Firmware2/Marlin/src/module/configuration_store.cpp
2018-11-06 22:22:20 -06:00

2994 lines
90 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* configuration_store.cpp
*
* Settings and EEPROM storage
*
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
* in the functions below, also increment the version number. This makes sure that
* the default values are used whenever there is a change to the data, to prevent
* wrong data being written to the variables.
*
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
* If a feature is disabled, some data must still be written that, when read,
* either sets a Sane Default, or results in No Change to the existing value.
*
*/
// Change EEPROM version if the structure changes
#define EEPROM_VERSION "V62"
#define EEPROM_OFFSET 100
// Check the integrity of data offsets.
// Can be disabled for production build.
//#define DEBUG_EEPROM_READWRITE
#include "configuration_store.h"
#if ADD_PORT_ARG
#define PORTARG_SOLO const int8_t port
#define PORTARG_AFTER ,const int8_t port
#define PORTVAR_SOLO port
#else
#define PORTARG_SOLO
#define PORTARG_AFTER
#define PORTVAR_SOLO
#endif
#include "endstops.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "../lcd/ultralcd.h"
#include "../core/language.h"
#include "../libs/vector_3.h"
#include "../gcode/gcode.h"
#include "../Marlin.h"
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if HAS_SERVOS
#include "servo.h"
#else
#undef NUM_SERVOS
#define NUM_SERVOS NUM_SERVO_PLUGS
#endif
#if HAS_BED_PROBE
#include "../module/probe.h"
#endif
#include "../feature/fwretract.h"
#include "../feature/pause.h"
#if EXTRUDERS > 1
#include "tool_change.h"
void M217_report(const bool eeprom);
#endif
#if HAS_TRINAMIC
#include "stepper_indirection.h"
#include "../feature/tmc_util.h"
#define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
#endif
#pragma pack(push, 1) // No padding between variables
typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
// Limit an index to an array size
#define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
/**
* Current EEPROM Layout
*
* Keep this data structure up to date so
* EEPROM size is known at compile time!
*/
typedef struct SettingsDataStruct {
char version[4]; // Vnn\0
uint16_t crc; // Data Checksum
//
// DISTINCT_E_FACTORS
//
uint8_t esteppers; // XYZE_N - XYZ
planner_settings_t planner_settings;
float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
float home_offset[XYZ]; // M206 XYZ / M665 TPZ
#if HAS_HOTEND_OFFSET
float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
#endif
//
// ENABLE_LEVELING_FADE_HEIGHT
//
float planner_z_fade_height; // M420 Zn planner.z_fade_height
//
// MESH_BED_LEVELING
//
float mbl_z_offset; // mbl.z_offset
uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
#if ENABLED(MESH_BED_LEVELING)
float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
#else
float mbl_z_values[3][3];
#endif
//
// HAS_BED_PROBE
//
float zprobe_zoffset;
//
// ABL_PLANAR
//
matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
//
// AUTO_BED_LEVELING_BILINEAR
//
uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
int bilinear_grid_spacing[2],
bilinear_start[2]; // G29 L F
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
#else
float z_values[3][3];
#endif
//
// AUTO_BED_LEVELING_UBL
//
bool planner_leveling_active; // M420 S planner.leveling_active
int8_t ubl_storage_slot; // ubl.storage_slot
//
// SERVO_ANGLES
//
uint16_t servo_angles[NUM_SERVOS][2]; // M281 P L U
//
// DELTA / [XYZ]_DUAL_ENDSTOPS
//
#if ENABLED(DELTA)
float delta_height, // M666 H
delta_endstop_adj[ABC], // M666 XYZ
delta_radius, // M665 R
delta_diagonal_rod, // M665 L
delta_segments_per_second, // M665 S
