXTRUDERS) singlenozzle_fan_speed[target] = speed;
|
|
return;
|
|
}
|
|
target = 0; // Always use fan index 0 with SINGLENOZZLE
|
|
#endif
|
|
|
|
if (target >= FAN_COUNT) return;
|
|
|
|
fan_speed[target] = speed;
|
|
|
|
TERN_(REPORT_FAN_CHANGE, report_fan_speed(target));
|
|
}
|
|
|
|
#if ENABLED(REPORT_FAN_CHANGE)
|
|
/**
|
|
* Report print fan speed for a target extruder
|
|
*/
|
|
void Temperature::report_fan_speed(const uint8_t target) {
|
|
if (target >= FAN_COUNT) return;
|
|
PORT_REDIRECT(SERIAL_BOTH);
|
|
SERIAL_ECHOLNPAIR("M106 P", target, " S", fan_speed[target]);
|
|
}
|
|
#endif
|
|
|
|
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
|
|
|
|
void Temperature::set_fans_paused(const bool p) {
|
|
if (p != fans_paused) {
|
|
fans_paused = p;
|
|
if (p)
|
|
FANS_LOOP(i) { saved_fan_speed[i] = fan_speed[i]; fan_speed[i] = 0; }
|
|
else
|
|
FANS_LOOP(i) fan_speed[i] = saved_fan_speed[i];
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif // HAS_FAN
|
|
|
|
#if WATCH_HOTENDS
|
|
hotend_watch_t Temperature::watch_hotend[HOTENDS]; // = { { 0 } }
|
|
#endif
|
|
#if HEATER_IDLE_HANDLER
|
|
hotend_idle_t Temperature::hotend_idle[HOTENDS]; // = { { 0 } }
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
bed_info_t Temperature::temp_bed; // = { 0 }
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
#ifdef BED_MINTEMP
|
|
int16_t Temperature::mintemp_raw_BED = HEATER_BED_RAW_LO_TEMP;
|
|
#endif
|
|
#ifdef BED_MAXTEMP
|
|
int16_t Temperature::maxtemp_raw_BED = HEATER_BED_RAW_HI_TEMP;
|
|
#endif
|
|
TERN_(WATCH_BED, bed_watch_t Temperature::watch_bed); // = { 0 }
|
|
TERN(PIDTEMPBED,, millis_t Temperature::next_bed_check_ms);
|
|
TERN_(HEATER_IDLE_HANDLER, hotend_idle_t Temperature::bed_idle); // = { 0 }
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
chamber_info_t Temperature::temp_chamber; // = { 0 }
|
|
#if HAS_HEATED_CHAMBER
|
|
#ifdef CHAMBER_MINTEMP
|
|
int16_t Temperature::mintemp_raw_CHAMBER = HEATER_CHAMBER_RAW_LO_TEMP;
|
|
#endif
|
|
#ifdef CHAMBER_MAXTEMP
|
|
int16_t Temperature::maxtemp_raw_CHAMBER = HEATER_CHAMBER_RAW_HI_TEMP;
|
|
#endif
|
|
#if WATCH_CHAMBER
|
|
chamber_watch_t Temperature::watch_chamber{0};
|
|
#endif
|
|
millis_t Temperature::next_chamber_check_ms;
|
|
#endif // HAS_HEATED_CHAMBER
|
|
#endif // HAS_TEMP_CHAMBER
|
|
|
|
#if HAS_TEMP_PROBE
|
|
probe_info_t Temperature::temp_probe; // = { 0 }
|
|
#endif
|
|
|
|
// Initialized by settings.load()
|
|
#if ENABLED(PIDTEMP)
|
|
//hotend_pid_t Temperature::pid[HOTENDS];
|
|
#endif
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
bool Temperature::allow_cold_extrude = false;
|
|
int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
|
|
#endif
|
|
|
|
// private:
|
|
|
|
#if EARLY_WATCHDOG
|
|
bool Temperature::inited = false;
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
uint16_t Temperature::redundant_temperature_raw = 0;
|
|
float Temperature::redundant_temperature = 0.0;
|
|
#endif
|
|
|
|
volatile bool Temperature::raw_temps_ready = false;
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
int32_t Temperature::last_e_position, Temperature::lpq[LPQ_MAX_LEN];
|
|
lpq_ptr_t Temperature::lpq_ptr = 0;
|
|
#endif
|
|
|
|
#define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) < (HEATER_##N##_RAW_HI_TEMP) ? 1 : -1)
|
|
|
|
#if HAS_HOTEND
|
|
// Init mintemp and maxtemp with extreme values to prevent false errors during startup
|
|
constexpr temp_range_t sensor_heater_0 { HEATER_0_RAW_LO_TEMP, HEATER_0_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_1 { HEATER_1_RAW_LO_TEMP, HEATER_1_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_2 { HEATER_2_RAW_LO_TEMP, HEATER_2_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_3 { HEATER_3_RAW_LO_TEMP, HEATER_3_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_4 { HEATER_4_RAW_LO_TEMP, HEATER_4_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_5 { HEATER_5_RAW_LO_TEMP, HEATER_5_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_6 { HEATER_6_RAW_LO_TEMP, HEATER_6_RAW_HI_TEMP, 0, 16383 },
|
|
sensor_heater_7 { HEATER_7_RAW_LO_TEMP, HEATER_7_RAW_HI_TEMP, 0, 16383 };
|
|
|
|
temp_range_t Temperature::temp_range[HOTENDS] = ARRAY_BY_HOTENDS(sensor_heater_0, sensor_heater_1, sensor_heater_2, sensor_heater_3, sensor_heater_4, sensor_heater_5, sensor_heater_6, sensor_heater_7);
|
|
#endif
|
|
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#ifdef MILLISECONDS_PREHEAT_TIME
|
|
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
|
|
#endif
|
|
|
|
#if HAS_AUTO_FAN
|
|
millis_t Temperature::next_auto_fan_check_ms = 0;
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
|
|
Temperature::soft_pwm_count_fan[FAN_COUNT];
|
|
#endif
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
bool Temperature::paused;
|
|
#endif
|
|
|
|
// public:
|
|
|
|
#if HAS_ADC_BUTTONS
|
|
uint32_t Temperature::current_ADCKey_raw = HAL_ADC_RANGE;
|
|
uint16_t Temperature::ADCKey_count = 0;
|
|
#endif
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
int16_t Temperature::lpq_len; // Initialized in configuration_store
|
|
#endif
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
inline void say_default_() { SERIAL_ECHOPGM("#define DEFAULT_"); }
|
|
|
|
/**
|
|
* PID Autotuning (M303)
|
|
*
|
|
* Alternately heat and cool the nozzle, observing its behavior to
|
|
* determine the best PID values to achieve a stable temperature.
|
|
* Needs sufficient heater power to make some overshoot at target
|
|
* temperature to succeed.
|
|
*/
|
|
void Temperature::PID_autotune(const float &target, const heater_ind_t heater, const int8_t ncycles, const bool set_result/*=false*/) {
|
|
float current_temp = 0.0;
|
|
int cycles = 0;
|
|
bool heating = true;
|
|
|
|
millis_t next_temp_ms = millis(), t1 = next_temp_ms, t2 = next_temp_ms;
|
|
long t_high = 0, t_low = 0;
|
|
|
|
long bias, d;
|
|
PID_t tune_pid = { 0, 0, 0 };
|
|
float maxT = 0, minT = 10000;
|
|
|
|
const bool isbed = (heater == H_BED);
|
|
|
|
#if HAS_PID_FOR_BOTH
|
|
#define GHV(B,H) (isbed ? (B) : (H))
|
|
#define SHV(B,H) do{ if (isbed) temp_bed.soft_pwm_amount = B; else temp_hotend[heater].soft_pwm_amount = H; }while(0)
|
|
#define ONHEATINGSTART() (isbed ? printerEventLEDs.onBedHeatingStart() : printerEventLEDs.onHotendHeatingStart())
|
|
#define ONHEATING(S,C,T) (isbed ? printerEventLEDs.onBedHeating(S,C,T) : printerEventLEDs.onHotendHeating(S,C,T))
|
|
#elif ENABLED(PIDTEMPBED)
|
|
#define GHV(B,H) B
|
|
#define SHV(B,H) (temp_bed.soft_pwm_amount = B)
|
|
#define ONHEATINGSTART() printerEventLEDs.onBedHeatingStart()
|
|
#define ONHEATING(S,C,T) printerEventLEDs.onBedHeating(S,C,T)
|
|
#else
|
|
#define GHV(B,H) H
|
|
#define SHV(B,H) (temp_hotend[heater].soft_pwm_amount = H)
|
|
#define ONHEATINGSTART() printerEventLEDs.onHotendHeatingStart()
|
|
#define ONHEATING(S,C,T) printerEventLEDs.onHotendHeating(S,C,T)
|
|
#endif
|
|
#define WATCH_PID BOTH(WATCH_BED, PIDTEMPBED) || BOTH(WATCH_HOTENDS, PIDTEMP)
|
|
|
|
#if WATCH_PID
|
|
#if ALL(THERMAL_PROTECTION_HOTENDS, PIDTEMP, THERMAL_PROTECTION_BED, PIDTEMPBED)
|
|
#define GTV(B,H) (isbed ? (B) : (H))
|
|
#elif BOTH(THERMAL_PROTECTION_HOTENDS, PIDTEMP)
|
|
#define GTV(B,H) (H)
|
|
#else
|
|
#define GTV(B,H) (B)
|
|
#endif
|
|
const uint16_t watch_temp_period = GTV(WATCH_BED_TEMP_PERIOD, WATCH_TEMP_PERIOD);
|
|
const uint8_t watch_temp_increase = GTV(WATCH_BED_TEMP_INCREASE, WATCH_TEMP_INCREASE);
|
|
const float watch_temp_target = target - float(watch_temp_increase + GTV(TEMP_BED_HYSTERESIS, TEMP_HYSTERESIS) + 1);
|
|
millis_t temp_change_ms = next_temp_ms + SEC_TO_MS(watch_temp_period);
|
|
float next_watch_temp = 0.0;
|
|
bool heated = false;
|
|
#endif
|
|
|
|
TERN_(HAS_AUTO_FAN, next_auto_fan_check_ms = next_temp_ms + 2500UL);
|
|
|
|
if (target > GHV(BED_MAX_TARGET, temp_range[heater].maxtemp - HOTEND_OVERSHOOT)) {
|
|
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
|
|
return;
|
|
}
|
|
|
|
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_START);
|
|
|
|
disable_all_heaters();
|
|
|
|
SHV(bias = d = (MAX_BED_POWER) >> 1, bias = d = (PID_MAX) >> 1);
|
|
|
|
wait_for_heatup = true; // Can be interrupted with M108
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
const float start_temp = GHV(temp_bed.celsius, temp_hotend[heater].celsius);
|
|
LEDColor color = ONHEATINGSTART();
|
|
#endif
|
|
|
|
TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = false);
|
|
|
|
// PID Tuning loop
|
|
while (wait_for_heatup) {
|
|
|
|
const millis_t ms = millis();
|
|
|
|
if (raw_temps_ready) { // temp sample ready
|
|
updateTemperaturesFromRawValues();
|
|
|
|
// Get the current temperature and constrain it
|
|
current_temp = GHV(temp_bed.celsius, temp_hotend[heater].celsius);
|
|
NOLESS(maxT, current_temp);
|
|
NOMORE(minT, current_temp);
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
ONHEATING(start_temp, current_temp, target);
|
|
#endif
|
|
|
|
#if HAS_AUTO_FAN
|
|
if (ELAPSED(ms, next_auto_fan_check_ms)) {
|
|
checkExtruderAutoFans();
|
|
next_auto_fan_check_ms = ms + 2500UL;
|
|
}
|
|
#endif
|
|
|
|
if (heating && current_temp > target) {
|
|
if (ELAPSED(ms, t2 + 5000UL)) {
|
|
heating = false;
|
|
SHV((bias - d) >> 1, (bias - d) >> 1);
|
|
t1 = ms;
|
|
t_high = t1 - t2;
|
|
maxT = target;
|
|
}
|
|
}
|
|
|
|
if (!heating && current_temp < target) {
|
|
if (ELAPSED(ms, t1 + 5000UL)) {
|
|
heating = true;
|
|
t2 = ms;
|
|
t_low = t2 - t1;
|
|
if (cycles > 0) {
|
|
const long max_pow = GHV(MAX_BED_POWER, PID_MAX);
|
|
bias += (d * (t_high - t_low)) / (t_low + t_high);
|
|
LIMIT(bias, 20, max_pow - 20);
|
|
d = (bias > max_pow >> 1) ? max_pow - 1 - bias : bias;
|
|
|
|
SERIAL_ECHOPAIR(STR_BIAS, bias, STR_D_COLON, d, STR_T_MIN, minT, STR_T_MAX, maxT);
|
|
if (cycles > 2) {
|
|
const float Ku = (4.0f * d) / (float(M_PI) * (maxT - minT) * 0.5f),
|
|
Tu = float(t_low + t_high) * 0.001f,
|
|
pf = isbed ? 0.2f : 0.6f,
|
|
df = isbed ? 1.0f / 3.0f : 1.0f / 8.0f;
|
|
|
|
SERIAL_ECHOPAIR(STR_KU, Ku, STR_TU, Tu);
|
|
if (isbed) { // Do not remove this otherwise PID autotune won't work right for the bed!
|
|
tune_pid.Kp = Ku * 0.2f;
|
|
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
|
|
tune_pid.Kd = tune_pid.Kp * Tu / 3;
|
|
SERIAL_ECHOLNPGM("\n" " No overshoot"); // Works far better for the bed. Classic and some have bad ringing.
|
|
SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
|
|
}
|
|
else {
|
|
tune_pid.Kp = Ku * pf;
|
|
tune_pid.Kd = tune_pid.Kp * Tu * df;
|
|
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
|
|
SERIAL_ECHOLNPGM("\n" STR_CLASSIC_PID);
|
|
SERIAL_ECHOLNPAIR(STR_KP, tune_pid.Kp, STR_KI, tune_pid.Ki, STR_KD, tune_pid.Kd);
|
|
}
|
|
|
|
/**
|
|
tune_pid.Kp = 0.33 * Ku;
|
|
tune_pid.Ki = tune_pid.Kp / Tu;
|
|
tune_pid.Kd = tune_pid.Kp * Tu / 3;
|
|
SERIAL_ECHOLNPGM(" Some overshoot");
|
|
SERIAL_ECHOLNPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd, " No overshoot");
|
|
tune_pid.Kp = 0.2 * Ku;
|
|
tune_pid.Ki = 2 * tune_pid.Kp / Tu;
|
|
tune_pid.Kd = tune_pid.Kp * Tu / 3;
|
|
SERIAL_ECHOPAIR(" Kp: ", tune_pid.Kp, " Ki: ", tune_pid.Ki, " Kd: ", tune_pid.Kd);
|
|
*/
|
|
}
|
|
}
|
|
SHV((bias + d) >> 1, (bias + d) >> 1);
|
|
cycles++;
|
|
minT = target;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Did the temperature overshoot very far?
|
|
#ifndef MAX_OVERSHOOT_PID_AUTOTUNE
|
|
#define MAX_OVERSHOOT_PID_AUTOTUNE 30
|
|
#endif
|
|
if (current_temp > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
|
|
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
|
|
break;
|
|
}
|
|
|
|
// Report heater states every 2 seconds
|
|
if (ELAPSED(ms, next_temp_ms)) {
|
|
#if HAS_TEMP_SENSOR
|
|
print_heater_states(isbed ? active_extruder : heater);
|
|
SERIAL_EOL();
|
|
#endif
|
|
next_temp_ms = ms + 2000UL;
|
|
|
|
// Make sure heating is actually working
|
|
#if WATCH_PID
|
|
if (BOTH(WATCH_BED, WATCH_HOTENDS) || isbed == DISABLED(WATCH_HOTENDS)) {
|
|
if (!heated) { // If not yet reached target...
|
|
if (current_temp > next_watch_temp) { // Over the watch temp?
