Firmware2/Marlin/src/HAL/STM32/HAL_MinSerial.cpp
luzpaz c612b56bc1 🐛 Spellcheck comments (#22496)
codespell -q 3 --builtin=clear,rare,informal,code -S ./Marlin/src/lcd/language -L alo,amin,endcode,stdio,uint
2021-08-18 20:29:56 -05:00

155 lines
5.4 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
* Copyright (c) 2017 Victor Perez
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../platforms.h"
#ifdef HAL_STM32
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(POSTMORTEM_DEBUGGING)
#include "../shared/HAL_MinSerial.h"
#include "watchdog.h"
/* Instruction Synchronization Barrier */
#define isb() __asm__ __volatile__ ("isb" : : : "memory")
/* Data Synchronization Barrier */
#define dsb() __asm__ __volatile__ ("dsb" : : : "memory")
// Dumb mapping over the registers of a USART device on STM32
struct USARTMin {
volatile uint32_t SR;
volatile uint32_t DR;
volatile uint32_t BRR;
volatile uint32_t CR1;
volatile uint32_t CR2;
};
#if WITHIN(SERIAL_PORT, 1, 6)
// Depending on the CPU, the serial port is different for USART1
static const uintptr_t regsAddr[] = {
TERN(STM32F1xx, 0x40013800, 0x40011000), // USART1
0x40004400, // USART2
0x40004800, // USART3
0x40004C00, // UART4_BASE
0x40005000, // UART5_BASE
0x40011400 // USART6
};
static USARTMin * regs = (USARTMin*)regsAddr[SERIAL_PORT - 1];
#endif
static void TXBegin() {
#if !WITHIN(SERIAL_PORT, 1, 6)
#warning "Using POSTMORTEM_DEBUGGING requires a physical U(S)ART hardware in case of severe error."
#warning "Disabling the severe error reporting feature currently because the used serial port is not a HW port."
#else
// This is common between STM32F1/STM32F2 and STM32F4
const int nvicUART[] = { /* NVIC_USART1 */ 37, /* NVIC_USART2 */ 38, /* NVIC_USART3 */ 39, /* NVIC_UART4 */ 52, /* NVIC_UART5 */ 53, /* NVIC_USART6 */ 71 };
int nvicIndex = nvicUART[SERIAL_PORT - 1];
struct NVICMin {
volatile uint32_t ISER[32];
volatile uint32_t ICER[32];
};
NVICMin *nvicBase = (NVICMin*)0xE000E100;
SBI32(nvicBase->ICER[nvicIndex >> 5], nvicIndex & 0x1F);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
dsb();
isb();
// Example for USART1 disable: (RCC->APB2ENR &= ~(RCC_APB2ENR_USART1EN))
// Too difficult to reimplement here, let's query the STM32duino macro here
#if SERIAL_PORT == 1
__HAL_RCC_USART1_CLK_DISABLE();
__HAL_RCC_USART1_CLK_ENABLE();
#elif SERIAL_PORT == 2
__HAL_RCC_USART2_CLK_DISABLE();
__HAL_RCC_USART2_CLK_ENABLE();
#elif SERIAL_PORT == 3
__HAL_RCC_USART3_CLK_DISABLE();
__HAL_RCC_USART3_CLK_ENABLE();
#elif SERIAL_PORT == 4
__HAL_RCC_UART4_CLK_DISABLE(); // BEWARE: UART4 and not USART4 here
__HAL_RCC_UART4_CLK_ENABLE();
#elif SERIAL_PORT == 5
__HAL_RCC_UART5_CLK_DISABLE(); // BEWARE: UART5 and not USART5 here
__HAL_RCC_UART5_CLK_ENABLE();
#elif SERIAL_PORT == 6
__HAL_RCC_USART6_CLK_DISABLE();
__HAL_RCC_USART6_CLK_ENABLE();
#endif
uint32_t brr = regs->BRR;
regs->CR1 = 0; // Reset the USART
regs->CR2 = 0; // 1 stop bit
// If we don't touch the BRR (baudrate register), we don't need to recompute.
regs->BRR = brr;
regs->CR1 = _BV(3) | _BV(13); // 8 bits, no parity, 1 stop bit (TE | UE)
#endif
}
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() __asm__ volatile("": : :"memory");
static void TX(char c) {
#if WITHIN(SERIAL_PORT, 1, 6)
constexpr uint32_t usart_sr_txe = _BV(7);
while (!(regs->SR & usart_sr_txe)) {
TERN_(USE_WATCHDOG, HAL_watchdog_refresh());
sw_barrier();
}
regs->DR = c;
#else
// Let's hope a mystical guru will fix this, one day by writing interrupt-free USB CDC ACM code (or, at least, by polling the registers since interrupt will be queued but will never trigger)
// For now, it's completely lost to oblivion.
#endif
}
void install_min_serial() {
HAL_min_serial_init = &TXBegin;
HAL_min_serial_out = &TX;
}
#if DISABLED(DYNAMIC_VECTORTABLE) && DISABLED(STM32F0xx) // Cortex M0 can't jump to a symbol that's too far from the current function, so we work around this in exception_arm.cpp
extern "C" {
__attribute__((naked)) void JumpHandler_ASM() {
__asm__ __volatile__ (
"b CommonHandler_ASM\n"
);
}
void __attribute__((naked, alias("JumpHandler_ASM"), nothrow)) HardFault_Handler();
void __attribute__((naked, alias("JumpHandler_ASM"), nothrow)) BusFault_Handler();
void __attribute__((naked, alias("JumpHandler_ASM"), nothrow)) UsageFault_Handler();
void __attribute__((naked, alias("JumpHandler_ASM"), nothrow)) MemManage_Handler();
void __attribute__((naked, alias("JumpHandler_ASM"), nothrow)) NMI_Handler();
}
#endif
#endif // POSTMORTEM_DEBUGGING
#endif // HAL_STM32