delta_calibration_radius, // M665 B
delta_tower_angle_trim[ABC]; // M665 XYZ
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
float x2_endstop_adj, // M666 X
y2_endstop_adj, // M666 Y
z2_endstop_adj, // M666 Z (S2)
z3_endstop_adj; // M666 Z (S3)
#endif
//
// ULTIPANEL
//
int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
lcd_preheat_bed_temp[2]; // M145 S0 B
uint8_t lcd_preheat_fan_speed[2]; // M145 S0 F
//
// PIDTEMP
//
PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
int16_t lpq_len; // M301 L
//
// PIDTEMPBED
//
PID_t bedPID; // M304 PID / M303 E-1 U
//
// HAS_LCD_CONTRAST
//
int16_t lcd_contrast; // M250 C
//
// FWRETRACT
//
fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
bool autoretract_enabled; // M209 S
//
// !NO_VOLUMETRIC
//
bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
//
// HAS_TRINAMIC
//
tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
tmc_sgt_t tmc_sgt; // M914 X Y Z
//
// LIN_ADVANCE
//
float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
//
// HAS_MOTOR_CURRENT_PWM
//
uint32_t motor_current_setting[3]; // M907 X Z E
//
// CNC_COORDINATE_SYSTEMS
//
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
//
// SKEW_CORRECTION
//
skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
//
// ADVANCED_PAUSE_FEATURE
//
fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
//
// Tool-change settings
//
#if EXTRUDERS > 1
toolchange_settings_t toolchange_settings; // M217 S P R
#endif
} SettingsData;
MarlinSettings settings;
uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
/**
* Post-process after Retrieve or Reset
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float new_z_fade_height;
#endif
void MarlinSettings::postprocess() {
const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
// steps per s2 needs to be updated to agree with units per s2
planner.reset_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
#if ENABLED(DELTA)
recalc_delta_settings();
#endif
#if ENABLED(PIDTEMP)
thermalManager.updatePID();
#endif
#if DISABLED(NO_VOLUMETRICS)
planner.calculate_volumetric_multipliers();
#else
for (uint8_t i = COUNT(planner.e_factor); i--;)
planner.refresh_e_factor(i);
#endif
// Software endstops depend on home_offset
LOOP_XYZ(i) {
update_workspace_offset((AxisEnum)i);
update_software_endstops((AxisEnum)i);
}
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
set_z_fade_height(new_z_fade_height, false); // false = no report
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
refresh_bed_level();
#endif
#if HAS_MOTOR_CURRENT_PWM
stepper.refresh_motor_power();
#endif
#if ENABLED(FWRETRACT)
fwretract.refresh_autoretract();
#endif
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
planner.recalculate_max_e_jerk();
#endif
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
// Various factors can change the current position
if (memcmp(oldpos, current_position, sizeof(oldpos)))
report_current_position();
}
#if ENABLED(SD_FIRMWARE_UPDATE)
#if ENABLED(EEPROM_SETTINGS)
static_assert(
!WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
"SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
);
#endif
bool MarlinSettings::sd_update_status() {
uint8_t val;
persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
}
bool MarlinSettings::set_sd_update_status(const bool enable) {
if (enable != sd_update_status())
persistentStore.write_data(
SD_FIRMWARE_UPDATE_EEPROM_ADDR,
enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
);
return true;
}
#endif // SD_FIRMWARE_UPDATE
#if ENABLED(EEPROM_SETTINGS)
#include "../HAL/shared/persistent_store_api.h"
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
#define EEPROM_FINISH() persistentStore.access_finish()