|
|
next_watch_temp = current_temp + watch_temp_increase; // - set the next temp to watch for
|
|
temp_change_ms = ms + SEC_TO_MS(watch_temp_period); // - move the expiration timer up
|
|
if (current_temp > watch_temp_target) heated = true; // - Flag if target temperature reached
|
|
}
|
|
else if (ELAPSED(ms, temp_change_ms)) // Watch timer expired
|
|
_temp_error(heater, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
|
|
}
|
|
else if (current_temp < target - (MAX_OVERSHOOT_PID_AUTOTUNE)) // Heated, then temperature fell too far?
|
|
_temp_error(heater, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
|
|
}
|
|
#endif
|
|
} // every 2 seconds
|
|
|
|
// Timeout after MAX_CYCLE_TIME_PID_AUTOTUNE minutes since the last undershoot/overshoot cycle
|
|
#ifndef MAX_CYCLE_TIME_PID_AUTOTUNE
|
|
#define MAX_CYCLE_TIME_PID_AUTOTUNE 20L
|
|
#endif
|
|
if ((ms - _MIN(t1, t2)) > (MAX_CYCLE_TIME_PID_AUTOTUNE * 60L * 1000L)) {
|
|
TERN_(DWIN_CREALITY_LCD, Popup_Window_Temperature(0));
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TUNING_TIMEOUT));
|
|
SERIAL_ECHOLNPGM(STR_PID_TIMEOUT);
|
|
break;
|
|
}
|
|
|
|
if (cycles > ncycles && cycles > 2) {
|
|
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED);
|
|
|
|
#if HAS_PID_FOR_BOTH
|
|
const char * const estring = GHV(PSTR("bed"), NUL_STR);
|
|
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
|
|
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
|
|
say_default_(); serialprintPGM(estring); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
|
|
#elif ENABLED(PIDTEMP)
|
|
say_default_(); SERIAL_ECHOLNPAIR("Kp ", tune_pid.Kp);
|
|
say_default_(); SERIAL_ECHOLNPAIR("Ki ", tune_pid.Ki);
|
|
say_default_(); SERIAL_ECHOLNPAIR("Kd ", tune_pid.Kd);
|
|
#else
|
|
say_default_(); SERIAL_ECHOLNPAIR("bedKp ", tune_pid.Kp);
|
|
say_default_(); SERIAL_ECHOLNPAIR("bedKi ", tune_pid.Ki);
|
|
say_default_(); SERIAL_ECHOLNPAIR("bedKd ", tune_pid.Kd);
|
|
#endif
|
|
|
|
#define _SET_BED_PID() do { \
|
|
temp_bed.pid.Kp = tune_pid.Kp; \
|
|
temp_bed.pid.Ki = scalePID_i(tune_pid.Ki); \
|
|
temp_bed.pid.Kd = scalePID_d(tune_pid.Kd); \
|
|
}while(0)
|
|
|
|
#define _SET_EXTRUDER_PID() do { \
|
|
PID_PARAM(Kp, heater) = tune_pid.Kp; \
|
|
PID_PARAM(Ki, heater) = scalePID_i(tune_pid.Ki); \
|
|
PID_PARAM(Kd, heater) = scalePID_d(tune_pid.Kd); \
|
|
updatePID(); }while(0)
|
|
|
|
// Use the result? (As with "M303 U1")
|
|
if (set_result) {
|
|
#if HAS_PID_FOR_BOTH
|
|
if (isbed) _SET_BED_PID(); else _SET_EXTRUDER_PID();
|
|
#elif ENABLED(PIDTEMP)
|
|
_SET_EXTRUDER_PID();
|
|
#else
|
|
_SET_BED_PID();
|
|
#endif
|
|
}
|
|
|
|
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE));
|
|
|
|
goto EXIT_M303;
|
|
}
|
|
TERN(DWIN_CREALITY_LCD, DWIN_Update(), ui.update());
|
|
}
|
|
|
|
disable_all_heaters();
|
|
|
|
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onPidTuningDone(color));
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_DONE));
|
|
|
|
EXIT_M303:
|
|
TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = true);
|
|
return;
|
|
}
|
|
|
|
#endif // HAS_PID_HEATING
|
|
|
|
/**
|
|
* Class and Instance Methods
|
|
*/
|
|
|
|
int16_t Temperature::getHeaterPower(const heater_ind_t heater_id) {
|
|
switch (heater_id) {
|
|
#if HAS_HEATED_BED
|
|
case H_BED: return temp_bed.soft_pwm_amount;
|
|
#endif
|
|
#if HAS_HEATED_CHAMBER
|
|
case H_CHAMBER: return temp_chamber.soft_pwm_amount;
|
|
#endif
|
|
default:
|
|
return TERN0(HAS_HOTEND, temp_hotend[heater_id].soft_pwm_amount);
|
|
}
|
|
}
|
|
|
|
#define _EFANOVERLAP(A,B) _FANOVERLAP(E##A,B)
|
|
|
|
#if HAS_AUTO_FAN
|
|
|
|
#define CHAMBER_FAN_INDEX HOTENDS
|
|
|
|
void Temperature::checkExtruderAutoFans() {
|
|
#define _EFAN(B,A) _EFANOVERLAP(A,B) ? B :
|
|
static const uint8_t fanBit[] PROGMEM = {
|
|
0
|
|
#if HAS_MULTI_HOTEND
|
|
#define _NEXT_FAN(N) , REPEAT2(N,_EFAN,N) N
|
|
RREPEAT_S(1, HOTENDS, _NEXT_FAN)
|
|
#endif
|
|
#if HAS_AUTO_CHAMBER_FAN
|
|
#define _CFAN(B) _FANOVERLAP(CHAMBER,B) ? B :
|
|
, REPEAT(HOTENDS,_CFAN) (HOTENDS)
|
|
#endif
|
|
};
|
|
|
|
uint8_t fanState = 0;
|
|
HOTEND_LOOP()
|
|
if (temp_hotend[e].celsius >= EXTRUDER_AUTO_FAN_TEMPERATURE)
|
|
SBI(fanState, pgm_read_byte(&fanBit[e]));
|
|
|
|
#if HAS_AUTO_CHAMBER_FAN
|
|
if (temp_chamber.celsius >= CHAMBER_AUTO_FAN_TEMPERATURE)
|
|
SBI(fanState, pgm_read_byte(&fanBit[CHAMBER_FAN_INDEX]));
|
|
#endif
|
|
|
|
#define _UPDATE_AUTO_FAN(P,D,A) do{ \
|
|
if (PWM_PIN(P##_AUTO_FAN_PIN) && A < 255) \
|
|
analogWrite(pin_t(P##_AUTO_FAN_PIN), D ? A : 0); \
|
|
else \
|
|
WRITE(P##_AUTO_FAN_PIN, D); \
|
|
}while(0)
|
|
|
|
uint8_t fanDone = 0;
|
|
LOOP_L_N(f, COUNT(fanBit)) {
|
|
const uint8_t realFan = pgm_read_byte(&fanBit[f]);
|
|
if (TEST(fanDone, realFan)) continue;
|
|
const bool fan_on = TEST(fanState, realFan);
|
|
switch (f) {
|
|
#if ENABLED(AUTO_POWER_CHAMBER_FAN)
|
|
case CHAMBER_FAN_INDEX:
|
|
chamberfan_speed = fan_on ? CHAMBER_AUTO_FAN_SPEED : 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
#if ENABLED(AUTO_POWER_E_FANS)
|
|
autofan_speed[realFan] = fan_on ? EXTRUDER_AUTO_FAN_SPEED : 0;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
switch (f) {
|
|
#if HAS_AUTO_FAN_0
|
|
case 0: _UPDATE_AUTO_FAN(E0, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_1
|
|
case 1: _UPDATE_AUTO_FAN(E1, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_2
|
|
case 2: _UPDATE_AUTO_FAN(E2, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_3
|
|
case 3: _UPDATE_AUTO_FAN(E3, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_4
|
|
case 4: _UPDATE_AUTO_FAN(E4, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_5
|
|
case 5: _UPDATE_AUTO_FAN(E5, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_6
|
|
case 6: _UPDATE_AUTO_FAN(E6, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
#if HAS_AUTO_FAN_7
|
|
case 7: _UPDATE_AUTO_FAN(E7, fan_on, EXTRUDER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
#if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
|
|
case CHAMBER_FAN_INDEX: _UPDATE_AUTO_FAN(CHAMBER, fan_on, CHAMBER_AUTO_FAN_SPEED); break;
|
|
#endif
|
|
}
|
|
SBI(fanDone, realFan);
|
|
}
|
|
}
|
|
|
|
#endif // HAS_AUTO_FAN
|
|
|
|
//
|
|
// Temperature Error Handlers
|
|
//
|
|
|
|
inline void loud_kill(PGM_P const lcd_msg, const heater_ind_t heater) {
|
|
marlin_state = MF_KILLED;
|
|
#if USE_BEEPER
|
|
for (uint8_t i = 20; i--;) {
|
|
WRITE(BEEPER_PIN, HIGH); delay(25);
|
|
WRITE(BEEPER_PIN, LOW); delay(80);
|
|
}
|
|
WRITE(BEEPER_PIN, HIGH);
|
|
#endif
|
|
kill(lcd_msg, HEATER_PSTR(heater));
|
|
}
|
|
|
|
void Temperature::_temp_error(const heater_ind_t heater, PGM_P const serial_msg, PGM_P const lcd_msg) {
|
|
|
|
static uint8_t killed = 0;
|
|
|
|
if (IsRunning() && TERN1(BOGUS_TEMPERATURE_GRACE_PERIOD, killed == 2)) {
|
|
SERIAL_ERROR_START();
|
|
serialprintPGM(serial_msg);
|
|
SERIAL_ECHOPGM(STR_STOPPED_HEATER);
|
|
if (heater >= 0)
|
|
SERIAL_ECHO((int)heater);
|
|
else if (TERN0(HAS_HEATED_CHAMBER, heater == H_CHAMBER))
|
|
SERIAL_ECHOPGM(STR_HEATER_CHAMBER);
|
|
else
|
|
SERIAL_ECHOPGM(STR_HEATER_BED);
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
disable_all_heaters(); // always disable (even for bogus temp)
|
|
|
|
#if BOGUS_TEMPERATURE_GRACE_PERIOD
|
|
const millis_t ms = millis();
|
|
static millis_t expire_ms;
|
|
switch (killed) {
|
|
case 0:
|
|
expire_ms = ms + BOGUS_TEMPERATURE_GRACE_PERIOD;
|
|
++killed;
|
|
break;
|
|
case 1:
|
|
if (ELAPSED(ms, expire_ms)) ++killed;
|
|
break;
|
|
case 2:
|
|
loud_kill(lcd_msg, heater);
|
|
++killed;
|
|
break;
|
|
}
|
|
#elif defined(BOGUS_TEMPERATURE_GRACE_PERIOD)
|
|
UNUSED(killed);
|
|
#else
|
|
if (!killed) { killed = 1; loud_kill(lcd_msg, heater); }
|
|
#endif
|
|
}
|
|
|
|
void Temperature::max_temp_error(const heater_ind_t heater) {
|
|
TERN_(DWIN_CREALITY_LCD, Popup_Window_Temperature(1));
|
|
_temp_error(heater, PSTR(STR_T_MAXTEMP), GET_TEXT(MSG_ERR_MAXTEMP));
|
|
}
|
|
|
|
void Temperature::min_temp_error(const heater_ind_t heater) {
|
|
TERN_(DWIN_CREALITY_LCD, Popup_Window_Temperature(0));
|
|
_temp_error(heater, PSTR(STR_T_MINTEMP), GET_TEXT(MSG_ERR_MINTEMP));
|
|
}
|
|
|
|
#if HAS_HOTEND
|
|
#if ENABLED(PID_DEBUG)
|
|
extern bool pid_debug_flag;
|
|
#endif
|
|
|
|
float Temperature::get_pid_output_hotend(const uint8_t E_NAME) {
|
|
const uint8_t ee = HOTEND_INDEX;
|
|
#if ENABLED(PIDTEMP)
|
|
#if DISABLED(PID_OPENLOOP)
|
|
static hotend_pid_t work_pid[HOTENDS];
|
|
static float temp_iState[HOTENDS] = { 0 },
|
|
temp_dState[HOTENDS] = { 0 };
|
|
static bool pid_reset[HOTENDS] = { false };
|
|
const float pid_error = temp_hotend[ee].target - temp_hotend[ee].celsius;
|
|
|
|
float pid_output;
|
|
|
|
if (temp_hotend[ee].target == 0
|
|
|| pid_error < -(PID_FUNCTIONAL_RANGE)
|
|
|| TERN0(HEATER_IDLE_HANDLER, hotend_idle[ee].timed_out)
|
|
) {
|
|
pid_output = 0;
|
|
pid_reset[ee] = true;
|
|
}
|
|
else if (pid_error > PID_FUNCTIONAL_RANGE) {
|
|
pid_output = BANG_MAX;
|
|
pid_reset[ee] = true;
|
|
}
|
|
else {
|
|
if (pid_reset[ee]) {
|
|
temp_iState[ee] = 0.0;
|
|
work_pid[ee].Kd = 0.0;
|
|
pid_reset[ee] = false;
|
|
}
|
|
|
|
work_pid[ee].Kd = work_pid[ee].Kd + PID_K2 * (PID_PARAM(Kd, ee) * (temp_dState[ee] - temp_hotend[ee].celsius) - work_pid[ee].Kd);
|
|
const float max_power_over_i_gain = float(PID_MAX) / PID_PARAM(Ki, ee) - float(MIN_POWER);
|
|
temp_iState[ee] = constrain(temp_iState[ee] + pid_error, 0, max_power_over_i_gain);
|
|
work_pid[ee].Kp = PID_PARAM(Kp, ee) * pid_error;
|
|
work_pid[ee].Ki = PID_PARAM(Ki, ee) * temp_iState[ee];
|
|
|
|
pid_output = work_pid[ee].Kp + work_pid[ee].Ki + work_pid[ee].Kd + float(MIN_POWER);
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
#if HOTENDS == 1
|
|
constexpr bool this_hotend = true;
|
|
#else
|
|
const bool this_hotend = (ee == active_extruder);
|
|
#endif
|
|
work_pid[ee].Kc = 0;
|
|
if (this_hotend) {
|
|
const long e_position = stepper.position(E_AXIS);
|
|
if (e_position > last_e_position) {
|
|
lpq[lpq_ptr] = e_position - last_e_position;
|
|
last_e_position = e_position;
|
|
}
|
|
else
|
|
lpq[lpq_ptr] = 0;
|
|
|
|
if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
|
|
work_pid[ee].Kc = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, ee);
|
|
pid_output += work_pid[ee].Kc;
|
|
}
|
|
#endif // PID_EXTRUSION_SCALING
|
|
#if ENABLED(PID_FAN_SCALING)
|
|
if (thermalManager.fan_speed[active_extruder] > PID_FAN_SCALING_MIN_SPEED) {
|
|
work_pid[ee].Kf = PID_PARAM(Kf, ee) + (PID_FAN_SCALING_LIN_FACTOR) * thermalManager.fan_speed[active_extruder];
|
|
pid_output += work_pid[ee].Kf;
|
|
}
|
|
//pid_output -= work_pid[ee].Ki;
|
|
//pid_output += work_pid[ee].Ki * work_pid[ee].Kf
|
|
#endif // PID_FAN_SCALING
|
|
LIMIT(pid_output, 0, PID_MAX);
|
|
}
|
|
temp_dState[ee] = temp_hotend[ee].celsius;
|
|
|
|
#else // PID_OPENLOOP
|
|
|
|
const float pid_output = constrain(temp_hotend[ee].target, 0, PID_MAX);
|
|
|
|
#endif // PID_OPENLOOP
|
|
|
|
#if ENABLED(PID_DEBUG)
|
|
if (ee == active_extruder && pid_debug_flag) {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR(STR_PID_DEBUG, ee, STR_PID_DEBUG_INPUT, temp_hotend[ee].celsius, STR_PID_DEBUG_OUTPUT, pid_output);
|
|
#if DISABLED(PID_OPENLOOP)
|
|
{
|
|
SERIAL_ECHOPAIR(
|
|
STR_PID_DEBUG_PTERM, work_pid[ee].Kp,
|
|
STR_PID_DEBUG_ITERM, work_pid[ee].Ki,
|
|
STR_PID_DEBUG_DTERM, work_pid[ee].Kd
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
, STR_PID_DEBUG_CTERM, work_pid[ee].Kc
|
|
#endif
|
|
);
|
|
}
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
#endif // PID_DEBUG
|
|
|
|
#else // No PID enabled
|
|
|
|
const bool is_idling = TERN0(HEATER_IDLE_HANDLER, hotend_idle[ee].timed_out);
|
|
const float pid_output = (!is_idling && temp_hotend[ee].celsius < temp_hotend[ee].target) ? BANG_MAX : 0;
|
|
|
|
#endif
|
|
|
|
return pid_output;
|
|
}
|
|
|
|
#endif // HAS_HOTEND
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
float Temperature::get_pid_output_bed() {
|
|
|
|
#if DISABLED(PID_OPENLOOP)
|
|
|
|
static PID_t work_pid{0};
|
|
static float temp_iState = 0, temp_dState = 0;
|
|
static bool pid_reset = true;
|
|
float pid_output = 0;
|
|
const float max_power_over_i_gain = float(MAX_BED_POWER) / temp_bed.pid.Ki - float(MIN_BED_POWER),
|
|
pid_error = temp_bed.target - temp_bed.celsius;
|
|
|
|
if (!temp_bed.target || pid_error < -(PID_FUNCTIONAL_RANGE)) {
|
|
pid_output = 0;
|
|
pid_reset = true;
|
|
}
|
|
else if (pid_error > PID_FUNCTIONAL_RANGE) {
|
|
pid_output = MAX_BED_POWER;
|
|
pid_reset = true;
|
|
}
|
|
else {
|
|
if (pid_reset) {
|
|
temp_iState = 0.0;
|
|
work_pid.Kd = 0.0;
|
|
pid_reset = false;
|
|
}
|
|
|
|
temp_iState = constrain(temp_iState + pid_error, 0, max_power_over_i_gain);
|
|
|
|
work_pid.Kp = temp_bed.pid.Kp * pid_error;
|
|
work_pid.Ki = temp_bed.pid.Ki * temp_iState;
|
|
work_pid.Kd = work_pid.Kd + PID_K2 * (temp_bed.pid.Kd * (temp_dState - temp_bed.celsius) - work_pid.Kd);
|
|
|
|
temp_dState = temp_bed.celsius;
|
|
|
|
pid_output = constrain(work_pid.Kp + work_pid.Ki + work_pid.Kd + float(MIN_BED_POWER), 0, MAX_BED_POWER);
|
|
}
|
|
|
|
#else // PID_OPENLOOP
|
|
|
|
const float pid_output = constrain(temp_bed.target, 0, MAX_BED_POWER);
|
|
|
|
#endif // PID_OPENLOOP
|
|
|
|
#if ENABLED(PID_BED_DEBUG)
|
|
{
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPAIR(
|
|
" PID_BED_DEBUG : Input ", temp_bed.celsius, " Output ", pid_output,
|
|
#if DISABLED(PID_OPENLOOP)
|
|
STR_PID_DEBUG_PTERM, work_pid.Kp,
|
|
STR_PID_DEBUG_ITERM, work_pid.Ki,
|
|
STR_PID_DEBUG_DTERM, work_pid.Kd,
|
|
#endif
|
|
);
|
|
}
|
|
#endif
|
|
|
|
return pid_output;
|
|
}
|
|
|
|
#endif // PIDTEMPBED
|
|
|
|
/**
|
|
* Manage heating activities for extruder hot-ends and a heated bed
|
|
* - Acquire updated temperature readings
|
|
* - Also resets the watchdog timer
|
|
* - Invoke thermal runaway protection
|
|
* - Manage extruder auto-fan
|
|
* - Apply filament width to the extrusion rate (may move)
|
|
* - Update the heated bed PID output value
|
|
*/
|
|
void Temperature::manage_heater() {
|
|
|
|
#if EARLY_WATCHDOG
|
|
// If thermal manager is still not running, make sure to at least reset the watchdog!
|
|
if (!inited) return watchdog_refresh();
|
|
#endif
|
|
|
|
if (TERN0(EMERGENCY_PARSER, emergency_parser.killed_by_M112))
|
|
kill(M112_KILL_STR, nullptr, true);
|
|
|
|
if (!raw_temps_ready) return;
|
|
|
|
updateTemperaturesFromRawValues(); // also resets the watchdog
|
|
|
|
#if DISABLED(IGNORE_THERMOCOUPLE_ERRORS)
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
if (temp_hotend[0].celsius > _MIN(HEATER_0_MAXTEMP, HEATER_0_MAX6675_TMAX - 1.0)) max_temp_error(H_E0);
|
|
if (temp_hotend[0].celsius < _MAX(HEATER_0_MINTEMP, HEATER_0_MAX6675_TMIN + .01)) min_temp_error(H_E0);
|
|
#endif
|
|
#if ENABLED(HEATER_1_USES_MAX6675)
|
|
if (temp_hotend[1].celsius > _MIN(HEATER_1_MAXTEMP, HEATER_1_MAX6675_TMAX - 1.0)) max_temp_error(H_E1);
|
|
if (temp_hotend[1].celsius < _MAX(HEATER_1_MINTEMP, HEATER_1_MAX6675_TMIN + .01)) min_temp_error(H_E1);
|
|
#endif
|
|
#endif
|
|
|
|
millis_t ms = millis();
|
|
|
|
#if HAS_HOTEND
|
|
|
|
HOTEND_LOOP() {
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
if (degHotend(e) > temp_range[e].maxtemp)
|
|
_temp_error((heater_ind_t)e, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
|
|
#endif
|
|
|
|
TERN_(HEATER_IDLE_HANDLER, hotend_idle[e].update(ms));
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
// Check for thermal runaway
|
|
thermal_runaway_protection(tr_state_machine[e], temp_hotend[e].celsius, temp_hotend[e].target, (heater_ind_t)e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
|
|
#endif
|
|
|
|
temp_hotend[e].soft_pwm_amount = (temp_hotend[e].celsius > temp_range[e].mintemp || is_preheating(e)) && temp_hotend[e].celsius < temp_range[e].maxtemp ? (int)get_pid_output_hotend(e) >> 1 : 0;
|
|
|
|
#if WATCH_HOTENDS
|
|
// Make sure temperature is increasing
|
|
if (watch_hotend[e].next_ms && ELAPSED(ms, watch_hotend[e].next_ms)) { // Time to check this extruder?
|
|
if (degHotend(e) < watch_hotend[e].target) { // Failed to increase enough?
|
|
TERN_(DWIN_CREALITY_LCD, Popup_Window_Temperature(0));
|
|
_temp_error((heater_ind_t)e, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
|
|
}
|
|
else // Start again if the target is still far off
|
|
start_watching_hotend(e);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
// Make sure measured temperatures are close together
|
|
if (ABS(temp_hotend[0].celsius - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
|
|
_temp_error(H_E0, PSTR(STR_REDUNDANCY), GET_TEXT(MSG_ERR_REDUNDANT_TEMP));
|
|
#endif
|
|
|
|
} // HOTEND_LOOP
|
|
|
|
#endif // HAS_HOTEND
|
|
|
|
#if HAS_AUTO_FAN
|
|
if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
|
|
checkExtruderAutoFans();
|
|
next_auto_fan_check_ms = ms + 2500UL;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
/**
|
|
* Dynamically set the volumetric multiplier based
|
|
* on the delayed Filament Width measurement.
|
|
*/
|
|
filwidth.update_volumetric();
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_BED)
|
|
if (degBed() > BED_MAXTEMP)
|
|
_temp_error(H_BED, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
|
|
#endif
|
|
|
|
#if WATCH_BED
|
|
// Make sure temperature is increasing
|
|
if (watch_bed.elapsed(ms)) { // Time to check the bed?
|
|
if (degBed() < watch_bed.target) { // Failed to increase enough?
|
|
TERN_(DWIN_CREALITY_LCD, Popup_Window_Temperature(0));
|
|
_temp_error(H_BED, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
|
|
}
|
|
else // Start again if the target is still far off
|
|
start_watching_bed();
|
|
}
|
|
#endif // WATCH_BED
|
|
|
|
#if BOTH(PROBING_HEATERS_OFF, BED_LIMIT_SWITCHING)
|
|
#define PAUSE_CHANGE_REQD 1
|
|
#endif
|
|
|
|
#if PAUSE_CHANGE_REQD
|
|
static bool last_pause_state;
|
|
#endif
|
|
|
|
do {
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
if (PENDING(ms, next_bed_check_ms)
|
|
&& TERN1(PAUSE_CHANGE_REQD, paused == last_pause_state)
|
|
) break;
|
|
next_bed_check_ms = ms + BED_CHECK_INTERVAL;
|
|
TERN_(PAUSE_CHANGE_REQD, last_pause_state = paused);
|
|
#endif
|
|
|
|
TERN_(HEATER_IDLE_HANDLER, bed_idle.update(ms));
|
|
|
|
TERN_(HAS_THERMALLY_PROTECTED_BED, thermal_runaway_protection(tr_state_machine_bed, temp_bed.celsius, temp_bed.target, H_BED, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS));
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
if (bed_idle.timed_out) {
|
|
temp_bed.soft_pwm_amount = 0;
|
|
#if DISABLED(PIDTEMPBED)
|
|
WRITE_HEATER_BED(LOW);
|
|
#endif
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#if ENABLED(PIDTEMPBED)
|
|
temp_bed.soft_pwm_amount = WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
|
|
#else
|
|
// Check if temperature is within the correct band
|
|
if (WITHIN(temp_bed.celsius, BED_MINTEMP, BED_MAXTEMP)) {
|
|
#if ENABLED(BED_LIMIT_SWITCHING)
|
|
if (temp_bed.celsius >= temp_bed.target + BED_HYSTERESIS)
|
|
temp_bed.soft_pwm_amount = 0;
|
|
else if (temp_bed.celsius <= temp_bed.target - (BED_HYSTERESIS))
|
|
temp_bed.soft_pwm_amount = MAX_BED_POWER >> 1;
|
|
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
|
|
temp_bed.soft_pwm_amount = temp_bed.celsius < temp_bed.target ? MAX_BED_POWER >> 1 : 0;
|
|
#endif
|
|
}
|
|
else {
|
|
temp_bed.soft_pwm_amount = 0;
|
|
WRITE_HEATER_BED(LOW);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
} while (false);
|
|
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
|
|
#ifndef CHAMBER_CHECK_INTERVAL
|
|
#define CHAMBER_CHECK_INTERVAL 1000UL
|
|
#endif
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
|
|
if (degChamber() > CHAMBER_MAXTEMP)
|
|
_temp_error(H_CHAMBER, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
|
|
#endif
|
|
|
|
#if WATCH_CHAMBER
|
|
// Make sure temperature is increasing
|
|
if (watch_chamber.elapsed(ms)) { // Time to check the chamber?
|
|
if (degChamber() < watch_chamber.target) // Failed to increase enough?
|
|
_temp_error(H_CHAMBER, str_t_heating_failed, GET_TEXT(MSG_HEATING_FAILED_LCD));
|
|
else
|
|
start_watching_chamber(); // Start again if the target is still far off
|
|
}
|
|
#endif
|
|
|
|
if (ELAPSED(ms, next_chamber_check_ms)) {
|
|
next_chamber_check_ms = ms + CHAMBER_CHECK_INTERVAL;
|
|
|
|
if (WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP)) {
|
|
#if ENABLED(CHAMBER_LIMIT_SWITCHING)
|
|
if (temp_chamber.celsius >= temp_chamber.target + TEMP_CHAMBER_HYSTERESIS)
|
|
temp_chamber.soft_pwm_amount = 0;
|
|
else if (temp_chamber.celsius <= temp_chamber.target - (TEMP_CHAMBER_HYSTERESIS))
|
|
temp_chamber.soft_pwm_amount = MAX_CHAMBER_POWER >> 1;
|
|
#else
|
|
temp_chamber.soft_pwm_amount = temp_chamber.celsius < temp_chamber.target ? MAX_CHAMBER_POWER >> 1 : 0;
|
|
#endif
|
|
}
|
|
else {
|
|
temp_chamber.soft_pwm_amount = 0;
|
|
WRITE_HEATER_CHAMBER(LOW);
|
|
}
|
|
|
|
TERN_(THERMAL_PROTECTION_CHAMBER, thermal_runaway_protection(tr_state_machine_chamber, temp_chamber.celsius, temp_chamber.target, H_CHAMBER, THERMAL_PROTECTION_CHAMBER_PERIOD, THERMAL_PROTECTION_CHAMBER_HYSTERESIS));
|
|
}
|
|
|
|
// TODO: Implement true PID pwm
|
|
//temp_bed.soft_pwm_amount = WITHIN(temp_chamber.celsius, CHAMBER_MINTEMP, CHAMBER_MAXTEMP) ? (int)get_pid_output_chamber() >> 1 : 0;
|
|
|
|
#endif // HAS_HEATED_CHAMBER
|
|
|
|
UNUSED(ms);
|
|
}
|
|
|
|
#define TEMP_AD595(RAW) ((RAW) * 5.0 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET)
|
|
#define TEMP_AD8495(RAW) ((RAW) * 6.6 * 100.0 / float(HAL_ADC_RANGE) / (OVERSAMPLENR) * (TEMP_SENSOR_AD8495_GAIN) + TEMP_SENSOR_AD8495_OFFSET)
|
|
|
|
/**
|
|
* Bisect search for the range of the 'raw' value, then interpolate
|
|
* proportionally between the under and over values.