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
#define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
#define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; } }while(0)
#if ENABLED(DEBUG_EEPROM_READWRITE)
#define _FIELD_TEST(FIELD) \
EEPROM_ASSERT( \
eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
"Field " STRINGIFY(FIELD) " mismatch." \
)
#else
#define _FIELD_TEST(FIELD) NOOP
#endif
const char version[4] = EEPROM_VERSION;
bool MarlinSettings::eeprom_error, MarlinSettings::validating;
bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
if (size != datasize()) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START_P(port);
SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
#endif
return true;
}
return false;
}
/**
* M500 - Store Configuration
*/
bool MarlinSettings::save(PORTARG_SOLO) {
float dummy = 0;
char ver[4] = "ERR";
uint16_t working_crc = 0;
EEPROM_START();
eeprom_error = false;
#if ENABLED(FLASH_EEPROM_EMULATION)
EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
#else
EEPROM_WRITE(ver); // invalidate data first
#endif
EEPROM_SKIP(working_crc); // Skip the checksum slot
working_crc = 0; // clear before first "real data"
_FIELD_TEST(esteppers);
const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
EEPROM_WRITE(esteppers);
//
// Planner Motion
//
{
EEPROM_WRITE(planner.settings);
#if HAS_CLASSIC_JERK
EEPROM_WRITE(planner.max_jerk);
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
dummy = float(DEFAULT_EJERK);
EEPROM_WRITE(dummy);
#endif
#else
const float planner_max_jerk[XYZE] = { float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK) };
EEPROM_WRITE(planner_max_jerk);
#endif
#if ENABLED(JUNCTION_DEVIATION)
EEPROM_WRITE(planner.junction_deviation_mm);
#else
dummy = 0.02f;
EEPROM_WRITE(dummy);
#endif
}
//
// Home Offset
//
{
_FIELD_TEST(home_offset);
#if HAS_SCARA_OFFSET
EEPROM_WRITE(scara_home_offset);
#else
#if !HAS_HOME_OFFSET
const float home_offset[XYZ] = { 0 };
#endif
EEPROM_WRITE(home_offset);
#endif
#if HAS_HOTEND_OFFSET
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
#endif
}
//
// Global Leveling
//
{
const float zfh = (
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.z_fade_height
#else
10.0
#endif
);
EEPROM_WRITE(zfh);
}
//
// Mesh Bed Leveling
//
{
#if ENABLED(MESH_BED_LEVELING)
// Compile time test that sizeof(mbl.z_values) is as expected
static_assert(
sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
"MBL Z array is the wrong size."
);
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(mbl.z_offset);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE(mbl.z_values);
#else // For disabled MBL write a default mesh
dummy = 0;
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
EEPROM_WRITE(dummy); // z_offset
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
#endif
}
//
// Probe Z Offset
//
{
_FIELD_TEST(zprobe_zoffset);
#if !HAS_BED_PROBE
const float zprobe_zoffset = 0;
#endif
EEPROM_WRITE(zprobe_zoffset);
}
//
// Planar Bed Leveling matrix
//
{
#if ABL_PLANAR
EEPROM_WRITE(planner.bed_level_matrix);
#else
dummy = 0;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif
}
//
// Bilinear Auto Bed Leveling
//
{
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Compile time test that sizeof(z_values) is as expected
static_assert(
sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
"Bilinear Z array is the wrong size."
);
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
EEPROM_WRITE(grid_max_x); // 1 byte
EEPROM_WRITE(grid_max_y); // 1 byte
EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
EEPROM_WRITE(bilinear_start); // 2 ints
EEPROM_WRITE(z_values); // 9-256 floats
#else
// For disabled Bilinear Grid write an empty 3x3 grid