|
|
*/
|
|
#define SCAN_THERMISTOR_TABLE(TBL,LEN) do{ \
|
|
uint8_t l = 0, r = LEN, m; \
|
|
for (;;) { \
|
|
m = (l + r) >> 1; \
|
|
if (!m) return int16_t(pgm_read_word(&TBL[0].celsius)); \
|
|
if (m == l || m == r) return int16_t(pgm_read_word(&TBL[LEN-1].celsius)); \
|
|
int16_t v00 = pgm_read_word(&TBL[m-1].value), \
|
|
v10 = pgm_read_word(&TBL[m-0].value); \
|
|
if (raw < v00) r = m; \
|
|
else if (raw > v10) l = m; \
|
|
else { \
|
|
const int16_t v01 = int16_t(pgm_read_word(&TBL[m-1].celsius)), \
|
|
v11 = int16_t(pgm_read_word(&TBL[m-0].celsius)); \
|
|
return v01 + (raw - v00) * float(v11 - v01) / float(v10 - v00); \
|
|
} \
|
|
} \
|
|
}while(0)
|
|
|
|
#if HAS_USER_THERMISTORS
|
|
|
|
user_thermistor_t Temperature::user_thermistor[USER_THERMISTORS]; // Initialized by settings.load()
|
|
|
|
void Temperature::reset_user_thermistors() {
|
|
user_thermistor_t user_thermistor[USER_THERMISTORS] = {
|
|
#if ENABLED(HEATER_0_USER_THERMISTOR)
|
|
{ true, 0, 0, HOTEND0_PULLUP_RESISTOR_OHMS, HOTEND0_RESISTANCE_25C_OHMS, 0, 0, HOTEND0_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_1_USER_THERMISTOR)
|
|
{ true, 0, 0, HOTEND1_PULLUP_RESISTOR_OHMS, HOTEND1_RESISTANCE_25C_OHMS, 0, 0, HOTEND1_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_2_USER_THERMISTOR)
|
|
{ true, 0, 0, HOTEND2_PULLUP_RESISTOR_OHMS, HOTEND2_RESISTANCE_25C_OHMS, 0, 0, HOTEND2_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_3_USER_THERMISTOR)
|
|
{ true, 0, 0, HOTEND3_PULLUP_RESISTOR_OHMS, HOTEND3_RESISTANCE_25C_OHMS, 0, 0, HOTEND3_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_4_USER_THERMISTOR)
|
|
{ true, 0, 0, HOTEND4_PULLUP_RESISTOR_OHMS, HOTEND4_RESISTANCE_25C_OHMS, 0, 0, HOTEND4_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_5_USER_THERMISTOR)
|
|
{ true, 0, 0, HOTEND5_PULLUP_RESISTOR_OHMS, HOTEND5_RESISTANCE_25C_OHMS, 0, 0, HOTEND5_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_6_USER_THERMISTOR)
|
|
{ true, 0, 0, HOTEND6_PULLUP_RESISTOR_OHMS, HOTEND6_RESISTANCE_25C_OHMS, 0, 0, HOTEND6_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_7_USER_THERMISTOR)
|
|
{ true, 0, 0, HOTEND7_PULLUP_RESISTOR_OHMS, HOTEND7_RESISTANCE_25C_OHMS, 0, 0, HOTEND7_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_BED_USER_THERMISTOR)
|
|
{ true, 0, 0, BED_PULLUP_RESISTOR_OHMS, BED_RESISTANCE_25C_OHMS, 0, 0, BED_BETA, 0 },
|
|
#endif
|
|
#if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
|
|
{ true, 0, 0, CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS, 0, 0, CHAMBER_BETA, 0 }
|
|
#endif
|
|
};
|
|
COPY(thermalManager.user_thermistor, user_thermistor);
|
|
}
|
|
|
|
void Temperature::log_user_thermistor(const uint8_t t_index, const bool eprom/*=false*/) {
|
|
|
|
if (eprom)
|
|
SERIAL_ECHOPGM(" M305 ");
|
|
else
|
|
SERIAL_ECHO_START();
|
|
SERIAL_CHAR('P');
|
|
SERIAL_CHAR('0' + t_index);
|
|
|
|
const user_thermistor_t &t = user_thermistor[t_index];
|
|
|
|
SERIAL_ECHOPAIR_F(" R", t.series_res, 1);
|
|
SERIAL_ECHOPAIR_F_P(SP_T_STR, t.res_25, 1);
|
|
SERIAL_ECHOPAIR_F_P(SP_B_STR, t.beta, 1);
|
|
SERIAL_ECHOPAIR_F_P(SP_C_STR, t.sh_c_coeff, 9);
|
|
SERIAL_ECHOPGM(" ; ");
|
|
serialprintPGM(
|
|
TERN_(HEATER_0_USER_THERMISTOR, t_index == CTI_HOTEND_0 ? PSTR("HOTEND 0") :)
|
|
TERN_(HEATER_1_USER_THERMISTOR, t_index == CTI_HOTEND_1 ? PSTR("HOTEND 1") :)
|
|
TERN_(HEATER_2_USER_THERMISTOR, t_index == CTI_HOTEND_2 ? PSTR("HOTEND 2") :)
|
|
TERN_(HEATER_3_USER_THERMISTOR, t_index == CTI_HOTEND_3 ? PSTR("HOTEND 3") :)
|
|
TERN_(HEATER_4_USER_THERMISTOR, t_index == CTI_HOTEND_4 ? PSTR("HOTEND 4") :)
|
|
TERN_(HEATER_5_USER_THERMISTOR, t_index == CTI_HOTEND_5 ? PSTR("HOTEND 5") :)
|
|
TERN_(HEATER_6_USER_THERMISTOR, t_index == CTI_HOTEND_6 ? PSTR("HOTEND 6") :)
|
|
TERN_(HEATER_7_USER_THERMISTOR, t_index == CTI_HOTEND_7 ? PSTR("HOTEND 7") :)
|
|
TERN_(HEATER_BED_USER_THERMISTOR, t_index == CTI_BED ? PSTR("BED") :)
|
|
TERN_(HEATER_CHAMBER_USER_THERMISTOR, t_index == CTI_CHAMBER ? PSTR("CHAMBER") :)
|
|
nullptr
|
|
);
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
float Temperature::user_thermistor_to_deg_c(const uint8_t t_index, const int raw) {
|
|
//#if (MOTHERBOARD == BOARD_RAMPS_14_EFB)
|
|
// static uint32_t clocks_total = 0;
|
|
// static uint32_t calls = 0;
|
|
// uint32_t tcnt5 = TCNT5;
|
|
//#endif
|
|
|
|
if (!WITHIN(t_index, 0, COUNT(user_thermistor) - 1)) return 25;
|
|
|
|
user_thermistor_t &t = user_thermistor[t_index];
|
|
if (t.pre_calc) { // pre-calculate some variables
|
|
t.pre_calc = false;
|
|
t.res_25_recip = 1.0f / t.res_25;
|
|
t.res_25_log = logf(t.res_25);
|
|
t.beta_recip = 1.0f / t.beta;
|
|
t.sh_alpha = RECIPROCAL(THERMISTOR_RESISTANCE_NOMINAL_C - (THERMISTOR_ABS_ZERO_C))
|
|
- (t.beta_recip * t.res_25_log) - (t.sh_c_coeff * cu(t.res_25_log));
|
|
}
|
|
|
|
// maximum adc value .. take into account the over sampling
|
|
const int adc_max = MAX_RAW_THERMISTOR_VALUE,
|
|
adc_raw = constrain(raw, 1, adc_max - 1); // constrain to prevent divide-by-zero
|
|
|
|
const float adc_inverse = (adc_max - adc_raw) - 0.5f,
|
|
resistance = t.series_res * (adc_raw + 0.5f) / adc_inverse,
|
|
log_resistance = logf(resistance);
|
|
|
|
float value = t.sh_alpha;
|
|
value += log_resistance * t.beta_recip;
|
|
if (t.sh_c_coeff != 0)
|
|
value += t.sh_c_coeff * cu(log_resistance);
|
|
value = 1.0f / value;
|
|
|
|
//#if (MOTHERBOARD == BOARD_RAMPS_14_EFB)
|
|
// int32_t clocks = TCNT5 - tcnt5;
|
|
// if (clocks >= 0) {
|
|
// clocks_total += clocks;
|
|
// calls++;
|
|
// }
|
|
//#endif
|
|
|
|
// Return degrees C (up to 999, as the LCD only displays 3 digits)
|
|
return _MIN(value + THERMISTOR_ABS_ZERO_C, 999);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_HOTEND
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For hot end temperature measurement.
|
|
float Temperature::analog_to_celsius_hotend(const int raw, const uint8_t e) {
|
|
if (e > HOTENDS - DISABLED(TEMP_SENSOR_1_AS_REDUNDANT)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ECHO((int)e);
|
|
SERIAL_ECHOLNPGM(STR_INVALID_EXTRUDER_NUM);
|
|
kill();
|
|
return 0;
|
|
}
|
|
|
|
switch (e) {
|
|
case 0:
|
|
#if ENABLED(HEATER_0_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_HOTEND_0, raw);
|
|
#elif ENABLED(HEATER_0_USES_MAX6675)
|
|
return (
|
|
#if ENABLED(MAX6675_IS_MAX31865)
|
|
max31865.temperature(100, 400) // 100 ohms = PT100 resistance. 400 ohms = calibration resistor
|
|
#else
|
|
raw * 0.25
|
|
#endif
|
|
);
|
|
#elif ENABLED(HEATER_0_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_0_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 1:
|
|
#if ENABLED(HEATER_1_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_HOTEND_1, raw);
|
|
#elif ENABLED(HEATER_1_USES_MAX6675)
|
|
return raw * 0.25;
|
|
#elif ENABLED(HEATER_1_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_1_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 2:
|
|
#if ENABLED(HEATER_2_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_HOTEND_2, raw);
|
|
#elif ENABLED(HEATER_2_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_2_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 3:
|
|
#if ENABLED(HEATER_3_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_HOTEND_3, raw);
|
|
#elif ENABLED(HEATER_3_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_3_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 4:
|
|
#if ENABLED(HEATER_4_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_HOTEND_4, raw);
|
|
#elif ENABLED(HEATER_4_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_4_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 5:
|
|
#if ENABLED(HEATER_5_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_HOTEND_5, raw);
|
|
#elif ENABLED(HEATER_5_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_5_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 6:
|
|
#if ENABLED(HEATER_6_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_HOTEND_6, raw);
|
|
#elif ENABLED(HEATER_6_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_6_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
case 7:
|
|
#if ENABLED(HEATER_7_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_HOTEND_7, raw);
|
|
#elif ENABLED(HEATER_7_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_7_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
break;
|
|
#endif
|
|
default: break;
|
|
}
|
|
|
|
#if HOTEND_USES_THERMISTOR
|
|
// Thermistor with conversion table?
|
|
const temp_entry_t(*tt)[] = (temp_entry_t(*)[])(heater_ttbl_map[e]);
|
|
SCAN_THERMISTOR_TABLE((*tt), heater_ttbllen_map[e]);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
#endif // HAS_HOTEND
|
|
|
|
#if HAS_HEATED_BED
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For bed temperature measurement.
|
|
float Temperature::analog_to_celsius_bed(const int raw) {
|
|
#if ENABLED(HEATER_BED_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_BED, raw);
|
|
#elif ENABLED(HEATER_BED_USES_THERMISTOR)
|
|
SCAN_THERMISTOR_TABLE(BED_TEMPTABLE, BED_TEMPTABLE_LEN);
|
|
#elif ENABLED(HEATER_BED_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_BED_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
UNUSED(raw);
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For chamber temperature measurement.
|
|
float Temperature::analog_to_celsius_chamber(const int raw) {
|
|
#if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_CHAMBER, raw);
|
|
#elif ENABLED(HEATER_CHAMBER_USES_THERMISTOR)
|
|
SCAN_THERMISTOR_TABLE(CHAMBER_TEMPTABLE, CHAMBER_TEMPTABLE_LEN);
|
|
#elif ENABLED(HEATER_CHAMBER_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(HEATER_CHAMBER_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
UNUSED(raw);
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif // HAS_TEMP_CHAMBER
|
|
|
|
#if HAS_TEMP_PROBE
|
|
// Derived from RepRap FiveD extruder::getTemperature()
|
|
// For probe temperature measurement.
|
|
float Temperature::analog_to_celsius_probe(const int raw) {
|
|
#if ENABLED(PROBE_USER_THERMISTOR)
|
|
return user_thermistor_to_deg_c(CTI_PROBE, raw);
|
|
#elif ENABLED(PROBE_USES_THERMISTOR)
|
|
SCAN_THERMISTOR_TABLE(PROBE_TEMPTABLE, PROBE_TEMPTABLE_LEN);
|
|
#elif ENABLED(PROBE_USES_AD595)
|
|
return TEMP_AD595(raw);
|
|
#elif ENABLED(PROBE_USES_AD8495)
|
|
return TEMP_AD8495(raw);
|
|
#else
|
|
UNUSED(raw);
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif // HAS_TEMP_PROBE
|
|
|
|
/**
|
|
* Get the raw values into the actual temperatures.
|
|
* The raw values are created in interrupt context,
|
|
* and this function is called from normal context
|
|
* as it would block the stepper routine.
|
|
*/
|
|
void Temperature::updateTemperaturesFromRawValues() {
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
temp_hotend[0].raw = READ_MAX6675(0);
|
|
#endif
|
|
#if ENABLED(HEATER_1_USES_MAX6675)
|
|
temp_hotend[1].raw = READ_MAX6675(1);
|
|
#endif
|
|
#if HAS_HOTEND
|
|
HOTEND_LOOP() temp_hotend[e].celsius = analog_to_celsius_hotend(temp_hotend[e].raw, e);
|
|
#endif
|
|
|
|
TERN_(HAS_HEATED_BED, temp_bed.celsius = analog_to_celsius_bed(temp_bed.raw));
|
|
TERN_(HAS_TEMP_CHAMBER, temp_chamber.celsius = analog_to_celsius_chamber(temp_chamber.raw));
|
|
TERN_(HAS_TEMP_PROBE, temp_probe.celsius = analog_to_celsius_probe(temp_probe.raw));
|
|
TERN_(TEMP_SENSOR_1_AS_REDUNDANT, redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1));
|
|
TERN_(FILAMENT_WIDTH_SENSOR, filwidth.update_measured_mm());