const uint8_t grid_max_x = 3, grid_max_y = 3;
const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
dummy = 0;
EEPROM_WRITE(grid_max_x);
EEPROM_WRITE(grid_max_y);
EEPROM_WRITE(bilinear_grid_spacing);
EEPROM_WRITE(bilinear_start);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
#endif
}
//
// Unified Bed Leveling
//
{
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_WRITE(planner.leveling_active);
EEPROM_WRITE(ubl.storage_slot);
#else
const bool ubl_active = false;
const int8_t storage_slot = -1;
EEPROM_WRITE(ubl_active);
EEPROM_WRITE(storage_slot);
#endif // AUTO_BED_LEVELING_UBL
}
//
// Servo Angles
//
{
#if !(HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES))
uint16_t servo_angles[NUM_SERVOS][2] = { { 0, 0 } };
#if ENABLED(SWITCHING_EXTRUDER)
constexpr uint16_t sesa[][2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = sesa[0][0];
servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = sesa[0][1];
#if EXTRUDERS > 3
servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = sesa[1][0];
servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = sesa[1][1];
#endif
#elif ENABLED(SWITCHING_NOZZLE)
constexpr uint16_t snsa[] = SWITCHING_NOZZLE_SERVO_ANGLES;
servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = snsa[0];
servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = snsa[1];
#elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
constexpr uint16_t zsa[] = Z_SERVO_ANGLES;
servo_angles[Z_PROBE_SERVO_NR][0] = zsa[0];
servo_angles[Z_PROBE_SERVO_NR][1] = zsa[1];
#endif
#endif // !HAS_SERVOS || !EDITABLE_SERVO_ANGLES
EEPROM_WRITE(servo_angles);
}
//
// DELTA Geometry or Dual Endstops offsets
//
{
#if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_WRITE(delta_height); // 1 float
EEPROM_WRITE(delta_endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_calibration_radius); // 1 float
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
_FIELD_TEST(x2_endstop_adj);
// Write dual endstops in X, Y, Z order. Unused = 0.0
dummy = 0;
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if Z_MULTI_ENDSTOPS
EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#if ENABLED(Z_TRIPLE_ENDSTOPS)
EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
#endif
#endif
}
//
// LCD Preheat settings
//
{
_FIELD_TEST(lcd_preheat_hotend_temp);
#if DISABLED(ULTIPANEL)
constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
constexpr uint8_t lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
#endif
EEPROM_WRITE(lcd_preheat_hotend_temp);
EEPROM_WRITE(lcd_preheat_bed_temp);
EEPROM_WRITE(lcd_preheat_fan_speed);
}
//
// PIDTEMP
//
{
_FIELD_TEST(hotendPID);
HOTEND_LOOP() {
PIDC_t pidc = {
PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
};
EEPROM_WRITE(pidc);
}
_FIELD_TEST(lpq_len);
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_WRITE(thermalManager.lpq_len);
#else
const int16_t lpq_len = 20;
EEPROM_WRITE(lpq_len);
#endif
}
//
// PIDTEMPBED
//
{
_FIELD_TEST(bedPID);
#if DISABLED(PIDTEMPBED)
const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
EEPROM_WRITE(bed_pid);
#else
EEPROM_WRITE(thermalManager.bed_pid);
#endif
}
//
// LCD Contrast
//
{
_FIELD_TEST(lcd_contrast);
#if !HAS_LCD_CONTRAST
const int16_t lcd_contrast = 32;
#endif
EEPROM_WRITE(lcd_contrast);
}
//
// Firmware Retraction
//
{
_FIELD_TEST(fwretract_settings);
#if ENABLED(FWRETRACT)
EEPROM_WRITE(fwretract.settings);
#else
const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
EEPROM_WRITE(autoretract_defaults);
#endif
#if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
EEPROM_WRITE(fwretract.autoretract_enabled);
#else
const bool autoretract_enabled = false;
EEPROM_WRITE(autoretract_enabled);
#endif
}
//
// Volumetric & Filament Size
//