|
|
TERN_(HAS_POWER_MONITOR, power_monitor.capture_values());
|
|
|
|
// Reset the watchdog on good temperature measurement
|
|
watchdog_refresh();
|
|
|
|
raw_temps_ready = false;
|
|
}
|
|
|
|
#if MAX6675_SEPARATE_SPI
|
|
SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
|
|
#endif
|
|
|
|
// Init fans according to whether they're native PWM or Software PWM
|
|
#ifdef ALFAWISE_UX0
|
|
#define _INIT_SOFT_FAN(P) OUT_WRITE_OD(P, FAN_INVERTING ? LOW : HIGH)
|
|
#else
|
|
#define _INIT_SOFT_FAN(P) OUT_WRITE(P, FAN_INVERTING ? LOW : HIGH)
|
|
#endif
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#define _INIT_FAN_PIN(P) _INIT_SOFT_FAN(P)
|
|
#else
|
|
#define _INIT_FAN_PIN(P) do{ if (PWM_PIN(P)) SET_PWM(P); else _INIT_SOFT_FAN(P); }while(0)
|
|
#endif
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
#define SET_FAST_PWM_FREQ(P) set_pwm_frequency(P, FAST_PWM_FAN_FREQUENCY)
|
|
#else
|
|
#define SET_FAST_PWM_FREQ(P) NOOP
|
|
#endif
|
|
#define INIT_FAN_PIN(P) do{ _INIT_FAN_PIN(P); SET_FAST_PWM_FREQ(P); }while(0)
|
|
#if EXTRUDER_AUTO_FAN_SPEED != 255
|
|
#define INIT_E_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0)
|
|
#else
|
|
#define INIT_E_AUTO_FAN_PIN(P) SET_OUTPUT(P)
|
|
#endif
|
|
#if CHAMBER_AUTO_FAN_SPEED != 255
|
|
#define INIT_CHAMBER_AUTO_FAN_PIN(P) do{ if (P == FAN1_PIN || P == FAN2_PIN) { SET_PWM(P); SET_FAST_PWM_FREQ(FAST_PWM_FAN_FREQUENCY); } else SET_OUTPUT(P); }while(0)
|
|
#else
|
|
#define INIT_CHAMBER_AUTO_FAN_PIN(P) SET_OUTPUT(P)
|
|
#endif
|
|
|
|
/**
|
|
* Initialize the temperature manager
|
|
* The manager is implemented by periodic calls to manage_heater()
|
|
*/
|
|
void Temperature::init() {
|
|
|
|
TERN_(MAX6675_IS_MAX31865, max31865.begin(MAX31865_2WIRE)); // MAX31865_2WIRE, MAX31865_3WIRE, MAX31865_4WIRE
|
|
|
|
#if EARLY_WATCHDOG
|
|
// Flag that the thermalManager should be running
|
|
if (inited) return;
|
|
inited = true;
|
|
#endif
|
|
|
|
#if MB(RUMBA)
|
|
// Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
|
#define _AD(N) ANY(HEATER_##N##_USES_AD595, HEATER_##N##_USES_AD8495)
|
|
#if _AD(0) || _AD(1) || _AD(2) || _AD(BED) || _AD(CHAMBER)
|
|
MCUCR = _BV(JTD);
|
|
MCUCR = _BV(JTD);
|
|
#endif
|
|
#endif
|
|
|
|
// Thermistor activation by MCU pin
|
|
#if PIN_EXISTS(TEMP_0_TR_ENABLE_PIN)
|
|
OUT_WRITE(TEMP_0_TR_ENABLE_PIN, ENABLED(HEATER_0_USES_MAX6675));
|
|
#endif
|
|
#if PIN_EXISTS(TEMP_1_TR_ENABLE_PIN)
|
|
OUT_WRITE(TEMP_1_TR_ENABLE_PIN, ENABLED(HEATER_1_USES_MAX6675));
|
|
#endif
|
|
|
|
#if BOTH(PIDTEMP, PID_EXTRUSION_SCALING)
|
|
last_e_position = 0;
|
|
#endif
|
|
|
|
#if HAS_HEATER_0
|
|
#ifdef ALFAWISE_UX0
|
|
OUT_WRITE_OD(HEATER_0_PIN, HEATER_0_INVERTING);
|
|
#else
|
|
OUT_WRITE(HEATER_0_PIN, HEATER_0_INVERTING);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_HEATER_1
|
|
OUT_WRITE(HEATER_1_PIN, HEATER_1_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_2
|
|
OUT_WRITE(HEATER_2_PIN, HEATER_2_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_3
|
|
OUT_WRITE(HEATER_3_PIN, HEATER_3_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_4
|
|
OUT_WRITE(HEATER_4_PIN, HEATER_4_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_5
|
|
OUT_WRITE(HEATER_5_PIN, HEATER_5_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_6
|
|
OUT_WRITE(HEATER_6_PIN, HEATER_6_INVERTING);
|
|
#endif
|
|
#if HAS_HEATER_7
|
|
OUT_WRITE(HEATER_7_PIN, HEATER_7_INVERTING);
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
#ifdef ALFAWISE_UX0
|
|
OUT_WRITE_OD(HEATER_BED_PIN, HEATER_BED_INVERTING);
|
|
#else
|
|
OUT_WRITE(HEATER_BED_PIN, HEATER_BED_INVERTING);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
OUT_WRITE(HEATER_CHAMBER_PIN, HEATER_CHAMBER_INVERTING);
|
|
#endif
|
|
|
|
#if HAS_FAN0
|
|
INIT_FAN_PIN(FAN_PIN);
|
|
#endif
|
|
#if HAS_FAN1
|
|
INIT_FAN_PIN(FAN1_PIN);
|
|
#endif
|
|
#if HAS_FAN2
|
|
INIT_FAN_PIN(FAN2_PIN);
|
|
#endif
|
|
#if HAS_FAN3
|
|
INIT_FAN_PIN(FAN3_PIN);
|
|
#endif
|
|
#if HAS_FAN4
|
|
INIT_FAN_PIN(FAN4_PIN);
|
|
#endif
|
|
#if HAS_FAN5
|
|
INIT_FAN_PIN(FAN5_PIN);
|
|
#endif
|
|
#if HAS_FAN6
|
|
INIT_FAN_PIN(FAN6_PIN);
|
|
#endif
|
|
#if HAS_FAN7
|
|
INIT_FAN_PIN(FAN7_PIN);
|
|
#endif
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
INIT_FAN_PIN(CONTROLLER_FAN_PIN);
|
|
#endif
|
|
|
|
#if MAX6675_SEPARATE_SPI
|
|
|
|
OUT_WRITE(SCK_PIN, LOW);
|
|
OUT_WRITE(MOSI_PIN, HIGH);
|
|
SET_INPUT_PULLUP(MISO_PIN);
|
|
|
|
max6675_spi.init();
|
|
|
|
OUT_WRITE(SS_PIN, HIGH);
|
|
OUT_WRITE(MAX6675_SS_PIN, HIGH);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(HEATER_1_USES_MAX6675)
|
|
OUT_WRITE(MAX6675_SS2_PIN, HIGH);
|
|
#endif
|
|
|
|
HAL_adc_init();
|
|
|
|
#if HAS_TEMP_ADC_0
|
|
HAL_ANALOG_SELECT(TEMP_0_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_1
|
|
HAL_ANALOG_SELECT(TEMP_1_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_2
|
|
HAL_ANALOG_SELECT(TEMP_2_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_3
|
|
HAL_ANALOG_SELECT(TEMP_3_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_4
|
|
HAL_ANALOG_SELECT(TEMP_4_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_5
|
|
HAL_ANALOG_SELECT(TEMP_5_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_6
|
|
HAL_ANALOG_SELECT(TEMP_6_PIN);
|
|
#endif
|
|
#if HAS_TEMP_ADC_7
|
|
HAL_ANALOG_SELECT(TEMP_7_PIN);
|
|
#endif
|
|
#if HAS_JOY_ADC_X
|
|
HAL_ANALOG_SELECT(JOY_X_PIN);
|
|
#endif
|
|
#if HAS_JOY_ADC_Y
|
|
HAL_ANALOG_SELECT(JOY_Y_PIN);
|
|
#endif
|
|
#if HAS_JOY_ADC_Z
|
|
HAL_ANALOG_SELECT(JOY_Z_PIN);
|
|
#endif
|
|
#if HAS_JOY_ADC_EN
|
|
SET_INPUT_PULLUP(JOY_EN_PIN);
|
|
#endif
|
|
#if HAS_HEATED_BED
|
|
HAL_ANALOG_SELECT(TEMP_BED_PIN);
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
|
|
#endif
|
|
#if HAS_TEMP_PROBE
|
|
HAL_ANALOG_SELECT(TEMP_PROBE_PIN);
|
|
#endif
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
HAL_ANALOG_SELECT(FILWIDTH_PIN);
|
|
#endif
|
|
#if HAS_ADC_BUTTONS
|
|
HAL_ANALOG_SELECT(ADC_KEYPAD_PIN);
|
|
#endif
|
|
#if ENABLED(POWER_MONITOR_CURRENT)
|
|
HAL_ANALOG_SELECT(POWER_MONITOR_CURRENT_PIN);
|
|
#endif
|
|
#if ENABLED(POWER_MONITOR_VOLTAGE)
|
|
HAL_ANALOG_SELECT(POWER_MONITOR_VOLTAGE_PIN);
|
|
#endif
|
|
|
|
HAL_timer_start(TEMP_TIMER_NUM, TEMP_TIMER_FREQUENCY);
|
|
ENABLE_TEMPERATURE_INTERRUPT();
|
|
|
|
#if HAS_AUTO_FAN_0
|
|
INIT_E_AUTO_FAN_PIN(E0_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_1 && !_EFANOVERLAP(1,0)
|
|
INIT_E_AUTO_FAN_PIN(E1_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_2 && !(_EFANOVERLAP(2,0) || _EFANOVERLAP(2,1))
|
|
INIT_E_AUTO_FAN_PIN(E2_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_3 && !(_EFANOVERLAP(3,0) || _EFANOVERLAP(3,1) || _EFANOVERLAP(3,2))
|
|
INIT_E_AUTO_FAN_PIN(E3_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_4 && !(_EFANOVERLAP(4,0) || _EFANOVERLAP(4,1) || _EFANOVERLAP(4,2) || _EFANOVERLAP(4,3))
|
|
INIT_E_AUTO_FAN_PIN(E4_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_5 && !(_EFANOVERLAP(5,0) || _EFANOVERLAP(5,1) || _EFANOVERLAP(5,2) || _EFANOVERLAP(5,3) || _EFANOVERLAP(5,4))
|
|
INIT_E_AUTO_FAN_PIN(E5_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_6 && !(_EFANOVERLAP(6,0) || _EFANOVERLAP(6,1) || _EFANOVERLAP(6,2) || _EFANOVERLAP(6,3) || _EFANOVERLAP(6,4) || _EFANOVERLAP(6,5))
|
|
INIT_E_AUTO_FAN_PIN(E6_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_FAN_7 && !(_EFANOVERLAP(7,0) || _EFANOVERLAP(7,1) || _EFANOVERLAP(7,2) || _EFANOVERLAP(7,3) || _EFANOVERLAP(7,4) || _EFANOVERLAP(7,5) || _EFANOVERLAP(7,6))
|
|
INIT_E_AUTO_FAN_PIN(E7_AUTO_FAN_PIN);
|
|
#endif
|
|
#if HAS_AUTO_CHAMBER_FAN && !AUTO_CHAMBER_IS_E
|
|
INIT_CHAMBER_AUTO_FAN_PIN(CHAMBER_AUTO_FAN_PIN);
|
|
#endif
|
|
|
|
// Wait for temperature measurement to settle
|
|
delay(250);
|
|
|
|
#if HAS_HOTEND
|
|
|
|
#define _TEMP_MIN_E(NR) do{ \
|
|
const int16_t tmin = _MAX(HEATER_ ##NR## _MINTEMP, TERN(HEATER_##NR##_USER_THERMISTOR, 0, (int16_t)pgm_read_word(&HEATER_ ##NR## _TEMPTABLE[HEATER_ ##NR## _SENSOR_MINTEMP_IND].celsius))); \
|
|
temp_range[NR].mintemp = tmin; \
|
|
while (analog_to_celsius_hotend(temp_range[NR].raw_min, NR) < tmin) \
|
|
temp_range[NR].raw_min += TEMPDIR(NR) * (OVERSAMPLENR); \
|
|
}while(0)
|
|
#define _TEMP_MAX_E(NR) do{ \
|
|
const int16_t tmax = _MIN(HEATER_ ##NR## _MAXTEMP, TERN(HEATER_##NR##_USER_THERMISTOR, 2000, (int16_t)pgm_read_word(&HEATER_ ##NR## _TEMPTABLE[HEATER_ ##NR## _SENSOR_MAXTEMP_IND].celsius) - 1)); \
|
|
temp_range[NR].maxtemp = tmax; \
|
|
while (analog_to_celsius_hotend(temp_range[NR].raw_max, NR) > tmax) \
|
|
temp_range[NR].raw_max -= TEMPDIR(NR) * (OVERSAMPLENR); \
|
|
}while(0)
|
|
|
|
#define _MINMAX_TEST(N,M) (HOTENDS > N && THERMISTOR_HEATER_##N && THERMISTOR_HEATER_##N != 998 && THERMISTOR_HEATER_##N != 999 && defined(HEATER_##N##_##M##TEMP))
|
|
|
|
#if _MINMAX_TEST(0, MIN)
|
|
_TEMP_MIN_E(0);
|
|
#endif
|
|
#if _MINMAX_TEST(0, MAX)
|
|
_TEMP_MAX_E(0);
|
|
#endif
|
|
#if _MINMAX_TEST(1, MIN)
|
|
_TEMP_MIN_E(1);
|
|
#endif
|
|
#if _MINMAX_TEST(1, MAX)
|
|
_TEMP_MAX_E(1);
|
|
#endif
|
|
#if _MINMAX_TEST(2, MIN)
|
|
_TEMP_MIN_E(2);
|
|
#endif
|
|
#if _MINMAX_TEST(2, MAX)
|
|
_TEMP_MAX_E(2);
|
|
#endif
|
|
#if _MINMAX_TEST(3, MIN)
|
|
_TEMP_MIN_E(3);
|
|
#endif
|
|
#if _MINMAX_TEST(3, MAX)
|
|
_TEMP_MAX_E(3);
|
|
#endif
|
|
#if _MINMAX_TEST(4, MIN)
|
|
_TEMP_MIN_E(4);
|
|
#endif
|
|
#if _MINMAX_TEST(4, MAX)
|
|
_TEMP_MAX_E(4);
|
|
#endif
|
|
#if _MINMAX_TEST(5, MIN)
|
|
_TEMP_MIN_E(5);
|
|
#endif
|
|
#if _MINMAX_TEST(5, MAX)
|
|
_TEMP_MAX_E(5);
|
|
#endif
|
|
#if _MINMAX_TEST(6, MIN)
|
|
_TEMP_MIN_E(6);
|
|
#endif
|
|
#if _MINMAX_TEST(6, MAX)
|
|
_TEMP_MAX_E(6);
|
|
#endif
|
|
#if _MINMAX_TEST(7, MIN)
|
|
_TEMP_MIN_E(7);
|
|
#endif
|
|
#if _MINMAX_TEST(7, MAX)
|
|
_TEMP_MAX_E(7);
|
|
#endif
|
|
|
|
#endif // HAS_HOTEND
|
|
|
|
#if HAS_HEATED_BED
|
|
#ifdef BED_MINTEMP
|
|
while (analog_to_celsius_bed(mintemp_raw_BED) < BED_MINTEMP) mintemp_raw_BED += TEMPDIR(BED) * (OVERSAMPLENR);
|
|
#endif
|
|
#ifdef BED_MAXTEMP
|
|
while (analog_to_celsius_bed(maxtemp_raw_BED) > BED_MAXTEMP) maxtemp_raw_BED -= TEMPDIR(BED) * (OVERSAMPLENR);
|
|
#endif
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
#ifdef CHAMBER_MINTEMP
|
|
while (analog_to_celsius_chamber(mintemp_raw_CHAMBER) < CHAMBER_MINTEMP) mintemp_raw_CHAMBER += TEMPDIR(CHAMBER) * (OVERSAMPLENR);
|
|
#endif
|
|
#ifdef CHAMBER_MAXTEMP
|
|
while (analog_to_celsius_chamber(maxtemp_raw_CHAMBER) > CHAMBER_MAXTEMP) maxtemp_raw_CHAMBER -= TEMPDIR(CHAMBER) * (OVERSAMPLENR);
|
|
#endif
|
|
#endif
|
|
|
|
TERN_(PROBING_HEATERS_OFF, paused = false);
|
|
}
|
|
|
|
#if WATCH_HOTENDS
|
|
/**
|
|
* Start Heating Sanity Check for hotends that are below
|
|
* their target temperature by a configurable margin.
|
|
* This is called when the temperature is set. (M104, M109)
|
|
*/
|
|
void Temperature::start_watching_hotend(const uint8_t E_NAME) {
|
|
const uint8_t ee = HOTEND_INDEX;
|
|
watch_hotend[ee].restart(degHotend(ee), degTargetHotend(ee));
|
|
}
|
|
#endif
|
|
|
|
#if WATCH_BED
|
|
/**
|
|
* Start Heating Sanity Check for hotends that are below
|
|
* their target temperature by a configurable margin.
|
|
* This is called when the temperature is set. (M140, M190)
|
|
*/
|
|
void Temperature::start_watching_bed() {
|
|
watch_bed.restart(degBed(), degTargetBed());
|
|
}
|
|
#endif
|
|
|
|
#if WATCH_CHAMBER
|
|
/**
|
|
* Start Heating Sanity Check for chamber that is below
|
|
* its target temperature by a configurable margin.