{
_FIELD_TEST(parser_volumetric_enabled);
#if DISABLED(NO_VOLUMETRICS)
EEPROM_WRITE(parser.volumetric_enabled);
EEPROM_WRITE(planner.filament_size);
#else
const bool volumetric_enabled = false;
dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
EEPROM_WRITE(volumetric_enabled);
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
#endif
}
//
// TMC Configuration
//
{
_FIELD_TEST(tmc_stepper_current);
tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
#if HAS_TRINAMIC
#if AXIS_IS_TMC(X)
tmc_stepper_current.X = stepperX.getMilliamps();
#endif
#if AXIS_IS_TMC(Y)
tmc_stepper_current.Y = stepperY.getMilliamps();
#endif
#if AXIS_IS_TMC(Z)
tmc_stepper_current.Z = stepperZ.getMilliamps();
#endif
#if AXIS_IS_TMC(X2)
tmc_stepper_current.X2 = stepperX2.getMilliamps();
#endif
#if AXIS_IS_TMC(Y2)
tmc_stepper_current.Y2 = stepperY2.getMilliamps();
#endif
#if AXIS_IS_TMC(Z2)
tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
#endif
#if AXIS_IS_TMC(Z3)
tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
#endif
#if MAX_EXTRUDERS
#if AXIS_IS_TMC(E0)
tmc_stepper_current.E0 = stepperE0.getMilliamps();
#endif
#if MAX_EXTRUDERS > 1
#if AXIS_IS_TMC(E1)
tmc_stepper_current.E1 = stepperE1.getMilliamps();
#endif
#if MAX_EXTRUDERS > 2
#if AXIS_IS_TMC(E2)
tmc_stepper_current.E2 = stepperE2.getMilliamps();
#endif
#if MAX_EXTRUDERS > 3
#if AXIS_IS_TMC(E3)
tmc_stepper_current.E3 = stepperE3.getMilliamps();
#endif
#if MAX_EXTRUDERS > 4
#if AXIS_IS_TMC(E4)
tmc_stepper_current.E4 = stepperE4.getMilliamps();
#endif
#if MAX_EXTRUDERS > 5
#if AXIS_IS_TMC(E5)
tmc_stepper_current.E5 = stepperE5.getMilliamps();
#endif
#endif // MAX_EXTRUDERS > 5
#endif // MAX_EXTRUDERS > 4
#endif // MAX_EXTRUDERS > 3
#endif // MAX_EXTRUDERS > 2
#endif // MAX_EXTRUDERS > 1
#endif // MAX_EXTRUDERS
#endif
EEPROM_WRITE(tmc_stepper_current);
}
//
// TMC Hybrid Threshold, and placeholder values
//
{
_FIELD_TEST(tmc_hybrid_threshold);
#if ENABLED(HYBRID_THRESHOLD)
tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
#if AXIS_HAS_STEALTHCHOP(X)
tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
#endif
#if AXIS_HAS_STEALTHCHOP(Y)
tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
#endif
#if AXIS_HAS_STEALTHCHOP(Z)
tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
#endif
#if AXIS_HAS_STEALTHCHOP(X2)
tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
#endif
#if AXIS_HAS_STEALTHCHOP(Y2)
tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z2)
tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z3)
tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
#endif
#if MAX_EXTRUDERS
#if AXIS_HAS_STEALTHCHOP(E0)
tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
#endif
#if MAX_EXTRUDERS > 1
#if AXIS_HAS_STEALTHCHOP(E1)
tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
#endif
#if MAX_EXTRUDERS > 2
#if AXIS_HAS_STEALTHCHOP(E2)
tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
#endif
#if MAX_EXTRUDERS > 3
#if AXIS_HAS_STEALTHCHOP(E3)
tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
#endif
#if MAX_EXTRUDERS > 4
#if AXIS_HAS_STEALTHCHOP(E4)
tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
#endif
#if MAX_EXTRUDERS > 5
#if AXIS_HAS_STEALTHCHOP(E5)
tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
#endif
#endif // MAX_EXTRUDERS > 5
#endif // MAX_EXTRUDERS > 4
#endif // MAX_EXTRUDERS > 3
#endif // MAX_EXTRUDERS > 2
#endif // MAX_EXTRUDERS > 1
#endif // MAX_EXTRUDERS
#else
const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
.X = 100, .Y = 100, .Z = 3,
.X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
.E0 = 30, .E1 = 30, .E2 = 30,
.E3 = 30, .E4 = 30, .E5 = 30
};
#endif
EEPROM_WRITE(tmc_hybrid_threshold);
}
//
// TMC StallGuard threshold
//
{
tmc_sgt_t tmc_sgt = { 0, 0, 0 };
#if USE_SENSORLESS
#if X_SENSORLESS
tmc_sgt.X = stepperX.sgt();
#endif
#if Y_SENSORLESS
tmc_sgt.Y = stepperY.sgt();
#endif
#if Z_SENSORLESS
tmc_sgt.Z = stepperZ.sgt();
#endif
#endif
EEPROM_WRITE(tmc_sgt);
}
//
// Linear Advance
//
{
_FIELD_TEST(planner_extruder_advance_K);
#if ENABLED(LIN_ADVANCE)
EEPROM_WRITE(planner.extruder_advance_K);
#else
dummy = 0;
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
#endif
}
//
// Motor Current PWM
//
{
_FIELD_TEST(motor_current_setting);
#if HAS_MOTOR_CURRENT_PWM
EEPROM_WRITE(stepper.motor_current_setting);
#else
const uint32_t dummyui32[XYZ] = { 0 };
EEPROM_WRITE(dummyui32);
#endif
}
//
// CNC Coordinate Systems
//
_FIELD_TEST(coordinate_system);
#if ENABLED(CNC_COORDINATE_SYSTEMS)
EEPROM_WRITE(gcode.coordinate_system);
#else
const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
EEPROM_WRITE(coordinate_system);
#endif
//
// Skew correction factors
//
_FIELD_TEST(planner_skew_factor);
EEPROM_WRITE(planner.skew_factor);
//
// Advanced Pause filament load & unload lengths
//
{
#if DISABLED(ADVANCED_PAUSE_FEATURE)
const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
#endif
_FIELD_TEST(fc_settings);
EEPROM_WRITE(fc_settings);
}
//
// Multiple Extruders
//
#if EXTRUDERS > 1
_FIELD_TEST(toolchange_settings);
EEPROM_WRITE(toolchange_settings);
#endif
//
// Validate CRC and Data Size
//
if (!eeprom_error) {
const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
final_crc = working_crc;
// Write the EEPROM header
eeprom_index = EEPROM_OFFSET;
EEPROM_WRITE(version);
EEPROM_WRITE(final_crc);
// Report storage size
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
SERIAL_ECHOLNPGM_P(port, ")");
#endif
eeprom_error |= size_error(eeprom_size);
}
EEPROM_FINISH();
//
// UBL Mesh
//
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
if (ubl.storage_slot >= 0)
store_mesh(ubl.storage_slot);
#endif
return !eeprom_error;
}
/**
* M501 - Retrieve Configuration
*/
bool MarlinSettings::_load(PORTARG_SOLO) {
uint16_t working_crc = 0;
EEPROM_START();
char stored_ver[4];
EEPROM_READ_ALWAYS(stored_ver);
uint16_t stored_crc;
EEPROM_READ_ALWAYS(stored_crc);
// Version has to match or defaults are used
if (strncmp(version, stored_ver, 3) != 0) {
if (stored_ver[3] != '\0') {
stored_ver[0] = '?';
stored_ver[1] = '\0';
}
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
#endif
eeprom_error = true;
}
else {
float dummy = 0;
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
_FIELD_TEST(esteppers);
// Number of esteppers may change
uint8_t esteppers;
EEPROM_READ_ALWAYS(esteppers);
//
// Planner Motion
//
{
// Get only the number of E stepper parameters previously stored
// Any steppers added later are set to their defaults
const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
uint32_t tmp1[XYZ + esteppers];
EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
EEPROM_READ(planner.settings.min_segment_time_us);
float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
EEPROM_READ(tmp2); // axis_steps_per_mm
EEPROM_READ(tmp3); // max_feedrate_mm_s
if (!validating) LOOP_XYZE_N(i) {
const bool in = (i < esteppers + XYZ);
planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
}
EEPROM_READ(planner.settings.acceleration);
EEPROM_READ(planner.settings.retract_acceleration);
EEPROM_READ(planner.settings.travel_acceleration);
EEPROM_READ(planner.settings.min_feedrate_mm_s);
EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
#if HAS_CLASSIC_JERK
EEPROM_READ(planner.max_jerk);
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
EEPROM_READ(dummy);
#endif
#else
for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
#endif
#if ENABLED(JUNCTION_DEVIATION)