|
|
* This is called when the temperature is set. (M141, M191)
|
|
*/
|
|
void Temperature::start_watching_chamber() {
|
|
watch_chamber.restart(degChamber(), degTargetChamber());
|
|
}
|
|
#endif
|
|
|
|
#if HAS_THERMAL_PROTECTION
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
Temperature::tr_state_machine_t Temperature::tr_state_machine[HOTENDS]; // = { { TRInactive, 0 } };
|
|
#endif
|
|
#if HAS_THERMALLY_PROTECTED_BED
|
|
Temperature::tr_state_machine_t Temperature::tr_state_machine_bed; // = { TRInactive, 0 };
|
|
#endif
|
|
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
|
|
Temperature::tr_state_machine_t Temperature::tr_state_machine_chamber; // = { TRInactive, 0 };
|
|
#endif
|
|
|
|
void Temperature::thermal_runaway_protection(Temperature::tr_state_machine_t &sm, const float ¤t, const float &target, const heater_ind_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
|
|
|
|
static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
|
|
|
|
/**
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM("Thermal Runaway Running. Heater ID: ");
|
|
if (heater_id == H_CHAMBER) SERIAL_ECHOPGM("chamber");
|
|
if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
|
|
SERIAL_ECHOPAIR(" ; State:", sm.state, " ; Timer:", sm.timer, " ; Temperature:", current, " ; Target Temp:", target);
|
|
if (heater_id >= 0)
|
|
SERIAL_ECHOPAIR(" ; Idle Timeout:", hotend_idle[heater_id].timed_out);
|
|
else
|
|
SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle.timed_out);
|
|
SERIAL_EOL();
|
|
//*/
|
|
|
|
const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
|
|
|
|
#if HEATER_IDLE_HANDLER
|
|
// If the heater idle timeout expires, restart
|
|
if ((heater_id >= 0 && hotend_idle[heater_id].timed_out)
|
|
|| TERN0(HAS_HEATED_BED, (heater_id < 0 && bed_idle.timed_out))
|
|
) {
|
|
sm.state = TRInactive;
|
|
tr_target_temperature[heater_index] = 0;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// If the target temperature changes, restart
|
|
if (tr_target_temperature[heater_index] != target) {
|
|
tr_target_temperature[heater_index] = target;
|
|
sm.state = target > 0 ? TRFirstHeating : TRInactive;
|
|
}
|
|
}
|
|
|
|
switch (sm.state) {
|
|
// Inactive state waits for a target temperature to be set
|
|
case TRInactive: break;
|
|
|
|
// When first heating, wait for the temperature to be reached then go to Stable state
|
|
case TRFirstHeating:
|
|
if (current < tr_target_temperature[heater_index]) break;
|
|
sm.state = TRStable;
|
|
|
|
// While the temperature is stable watch for a bad temperature
|
|
case TRStable:
|
|
|
|
#if ENABLED(ADAPTIVE_FAN_SLOWING)
|
|
if (adaptive_fan_slowing && heater_id >= 0) {
|
|
const int fan_index = _MIN(heater_id, FAN_COUNT - 1);
|
|
if (fan_speed[fan_index] == 0 || current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.25f))
|
|
fan_speed_scaler[fan_index] = 128;
|
|
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.3335f))
|
|
fan_speed_scaler[fan_index] = 96;
|
|
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.5f))
|
|
fan_speed_scaler[fan_index] = 64;
|
|
else if (current >= tr_target_temperature[heater_id] - (hysteresis_degc * 0.8f))
|
|
fan_speed_scaler[fan_index] = 32;
|
|
else
|
|
fan_speed_scaler[fan_index] = 0;
|
|
}
|
|
#endif
|
|
|
|
if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
|
|
sm.timer = millis() + SEC_TO_MS(period_seconds);
|
|
break;
|
|
}
|
|
else if (PENDING(millis(), sm.timer)) break;
|
|
sm.state = TRRunaway;
|
|
|
|
case TRRunaway:
|
|
TERN_(DWIN_CREALITY_LCD, Popup_Window_Temperature(0));
|
|
_temp_error(heater_id, str_t_thermal_runaway, GET_TEXT(MSG_THERMAL_RUNAWAY));
|
|
}
|
|
}
|
|
|
|
#endif // HAS_THERMAL_PROTECTION
|
|
|
|
void Temperature::disable_all_heaters() {
|
|
|
|
TERN_(AUTOTEMP, planner.autotemp_enabled = false);
|
|
|
|
// Unpause and reset everything
|
|
TERN_(PROBING_HEATERS_OFF, pause(false));
|
|
|
|
#if HAS_HOTEND
|
|
HOTEND_LOOP() {
|
|
setTargetHotend(0, e);
|
|
temp_hotend[e].soft_pwm_amount = 0;
|
|
}
|
|
#endif
|
|
|
|
#if HAS_TEMP_HOTEND
|
|
#define DISABLE_HEATER(N) WRITE_HEATER_##N(LOW);
|
|
REPEAT(HOTENDS, DISABLE_HEATER);
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
setTargetBed(0);
|
|
temp_bed.soft_pwm_amount = 0;
|
|
WRITE_HEATER_BED(LOW);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
setTargetChamber(0);
|
|
temp_chamber.soft_pwm_amount = 0;
|
|
WRITE_HEATER_CHAMBER(LOW);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
|
|
bool Temperature::over_autostart_threshold() {
|
|
#if HAS_HOTEND
|
|
HOTEND_LOOP() if (degTargetHotend(e) > (EXTRUDE_MINTEMP) / 2) return true;
|
|
#endif
|
|
return TERN0(HAS_HEATED_BED, degTargetBed() > BED_MINTEMP)
|
|
|| TERN0(HAS_HEATED_CHAMBER, degTargetChamber() > CHAMBER_MINTEMP);
|
|
}
|
|
|
|
void Temperature::check_timer_autostart(const bool can_start, const bool can_stop) {
|
|
if (over_autostart_threshold()) {
|
|
if (can_start) startOrResumeJob();
|
|
}
|
|
else if (can_stop) {
|
|
print_job_timer.stop();
|
|
ui.reset_status();
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
|
|
void Temperature::pause(const bool p) {
|
|
if (p != paused) {
|
|
paused = p;
|
|
if (p) {
|
|
HOTEND_LOOP() hotend_idle[e].expire(); // Timeout immediately
|
|
TERN_(HAS_HEATED_BED, bed_idle.expire()); // Timeout immediately
|
|
}
|
|
else {
|
|
HOTEND_LOOP() reset_hotend_idle_timer(e);
|
|
TERN_(HAS_HEATED_BED, reset_bed_idle_timer());
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // PROBING_HEATERS_OFF
|
|
|
|
#if HAS_MAX6675
|
|
|
|
#ifndef THERMOCOUPLE_MAX_ERRORS
|
|
#define THERMOCOUPLE_MAX_ERRORS 15
|
|
#endif
|
|
|
|
int Temperature::read_max6675(
|
|
#if COUNT_6675 > 1
|
|
const uint8_t hindex
|
|
#endif
|
|
) {
|
|
#if COUNT_6675 == 1
|
|
constexpr uint8_t hindex = 0;
|
|
#else
|
|
// Needed to return the correct temp when this is called too soon
|
|
static uint16_t max6675_temp_previous[COUNT_6675] = { 0 };
|
|
#endif
|
|
|
|
static uint8_t max6675_errors[COUNT_6675] = { 0 };
|
|
|
|
#define MAX6675_HEAT_INTERVAL 250UL
|
|
|
|
#if ENABLED(MAX6675_IS_MAX31855)
|
|
static uint32_t max6675_temp = 2000;
|
|
#define MAX6675_ERROR_MASK 7
|
|
#define MAX6675_DISCARD_BITS 18
|
|
#define MAX6675_SPEED_BITS 3 // (_BV(SPR1)) // clock ÷ 64
|
|
#else
|
|
static uint16_t max6675_temp = 2000;
|
|
#define MAX6675_ERROR_MASK 4
|
|
#define MAX6675_DISCARD_BITS 3
|
|
#define MAX6675_SPEED_BITS 2 // (_BV(SPR0)) // clock ÷ 16
|
|
#endif
|
|
|
|
// Return last-read value between readings
|
|
static millis_t next_max6675_ms[COUNT_6675] = { 0 };
|
|
millis_t ms = millis();
|
|
if (PENDING(ms, next_max6675_ms[hindex]))
|
|
return int(
|
|
#if COUNT_6675 == 1
|
|
max6675_temp
|
|
#else
|
|
max6675_temp_previous[hindex] // Need to return the correct previous value
|
|
#endif
|
|
);
|
|
|
|
next_max6675_ms[hindex] = ms + MAX6675_HEAT_INTERVAL;
|
|
|
|
#if ENABLED(MAX6675_IS_MAX31865)
|
|
max6675_temp = int(max31865.temperature(100, 400)); // 100 ohms = PT100 resistance. 400 ohms = calibration resistor
|
|
#endif
|
|
|
|
//
|
|
// TODO: spiBegin, spiRec and spiInit doesn't work when soft spi is used.
|
|
//
|
|
#if !MAX6675_SEPARATE_SPI
|
|
spiBegin();
|
|
spiInit(MAX6675_SPEED_BITS);
|
|
#endif
|
|
|
|
#if COUNT_6675 > 1
|
|
#define WRITE_MAX6675(V) do{ switch (hindex) { case 1: WRITE(MAX6675_SS2_PIN, V); break; default: WRITE(MAX6675_SS_PIN, V); } }while(0)
|
|
#define SET_OUTPUT_MAX6675() do{ switch (hindex) { case 1: SET_OUTPUT(MAX6675_SS2_PIN); break; default: SET_OUTPUT(MAX6675_SS_PIN); } }while(0)
|
|
#elif ENABLED(HEATER_1_USES_MAX6675)
|
|
#define WRITE_MAX6675(V) WRITE(MAX6675_SS2_PIN, V)
|
|
#define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS2_PIN)
|
|
#else
|
|
#define WRITE_MAX6675(V) WRITE(MAX6675_SS_PIN, V)
|
|
#define SET_OUTPUT_MAX6675() SET_OUTPUT(MAX6675_SS_PIN)
|
|
#endif
|
|
|
|
SET_OUTPUT_MAX6675();
|
|
WRITE_MAX6675(LOW); // enable TT_MAX6675
|
|
|
|
DELAY_NS(100); // Ensure 100ns delay
|
|
|
|
// Read a big-endian temperature value
|
|
max6675_temp = 0;
|
|
for (uint8_t i = sizeof(max6675_temp); i--;) {
|
|
max6675_temp |= (
|
|
#if MAX6675_SEPARATE_SPI
|
|
max6675_spi.receive()
|
|
#else
|
|
spiRec()
|
|
#endif
|
|
);
|
|
if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
|
|
}
|
|
|
|
WRITE_MAX6675(HIGH); // disable TT_MAX6675
|
|
|
|
if (DISABLED(IGNORE_THERMOCOUPLE_ERRORS) && (max6675_temp & MAX6675_ERROR_MASK)) {
|
|
max6675_errors[hindex] += 1;
|
|
if (max6675_errors[hindex] > THERMOCOUPLE_MAX_ERRORS) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ECHOPGM("Temp measurement error! ");
|
|
#if MAX6675_ERROR_MASK == 7
|
|
SERIAL_ECHOPGM("MAX31855 ");
|
|
if (max6675_temp & 1)
|
|
SERIAL_ECHOLNPGM("Open Circuit");
|
|
else if (max6675_temp & 2)
|
|
SERIAL_ECHOLNPGM("Short to GND");
|
|
else if (max6675_temp & 4)
|
|
SERIAL_ECHOLNPGM("Short to VCC");
|
|
#else
|
|
SERIAL_ECHOLNPGM("MAX6675");
|
|
#endif
|
|
|
|
// Thermocouple open
|
|
max6675_temp = 4 * (
|
|
#if COUNT_6675 > 1
|
|
hindex ? HEATER_1_MAX6675_TMAX : HEATER_0_MAX6675_TMAX
|
|
#else
|
|
TERN(HEATER_1_USES_MAX6675, HEATER_1_MAX6675_TMAX, HEATER_0_MAX6675_TMAX)
|
|
#endif
|
|
);
|
|
}
|
|
else
|
|
max6675_temp >>= MAX6675_DISCARD_BITS;
|
|
}
|
|
else {
|
|
max6675_temp >>= MAX6675_DISCARD_BITS;
|
|
max6675_errors[hindex] = 0;
|
|
}
|
|
|
|
#if ENABLED(MAX6675_IS_MAX31855)
|
|
if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000; // Support negative temperature
|
|
#endif
|
|
|
|
#if COUNT_6675 > 1
|
|
max6675_temp_previous[hindex] = max6675_temp;
|
|
#endif
|
|
|
|
return int(max6675_temp);
|
|
}
|
|
|
|
#endif // HAS_MAX6675
|
|
|
|
/**
|
|
* Update raw temperatures
|
|
*/
|
|
void Temperature::update_raw_temperatures() {
|
|
|
|
#if HAS_TEMP_ADC_0 && DISABLED(HEATER_0_USES_MAX6675)
|
|
temp_hotend[0].update();
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_1
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
redundant_temperature_raw = temp_hotend[1].acc;
|
|
#elif DISABLED(HEATER_1_USES_MAX6675)
|
|
temp_hotend[1].update();
|
|
#endif
|
|
#endif
|
|
|
|
TERN_(HAS_TEMP_ADC_2, temp_hotend[2].update());
|
|
TERN_(HAS_TEMP_ADC_3, temp_hotend[3].update());
|
|
TERN_(HAS_TEMP_ADC_4, temp_hotend[4].update());
|
|
TERN_(HAS_TEMP_ADC_5, temp_hotend[5].update());
|
|
TERN_(HAS_TEMP_ADC_6, temp_hotend[6].update());
|
|
TERN_(HAS_TEMP_ADC_7, temp_hotend[7].update());
|
|
TERN_(HAS_HEATED_BED, temp_bed.update());
|
|
TERN_(HAS_TEMP_CHAMBER, temp_chamber.update());
|
|
TERN_(HAS_TEMP_PROBE, temp_probe.update());
|
|
|
|
TERN_(HAS_JOY_ADC_X, joystick.x.update());
|
|
TERN_(HAS_JOY_ADC_Y, joystick.y.update());
|
|
TERN_(HAS_JOY_ADC_Z, joystick.z.update());
|
|
|
|
raw_temps_ready = true;
|
|
}
|
|
|
|
void Temperature::readings_ready() {
|
|
|
|
// Update the raw values if they've been read. Else we could be updating them during reading.
|
|
if (!raw_temps_ready) update_raw_temperatures();
|
|
|
|
// Filament Sensor - can be read any time since IIR filtering is used
|
|
TERN_(FILAMENT_WIDTH_SENSOR, filwidth.reading_ready());
|
|
|
|
#if HAS_HOTEND
|
|
HOTEND_LOOP() temp_hotend[e].reset();
|
|
TERN_(TEMP_SENSOR_1_AS_REDUNDANT, temp_hotend[1].reset());
|
|
#endif
|
|
|
|
TERN_(HAS_HEATED_BED, temp_bed.reset());
|
|
TERN_(HAS_TEMP_CHAMBER, temp_chamber.reset());
|
|
TERN_(HAS_TEMP_PROBE, temp_probe.reset());
|
|
|
|
TERN_(HAS_JOY_ADC_X, joystick.x.reset());
|
|
TERN_(HAS_JOY_ADC_Y, joystick.y.reset());
|
|
TERN_(HAS_JOY_ADC_Z, joystick.z.reset());
|
|
|
|
#if HAS_HOTEND
|
|
|
|
static constexpr int8_t temp_dir[] = {
|
|
TERN(HEATER_0_USES_MAX6675, 0, TEMPDIR(0))
|
|
#if HAS_MULTI_HOTEND
|
|
, TERN(HEATER_1_USES_MAX6675, 0, TEMPDIR(1))
|
|
#if HOTENDS > 2
|
|
#define _TEMPDIR(N) , TEMPDIR(N)
|
|
REPEAT_S(2, HOTENDS, _TEMPDIR)
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
LOOP_L_N(e, COUNT(temp_dir)) {
|
|
const int8_t tdir = temp_dir[e];
|
|
if (tdir) {
|
|
const int16_t rawtemp = temp_hotend[e].raw * tdir; // normal direction, +rawtemp, else -rawtemp
|
|
const bool heater_on = (temp_hotend[e].target > 0
|
|
|| TERN0(PIDTEMP, temp_hotend[e].soft_pwm_amount) > 0
|
|
);
|
|
if (rawtemp > temp_range[e].raw_max * tdir) max_temp_error((heater_ind_t)e);
|
|
if (heater_on && rawtemp < temp_range[e].raw_min * tdir && !is_preheating(e)) {
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
|
|
#endif
|
|
min_temp_error((heater_ind_t)e);
|
|
}
|
|
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
|
|
else
|
|
consecutive_low_temperature_error[e] = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // HAS_HOTEND
|
|
|
|
#if HAS_HEATED_BED
|
|
#if TEMPDIR(BED) < 0
|
|
#define BEDCMP(A,B) ((A)<(B))
|
|
#else
|
|
#define BEDCMP(A,B) ((A)>(B))
|
|
#endif
|
|
const bool bed_on = temp_bed.target > 0
|
|
|| TERN0(PIDTEMPBED, temp_bed.soft_pwm_amount) > 0
|
|
;
|
|
if (BEDCMP(temp_bed.raw, maxtemp_raw_BED)) max_temp_error(H_BED);
|
|
if (bed_on && BEDCMP(mintemp_raw_BED, temp_bed.raw)) min_temp_error(H_BED);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
#if TEMPDIR(CHAMBER) < 0
|
|
#define CHAMBERCMP(A,B) ((A)<(B))
|
|
#else
|
|
#define CHAMBERCMP(A,B) ((A)>(B))
|
|
#endif
|
|
const bool chamber_on = (temp_chamber.target > 0);
|
|
if (CHAMBERCMP(temp_chamber.raw, maxtemp_raw_CHAMBER)) max_temp_error(H_CHAMBER);
|
|
if (chamber_on && CHAMBERCMP(mintemp_raw_CHAMBER, temp_chamber.raw)) min_temp_error(H_CHAMBER);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Timer 0 is shared with millies so don't change the prescaler.
|
|
*
|
|
* On AVR this ISR uses the compare method so it runs at the base
|
|
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
|
|
* in OCR0B above (128 or halfway between OVFs).
|
|
*
|
|
* - Manage PWM to all the heaters and fan
|
|
* - Prepare or Measure one of the raw ADC sensor values
|
|
* - Check new temperature values for MIN/MAX errors (kill on error)
|
|
* - Step the babysteps value for each axis towards 0
|
|
* - For PINS_DEBUGGING, monitor and report endstop pins
|
|
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
|
|
* - Call planner.tick to count down its "ignore" time
|
|
*/
|
|
HAL_TEMP_TIMER_ISR() {
|
|
HAL_timer_isr_prologue(TEMP_TIMER_NUM);
|
|
|
|
Temperature::tick();
|
|
|
|
HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
|
|
}
|
|
|
|
#if ENABLED(SLOW_PWM_HEATERS) && !defined(MIN_STATE_TIME)
|
|
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
|
#endif
|
|
|
|
class SoftPWM {
|
|
public:
|
|
uint8_t count;
|
|
inline bool add(const uint8_t mask, const uint8_t amount) {
|
|
count = (count & mask) + amount; return (count > mask);
|
|
}
|
|
#if ENABLED(SLOW_PWM_HEATERS)
|
|
bool state_heater;
|
|
uint8_t state_timer_heater;
|
|
inline void dec() { if (state_timer_heater > 0) state_timer_heater--; }
|
|
inline bool ready(const bool v) {
|
|
const bool rdy = !state_timer_heater;
|
|
if (rdy && state_heater != v) {
|
|
state_heater = v;
|
|
state_timer_heater = MIN_STATE_TIME;
|
|
}
|
|
return rdy;
|
|
}
|
|
#endif
|
|
};
|
|
|
|
/**
|
|
* Handle various ~1KHz tasks associated with temperature
|
|
* - Heater PWM (~1KHz with scaler)
|
|
* - LCD Button polling (~500Hz)
|
|
* - Start / Read one ADC sensor
|
|
* - Advance Babysteps
|
|
* - Endstop polling
|
|
* - Planner clean buffer
|
|
*/
|
|
void Temperature::tick() {
|
|
|
|
static int8_t temp_count = -1;
|
|
static ADCSensorState adc_sensor_state = StartupDelay;
|
|
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
|
|
|
|
// avoid multiple loads of pwm_count
|
|
uint8_t pwm_count_tmp = pwm_count;
|
|
|
|
#if HAS_ADC_BUTTONS
|
|
static unsigned int raw_ADCKey_value = 0;
|
|
static bool ADCKey_pressed = false;
|
|
#endif
|
|
|
|
#if HAS_HOTEND
|
|
static SoftPWM soft_pwm_hotend[HOTENDS];
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
static SoftPWM soft_pwm_bed;
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
static SoftPWM soft_pwm_chamber;
|
|
#endif
|
|
|
|
#if DISABLED(SLOW_PWM_HEATERS)
|
|
|
|
#if HAS_HOTEND || HAS_HEATED_BED || HAS_HEATED_CHAMBER
|
|
constexpr uint8_t pwm_mask =
|
|
#if ENABLED(SOFT_PWM_DITHER)
|
|
_BV(SOFT_PWM_SCALE) - 1
|
|
#else
|
|
0
|
|
#endif
|
|
;
|
|
#define _PWM_MOD(N,S,T) do{ \
|
|
const bool on = S.add(pwm_mask, T.soft_pwm_amount); \
|
|
WRITE_HEATER_##N(on); \
|
|
}while(0)
|
|
#endif
|
|
|
|
/**
|
|
* Standard heater PWM modulation
|
|
*/
|
|
if (pwm_count_tmp >= 127) {
|
|
pwm_count_tmp -= 127;
|
|
|
|
#if HAS_HOTEND
|
|
#define _PWM_MOD_E(N) _PWM_MOD(N,soft_pwm_hotend[N],temp_hotend[N]);
|
|
REPEAT(HOTENDS, _PWM_MOD_E);
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
_PWM_MOD(BED,soft_pwm_bed,temp_bed);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
_PWM_MOD(CHAMBER,soft_pwm_chamber,temp_chamber);
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#define _FAN_PWM(N) do{ \
|
|
uint8_t &spcf = soft_pwm_count_fan[N]; \
|
|
spcf = (spcf & pwm_mask) + (soft_pwm_amount_fan[N] >> 1); \
|
|
WRITE_FAN(N, spcf > pwm_mask ? HIGH : LOW); \
|
|
}while(0)
|
|
#if HAS_FAN0
|
|
_FAN_PWM(0);
|
|
#endif
|
|
#if HAS_FAN1
|
|
_FAN_PWM(1);
|
|
#endif
|
|
#if HAS_FAN2
|
|
_FAN_PWM(2);
|
|
#endif
|
|
#if HAS_FAN3
|
|
_FAN_PWM(3);
|
|
#endif
|
|
#if HAS_FAN4
|
|
_FAN_PWM(4);
|
|
#endif
|
|
#if HAS_FAN5
|
|
_FAN_PWM(5);
|
|
#endif
|
|
#if HAS_FAN6
|
|
_FAN_PWM(6);
|
|
#endif
|
|
#if HAS_FAN7
|
|
_FAN_PWM(7);
|
|
#endif
|
|
#endif
|
|
}
|
|
else {
|
|
#define _PWM_LOW(N,S) do{ if (S.count <= pwm_count_tmp) WRITE_HEATER_##N(LOW); }while(0)
|
|
#if HAS_HOTEND
|
|
#define _PWM_LOW_E(N) _PWM_LOW(N, soft_pwm_hotend[N]);
|
|
REPEAT(HOTENDS, _PWM_LOW_E);
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
_PWM_LOW(BED, soft_pwm_bed);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
_PWM_LOW(CHAMBER, soft_pwm_chamber);
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
#if HAS_FAN0
|
|
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
|
|
#endif
|
|
#if HAS_FAN1
|
|
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
|
|
#endif
|
|
#if HAS_FAN2
|
|
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
|
|
#endif
|
|
#if HAS_FAN3
|
|
if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
|
|
#endif
|
|
#if HAS_FAN4
|
|
if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
|
|
#endif
|
|
#if HAS_FAN5
|
|
if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
|
|
#endif
|
|
#if HAS_FAN6
|
|
if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
|
|
#endif
|
|
#if HAS_FAN7
|
|
if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// SOFT_PWM_SCALE to frequency:
|
|
//
|
|
// 0: 16000000/64/256/128 = 7.6294 Hz
|
|
// 1: / 64 = 15.2588 Hz
|
|
// 2: / 32 = 30.5176 Hz
|
|
// 3: / 16 = 61.0352 Hz
|
|
// 4: / 8 = 122.0703 Hz
|
|
// 5: / 4 = 244.1406 Hz
|
|
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
|
|
|
|
#else // SLOW_PWM_HEATERS
|
|
|
|
/**
|
|
* SLOW PWM HEATERS
|
|
*
|
|
* For relay-driven heaters
|
|
*/
|
|
#define _SLOW_SET(NR,PWM,V) do{ if (PWM.ready(V)) WRITE_HEATER_##NR(V); }while(0)
|
|
#define _SLOW_PWM(NR,PWM,SRC) do{ PWM.count = SRC.soft_pwm_amount; _SLOW_SET(NR,PWM,(PWM.count > 0)); }while(0)
|
|
#define _PWM_OFF(NR,PWM) do{ if (PWM.count < slow_pwm_count) _SLOW_SET(NR,PWM,0); }while(0)
|
|
|
|
static uint8_t slow_pwm_count = 0;
|
|
|
|
if (slow_pwm_count == 0) {
|
|
|
|
#if HAS_HOTEND
|
|
#define _SLOW_PWM_E(N) _SLOW_PWM(N, soft_pwm_hotend[N], temp_hotend[N]);
|
|
REPEAT(HOTENDS, _SLOW_PWM_E);
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
_SLOW_PWM(BED, soft_pwm_bed, temp_bed);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
_SLOW_PWM(CHAMBER, soft_pwm_chamber, temp_chamber);
|
|
#endif
|
|
|
|
} // slow_pwm_count == 0
|
|
|
|
#if HAS_HOTEND
|
|
#define _PWM_OFF_E(N) _PWM_OFF(N, soft_pwm_hotend[N]);
|
|
REPEAT(HOTENDS, _PWM_OFF_E);
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
_PWM_OFF(BED, soft_pwm_bed);
|
|
#endif
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
_PWM_OFF(CHAMBER, soft_pwm_chamber);
|
|
#endif
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
if (pwm_count_tmp >= 127) {
|
|
pwm_count_tmp = 0;
|
|
#define _PWM_FAN(N) do{ \
|
|
soft_pwm_count_fan[N] = soft_pwm_amount_fan[N] >> 1; \
|
|
WRITE_FAN(N, soft_pwm_count_fan[N] > 0 ? HIGH : LOW); \
|
|
}while(0)
|
|
#if HAS_FAN0
|
|
_PWM_FAN(0);
|
|
#endif
|
|
#if HAS_FAN1
|
|
_PWM_FAN(1);
|
|
#endif
|
|
#if HAS_FAN2
|
|
_PWM_FAN(2);
|
|
#endif
|
|
#if HAS_FAN3
|
|
_FAN_PWM(3);
|
|
#endif
|
|
#if HAS_FAN4
|
|
_FAN_PWM(4);
|
|
#endif
|
|
#if HAS_FAN5
|
|
_FAN_PWM(5);
|
|
#endif
|
|
#if HAS_FAN6
|
|
_FAN_PWM(6);
|
|
#endif
|
|
#if HAS_FAN7
|
|
_FAN_PWM(7);
|
|
#endif
|
|
}
|
|
#if HAS_FAN0
|
|
if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(0, LOW);
|
|
#endif
|
|
#if HAS_FAN1
|
|
if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN(1, LOW);
|
|
#endif
|
|
#if HAS_FAN2
|
|
if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN(2, LOW);
|
|
#endif
|
|
#if HAS_FAN3
|
|
if (soft_pwm_count_fan[3] <= pwm_count_tmp) WRITE_FAN(3, LOW);
|
|
#endif
|
|
#if HAS_FAN4
|
|
if (soft_pwm_count_fan[4] <= pwm_count_tmp) WRITE_FAN(4, LOW);
|
|
#endif
|
|
#if HAS_FAN5
|
|
if (soft_pwm_count_fan[5] <= pwm_count_tmp) WRITE_FAN(5, LOW);
|
|
#endif
|
|
#if HAS_FAN6
|
|
if (soft_pwm_count_fan[6] <= pwm_count_tmp) WRITE_FAN(6, LOW);
|
|
#endif
|
|
#if HAS_FAN7
|
|
if (soft_pwm_count_fan[7] <= pwm_count_tmp) WRITE_FAN(7, LOW);
|
|
#endif
|
|
#endif // FAN_SOFT_PWM
|
|
|
|
// SOFT_PWM_SCALE to frequency:
|
|
//
|
|
// 0: 16000000/64/256/128 = 7.6294 Hz
|
|
// 1: / 64 = 15.2588 Hz
|
|
// 2: / 32 = 30.5176 Hz
|
|
// 3: / 16 = 61.0352 Hz
|
|
// 4: / 8 = 122.0703 Hz
|
|
// 5: / 4 = 244.1406 Hz
|
|
pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
|
|
|
|
// increment slow_pwm_count only every 64th pwm_count,
|
|
// i.e. yielding a PWM frequency of 16/128 Hz (8s).
|
|
if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
|
|
slow_pwm_count++;
|
|
slow_pwm_count &= 0x7F;
|
|
|
|
#if HAS_HOTEND
|
|
HOTEND_LOOP() soft_pwm_hotend[e].dec();
|
|
#endif
|
|
TERN_(HAS_HEATED_BED, soft_pwm_bed.dec());
|
|
TERN_(HAS_HEATED_CHAMBER, soft_pwm_chamber.dec());
|
|
}
|
|
|
|
#endif // SLOW_PWM_HEATERS
|
|
|
|
//
|
|
// Update lcd buttons 488 times per second
|
|
//
|
|
static bool do_buttons;
|
|
if ((do_buttons ^= true)) ui.update_buttons();
|
|
|
|
/**
|
|
* One sensor is sampled on every other call of the ISR.
|
|
* Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
|
|
*
|
|
* On each Prepare pass, ADC is started for a sensor pin.
|
|
* On the next pass, the ADC value is read and accumulated.
|
|
*
|
|
* This gives each ADC 0.9765ms to charge up.
|
|
*/
|
|
#define ACCUMULATE_ADC(obj) do{ \
|
|
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; \
|
|
else obj.sample(HAL_READ_ADC()); \
|
|
}while(0)
|
|
|
|
ADCSensorState next_sensor_state = adc_sensor_state < SensorsReady ? (ADCSensorState)(int(adc_sensor_state) + 1) : StartSampling;
|
|
|
|
switch (adc_sensor_state) {
|
|
|
|
case SensorsReady: {
|
|
// All sensors have been read. Stay in this state for a few
|
|
// ISRs to save on calls to temp update/checking code below.
|
|
constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
|
|
static uint8_t delay_count = 0;
|
|
if (extra_loops > 0) {
|
|
if (delay_count == 0) delay_count = extra_loops; // Init this delay
|
|
if (--delay_count) // While delaying...
|
|
next_sensor_state = SensorsReady; // retain this state (else, next state will be 0)
|
|
break;
|
|
}
|
|
else {
|
|
adc_sensor_state = StartSampling; // Fall-through to start sampling
|
|
next_sensor_state = (ADCSensorState)(int(StartSampling) + 1);
|
|
}
|
|
}
|
|
|
|
case StartSampling: // Start of sampling loops. Do updates/checks.
|
|
if (++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
|
temp_count = 0;
|
|
readings_ready();
|
|
}
|
|
break;
|
|
|
|
#if HAS_TEMP_ADC_0
|
|
case PrepareTemp_0: HAL_START_ADC(TEMP_0_PIN); break;
|
|
case MeasureTemp_0: ACCUMULATE_ADC(temp_hotend[0]); break;
|
|
#endif
|
|
|
|
#if HAS_HEATED_BED
|
|
case PrepareTemp_BED: HAL_START_ADC(TEMP_BED_PIN); break;
|
|
case MeasureTemp_BED: ACCUMULATE_ADC(temp_bed); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_CHAMBER
|
|
case PrepareTemp_CHAMBER: HAL_START_ADC(TEMP_CHAMBER_PIN); break;
|
|
case MeasureTemp_CHAMBER: ACCUMULATE_ADC(temp_chamber); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_PROBE
|
|
case PrepareTemp_PROBE: HAL_START_ADC(TEMP_PROBE_PIN); break;
|
|
case MeasureTemp_PROBE: ACCUMULATE_ADC(temp_probe); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_1
|
|
case PrepareTemp_1: HAL_START_ADC(TEMP_1_PIN); break;
|
|
case MeasureTemp_1: ACCUMULATE_ADC(temp_hotend[1]); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_2
|
|
case PrepareTemp_2: HAL_START_ADC(TEMP_2_PIN); break;
|
|
case MeasureTemp_2: ACCUMULATE_ADC(temp_hotend[2]); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_3
|
|
case PrepareTemp_3: HAL_START_ADC(TEMP_3_PIN); break;
|
|
case MeasureTemp_3: ACCUMULATE_ADC(temp_hotend[3]); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_4
|
|
case PrepareTemp_4: HAL_START_ADC(TEMP_4_PIN); break;
|
|
case MeasureTemp_4: ACCUMULATE_ADC(temp_hotend[4]); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_5
|
|
case PrepareTemp_5: HAL_START_ADC(TEMP_5_PIN); break;
|
|
case MeasureTemp_5: ACCUMULATE_ADC(temp_hotend[5]); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_6
|
|
case PrepareTemp_6: HAL_START_ADC(TEMP_6_PIN); break;
|
|
case MeasureTemp_6: ACCUMULATE_ADC(temp_hotend[6]); break;
|
|
#endif
|
|
|
|
#if HAS_TEMP_ADC_7
|
|
case PrepareTemp_7: HAL_START_ADC(TEMP_7_PIN); break;
|
|
case MeasureTemp_7: ACCUMULATE_ADC(temp_hotend[7]); break;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
case Prepare_FILWIDTH: HAL_START_ADC(FILWIDTH_PIN); break;
|
|
case Measure_FILWIDTH:
|
|
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
|
|
else filwidth.accumulate(HAL_READ_ADC());
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(POWER_MONITOR_CURRENT)
|
|
case Prepare_POWER_MONITOR_CURRENT:
|
|
HAL_START_ADC(POWER_MONITOR_CURRENT_PIN);
|
|
break;
|
|
case Measure_POWER_MONITOR_CURRENT:
|
|
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
|
|
else power_monitor.add_current_sample(HAL_READ_ADC());
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(POWER_MONITOR_VOLTAGE)
|
|
case Prepare_POWER_MONITOR_VOLTAGE:
|
|
HAL_START_ADC(POWER_MONITOR_VOLTAGE_PIN);
|
|
break;
|
|
case Measure_POWER_MONITOR_VOLTAGE:
|
|
if (!HAL_ADC_READY()) next_sensor_state = adc_sensor_state; // Redo this state
|
|
else power_monitor.add_voltage_sample(HAL_READ_ADC());
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_JOY_ADC_X
|
|
case PrepareJoy_X: HAL_START_ADC(JOY_X_PIN); break;
|
|
case MeasureJoy_X: ACCUMULATE_ADC(joystick.x); break;
|
|
#endif
|
|
|
|
#if HAS_JOY_ADC_Y
|
|
case PrepareJoy_Y: HAL_START_ADC(JOY_Y_PIN); break;
|
|
case MeasureJoy_Y: ACCUMULATE_ADC(joystick.y); break;
|
|
#endif
|
|
|
|
#if HAS_JOY_ADC_Z
|
|
case PrepareJoy_Z: HAL_START_ADC(JOY_Z_PIN); break;
|
|
case MeasureJoy_Z: ACCUMULATE_ADC(joystick.z); break;
|
|
#endif
|
|
|
|
#if HAS_ADC_BUTTONS
|
|
#ifndef ADC_BUTTON_DEBOUNCE_DELAY
|
|
#define ADC_BUTTON_DEBOUNCE_DELAY 16
|
|
#endif
|
|
case Prepare_ADC_KEY: HAL_START_ADC(ADC_KEYPAD_PIN); break;
|
|
case Measure_ADC_KEY:
|
|
if (!HAL_ADC_READY())
|
|
next_sensor_state = adc_sensor_state; // redo this state
|
|
else if (ADCKey_count < ADC_BUTTON_DEBOUNCE_DELAY) {
|
|
raw_ADCKey_value = HAL_READ_ADC();
|
|
if (raw_ADCKey_value <= 900UL * HAL_ADC_RANGE / 1024UL) {
|
|
NOMORE(current_ADCKey_raw, raw_ADCKey_value);
|
|
ADCKey_count++;
|
|
}
|
|
else { //ADC Key release
|
|
if (ADCKey_count > 0) ADCKey_count++; else ADCKey_pressed = false;
|
|
if (ADCKey_pressed) {
|
|
ADCKey_count = 0;
|
|
current_ADCKey_raw = HAL_ADC_RANGE;
|
|
}
|
|
}
|
|
}
|
|
if (ADCKey_count == ADC_BUTTON_DEBOUNCE_DELAY) ADCKey_pressed = true;
|
|
break;
|
|
#endif // HAS_ADC_BUTTONS
|
|
|
|
case StartupDelay: break;
|
|
|
|
} // switch(adc_sensor_state)
|
|
|
|
// Go to the next state
|
|
adc_sensor_state = next_sensor_state;
|
|
|
|
//
|
|
// Additional ~1KHz Tasks
|
|
//
|
|
|
|
#if ENABLED(BABYSTEPPING) && DISABLED(INTEGRATED_BABYSTEPPING)
|
|
babystep.task();
|
|
#endif
|
|
|
|
// Poll endstops state, if required
|
|
endstops.poll();
|
|
|
|
// Periodically call the planner timer
|
|
planner.tick();
|
|
}
|
|
|
|
#if HAS_TEMP_SENSOR
|
|
|
|
#include "../gcode/gcode.h"
|
|
|
|
static void print_heater_state(const float &c, const float &t
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, const float r
|
|
#endif
|
|
, const heater_ind_t e=INDEX_NONE
|
|
) {
|
|
char k;
|
|
switch (e) {
|
|
#if HAS_TEMP_CHAMBER
|
|
case H_CHAMBER: k = 'C'; break;
|
|
#endif
|
|
#if HAS_TEMP_PROBE
|
|
case H_PROBE: k = 'P'; break;
|
|
#endif
|
|
#if HAS_TEMP_HOTEND
|
|
default: k = 'T'; break;
|
|
#if HAS_HEATED_BED
|
|
case H_BED: k = 'B'; break;
|
|
#endif
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
case H_REDUNDANT: k = 'R'; break;
|
|
#endif
|
|
#elif HAS_HEATED_BED
|
|
default: k = 'B'; break;
|
|
#endif
|
|
}
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_CHAR(k);
|
|
#if HAS_MULTI_HOTEND
|
|
if (e >= 0) SERIAL_CHAR('0' + e);
|
|
#endif
|
|
SERIAL_CHAR(':');
|
|
SERIAL_ECHO(c);
|
|
SERIAL_ECHOPAIR(" /" , t);
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
SERIAL_ECHOPAIR(" (", r * RECIPROCAL(OVERSAMPLENR));
|
|
SERIAL_CHAR(')');
|
|
#endif
|
|
delay(2);
|
|
}
|
|
|
|
void Temperature::print_heater_states(const uint8_t target_extruder
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
, const bool include_r/*=false*/
|
|
#endif
|
|
) {
|
|
#if HAS_TEMP_HOTEND
|
|
print_heater_state(degHotend(target_extruder), degTargetHotend(target_extruder)
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawHotendTemp(target_extruder)
|
|
#endif
|
|
);
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
if (include_r) print_heater_state(redundant_temperature, degTargetHotend(target_extruder)
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, redundant_temperature_raw
|
|
#endif
|
|
, H_REDUNDANT
|
|
);
|
|
#endif
|
|
#endif
|
|
#if HAS_HEATED_BED
|
|
print_heater_state(degBed(), degTargetBed()
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawBedTemp()
|
|
#endif
|
|
, H_BED
|
|
);
|
|
#endif
|
|
#if HAS_TEMP_CHAMBER
|
|
print_heater_state(degChamber()
|
|
#if HAS_HEATED_CHAMBER
|
|
, degTargetChamber()
|
|
#else
|
|
, 0
|
|
#endif
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawChamberTemp()
|
|
#endif
|
|
, H_CHAMBER
|
|
);
|
|
#endif // HAS_TEMP_CHAMBER
|
|
#if HAS_TEMP_PROBE
|
|
print_heater_state(degProbe(), 0
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawProbeTemp()
|
|
#endif
|
|
, H_PROBE
|
|
);
|
|
#endif // HAS_TEMP_PROBE
|
|
#if HAS_MULTI_HOTEND
|
|
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, rawHotendTemp(e)
|
|
#endif
|
|
, (heater_ind_t)e
|
|
);
|
|
#endif
|
|
SERIAL_ECHOPAIR(" @:", getHeaterPower((heater_ind_t)target_extruder));
|
|
#if HAS_HEATED_BED
|
|
SERIAL_ECHOPAIR(" B@:", getHeaterPower(H_BED));
|
|
#endif
|
|
#if HAS_HEATED_CHAMBER
|
|
SERIAL_ECHOPAIR(" C@:", getHeaterPower(H_CHAMBER));
|
|
#endif
|
|
#if HAS_MULTI_HOTEND
|
|
HOTEND_LOOP() {
|
|
SERIAL_ECHOPAIR(" @", e);
|
|
SERIAL_CHAR(':');
|
|
SERIAL_ECHO(getHeaterPower((heater_ind_t)e));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
|
|
uint8_t Temperature::auto_report_temp_interval;
|
|
millis_t Temperature::next_temp_report_ms;
|
|
|
|
void Temperature::auto_report_temperatures() {
|
|
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
|
|
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
|
PORT_REDIRECT(SERIAL_BOTH);
|
|
print_heater_states(active_extruder);
|
|
SERIAL_EOL();
|
|
}
|
|
}
|
|
|
|
#endif // AUTO_REPORT_TEMPERATURES
|
|
|
|
#if HAS_HOTEND && HAS_DISPLAY
|
|
void Temperature::set_heating_message(const uint8_t e) {
|
|
const bool heating = isHeatingHotend(e);
|
|
ui.status_printf_P(0,
|
|
#if HAS_MULTI_HOTEND
|
|
PSTR("E%c " S_FMT), '1' + e
|
|
#else
|
|
PSTR("E " S_FMT)
|
|
#endif
|
|
, heating ? GET_TEXT(MSG_HEATING) : GET_TEXT(MSG_COOLING)
|
|
);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_TEMP_HOTEND
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG
|
|
#define MIN_COOLING_SLOPE_DEG 1.50
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME
|
|
#define MIN_COOLING_SLOPE_TIME 60
|
|
#endif
|
|
|
|
bool Temperature::wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling/*=true*/
|
|
#if G26_CLICK_CAN_CANCEL
|
|
, const bool click_to_cancel/*=false*/
|
|
#endif
|
|
) {
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
REMEMBER(1, planner.autotemp_enabled, false);
|
|
#endif
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
bool first_loop = true;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_RESIDENCY_TIME)))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
|
|
#endif
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
const float start_temp = degHotend(target_extruder);
|
|
printerEventLEDs.onHotendHeatingStart();
|
|
#endif
|
|
|
|
float target_temp = -1.0, old_temp = 9999.0;
|
|
bool wants_to_cool = false;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (target_temp != degTargetHotend(target_extruder)) {
|
|
wants_to_cool = isCoolingHotend(target_extruder);
|
|
target_temp = degTargetHotend(target_extruder);
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { // Print temp & remaining time every 1s while waiting
|
|
next_temp_ms = now + 1000UL;
|
|
print_heater_states(target_extruder);
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
SERIAL_ECHOPGM(" W:");
|
|
if (residency_start_ms)
|
|
SERIAL_ECHO(long((SEC_TO_MS(TEMP_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
|
|
else
|
|
SERIAL_CHAR('?');
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
idle();
|
|
gcode.reset_stepper_timeout(); // Keep steppers powered
|
|
|
|
const float temp = degHotend(target_extruder);
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
// Gradually change LED strip from violet to red as nozzle heats up
|
|
if (!wants_to_cool) printerEventLEDs.onHotendHeating(start_temp, temp, target_temp);
|
|
#endif
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
|
|
const float temp_diff = ABS(target_temp - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_WINDOW)
|
|
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_RESIDENCY_TIME) / 3 : 0);
|
|
}
|
|
else if (temp_diff > TEMP_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
first_loop = false;
|
|
|
|
#endif
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M109 R0
|
|
if (wants_to_cool) {
|
|
// break after MIN_COOLING_SLOPE_TIME seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG)) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
|
|
#if G26_CLICK_CAN_CANCEL
|
|
if (click_to_cancel && ui.use_click()) {
|
|
wait_for_heatup = false;
|
|
ui.quick_feedback();
|
|
}
|
|
#endif
|
|
|
|
} while (wait_for_heatup && TEMP_CONDITIONS);
|
|
|
|
if (wait_for_heatup) {
|
|
#if ENABLED(DWIN_CREALITY_LCD)
|
|
HMI_flag.heat_flag = 0;
|
|
duration_t elapsed = print_job_timer.duration(); // print timer
|
|
dwin_heat_time = elapsed.value;
|
|
#else
|
|
ui.reset_status();
|
|
#endif
|
|
TERN_(PRINTER_EVENT_LEDS, printerEventLEDs.onHeatingDone());
|
|
}
|
|
|
|
return wait_for_heatup;
|
|
}
|
|
|
|
#endif // HAS_TEMP_HOTEND
|
|
|
|
#if HAS_HEATED_BED
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG_BED
|
|
#define MIN_COOLING_SLOPE_DEG_BED 1.00
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME_BED
|
|
#define MIN_COOLING_SLOPE_TIME_BED 60
|
|
#endif
|
|
|
|
bool Temperature::wait_for_bed(const bool no_wait_for_cooling/*=true*/
|
|
#if G26_CLICK_CAN_CANCEL
|
|
, const bool click_to_cancel/*=false*/
|
|
#endif
|
|
) {
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
bool first_loop = true;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_BED_RESIDENCY_TIME)))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
|
|
#endif
|
|
|
|
float target_temp = -1, old_temp = 9999;
|
|
bool wants_to_cool = false;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
const float start_temp = degBed();
|
|
printerEventLEDs.onBedHeatingStart();
|
|
#endif
|
|
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (target_temp != degTargetBed()) {
|
|
wants_to_cool = isCoolingBed();
|
|
target_temp = degTargetBed();
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
|
|
next_temp_ms = now + 1000UL;
|
|
print_heater_states(active_extruder);
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
SERIAL_ECHOPGM(" W:");
|
|
if (residency_start_ms)
|
|
SERIAL_ECHO(long((SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
|
|
else
|
|
SERIAL_CHAR('?');
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
idle();
|
|
gcode.reset_stepper_timeout(); // Keep steppers powered
|
|
|
|
const float temp = degBed();
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
// Gradually change LED strip from blue to violet as bed heats up
|
|
if (!wants_to_cool) printerEventLEDs.onBedHeating(start_temp, temp, target_temp);
|
|
#endif
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
const float temp_diff = ABS(target_temp - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_BED_WINDOW)
|
|
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_BED_RESIDENCY_TIME) / 3 : 0);
|
|
}
|
|
else if (temp_diff > TEMP_BED_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
#endif // TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M190 R0
|
|
if (wants_to_cool) {
|
|
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_BED)) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
|
|
#if G26_CLICK_CAN_CANCEL
|
|
if (click_to_cancel && ui.use_click()) {
|
|
wait_for_heatup = false;
|
|
ui.quick_feedback();
|
|
}
|
|
#endif
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
first_loop = false;
|
|
#endif
|
|
|
|
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
|
|
|
|
if (wait_for_heatup) ui.reset_status();
|
|
|
|
return wait_for_heatup;
|
|
}
|
|
|
|
void Temperature::wait_for_bed_heating() {
|
|
if (isHeatingBed()) {
|
|
SERIAL_ECHOLNPGM("Wait for bed heating...");
|
|
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
wait_for_bed();
|
|
ui.reset_status();
|
|
}
|
|
}
|
|
|
|
#endif // HAS_HEATED_BED
|
|
|
|
#if HAS_HEATED_CHAMBER
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG_CHAMBER
|
|
#define MIN_COOLING_SLOPE_DEG_CHAMBER 1.50
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME_CHAMBER
|
|
#define MIN_COOLING_SLOPE_TIME_CHAMBER 60
|
|
#endif
|
|
|
|
bool Temperature::wait_for_chamber(const bool no_wait_for_cooling/*=true*/) {
|
|
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
bool first_loop = true;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_CHAMBER_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME)))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_CHAMBER_CONDITIONS (wants_to_cool ? isCoolingChamber() : isHeatingChamber())
|
|
#endif
|
|
|
|
float target_temp = -1, old_temp = 9999;
|
|
bool wants_to_cool = false;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING) && ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
#endif
|
|
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (target_temp != degTargetChamber()) {
|
|
wants_to_cool = isCoolingChamber();
|
|
target_temp = degTargetChamber();
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { // Print Temp Reading every 1 second while heating up.
|
|
next_temp_ms = now + 1000UL;
|
|
print_heater_states(active_extruder);
|
|
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
|
|
SERIAL_ECHOPGM(" W:");
|
|
if (residency_start_ms)
|
|
SERIAL_ECHO(long((SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) - (now - residency_start_ms)) / 1000UL));
|
|
else
|
|
SERIAL_CHAR('?');
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
idle();
|
|
gcode.reset_stepper_timeout(); // Keep steppers powered
|
|
|
|
const float temp = degChamber();
|
|
|
|
#if TEMP_CHAMBER_RESIDENCY_TIME > 0
|
|
|
|
const float temp_diff = ABS(target_temp - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_CHAMBER_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_CHAMBER_WINDOW)
|
|
residency_start_ms = now + (first_loop ? SEC_TO_MS(TEMP_CHAMBER_RESIDENCY_TIME) / 3 : 0);
|
|
}
|
|
else if (temp_diff > TEMP_CHAMBER_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
first_loop = false;
|
|
#endif // TEMP_CHAMBER_RESIDENCY_TIME > 0
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M191 R0
|
|
if (wants_to_cool) {
|
|
// Break after MIN_COOLING_SLOPE_TIME_CHAMBER seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_CHAMBER
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < float(MIN_COOLING_SLOPE_DEG_CHAMBER)) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_CHAMBER;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
} while (wait_for_heatup && TEMP_CHAMBER_CONDITIONS);
|
|
|
|
if (wait_for_heatup) ui.reset_status();
|
|
|
|
return wait_for_heatup;
|
|
}
|
|
|
|
#endif // HAS_HEATED_CHAMBER
|
|
|
|
#endif // HAS_TEMP_SENSOR
|