EEPROM_READ(planner.junction_deviation_mm);
#else
EEPROM_READ(dummy);
#endif
}
//
// Home Offset (M206 / M665)
//
{
_FIELD_TEST(home_offset);
#if HAS_SCARA_OFFSET
EEPROM_READ(scara_home_offset);
#else
#if !HAS_HOME_OFFSET
float home_offset[XYZ];
#endif
EEPROM_READ(home_offset);
#endif
}
//
// Hotend Offsets, if any
//
{
#if HAS_HOTEND_OFFSET
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
#endif
}
//
// Global Leveling
//
{
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
EEPROM_READ(new_z_fade_height);
#else
EEPROM_READ(dummy);
#endif
}
//
// Mesh (Manual) Bed Leveling
//
{
uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(dummy);
EEPROM_READ_ALWAYS(mesh_num_x);
EEPROM_READ_ALWAYS(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
if (!validating) mbl.z_offset = dummy;
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
// EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values);
}
else {
// EEPROM data is stale
if (!validating) mbl.reset();
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
}
#else
// MBL is disabled - skip the stored data
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
#endif // MESH_BED_LEVELING
}
//
// Probe Z Offset
//
{
_FIELD_TEST(zprobe_zoffset);
#if !HAS_BED_PROBE
float zprobe_zoffset;
#endif
EEPROM_READ(zprobe_zoffset);
}
//
// Planar Bed Leveling matrix
//
{
#if ABL_PLANAR
EEPROM_READ(planner.bed_level_matrix);
#else
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
#endif
}
//
// Bilinear Auto Bed Leveling
//
{
uint8_t grid_max_x, grid_max_y;
EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
if (!validating) set_bed_leveling_enabled(false);
EEPROM_READ(bilinear_grid_spacing); // 2 ints
EEPROM_READ(bilinear_start); // 2 ints
EEPROM_READ(z_values); // 9 to 256 floats
}
else // EEPROM data is stale
#endif // AUTO_BED_LEVELING_BILINEAR
{
// Skip past disabled (or stale) Bilinear Grid data
int bgs[2], bs[2];
EEPROM_READ(bgs);
EEPROM_READ(bs);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
}
}
//
// Unified Bed Leveling active state
//
{
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_READ(planner.leveling_active);
EEPROM_READ(ubl.storage_slot);
#else
bool planner_leveling_active;
uint8_t ubl_storage_slot;
EEPROM_READ(planner_leveling_active);
EEPROM_READ(ubl_storage_slot);
#endif
}
//
// SERVO_ANGLES
//
{
#if !(HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES))
uint16_t servo_angles[NUM_SERVOS][2];
#endif
EEPROM_READ(servo_angles);
}
//
// DELTA Geometry or Dual Endstops offsets
//
{
#if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_READ(delta_height); // 1 float
EEPROM_READ(delta_endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_calibration_radius); // 1 float
EEPROM_READ(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
_FIELD_TEST(x2_endstop_adj);
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_READ(endstops.x2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_READ(endstops.y2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if Z_MULTI_ENDSTOPS
EEPROM_READ(endstops.z2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#if ENABLED(Z_TRIPLE_ENDSTOPS)
EEPROM_READ(endstops.z3_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
#endif
#endif
}
//
// LCD Preheat settings
//
{
_FIELD_TEST(lcd_preheat_hotend_temp);
#if DISABLED(ULTIPANEL)
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2];
uint8_t lcd_preheat_fan_speed[2];
#endif
EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
}
//
// Hotend PID
//
{
HOTEND_LOOP() {
PIDC_t pidc;
EEPROM_READ(pidc);
#if ENABLED(PIDTEMP)
if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
// No need to scale PID values since EEPROM values are scaled
PID_PARAM(Kp, e) = pidc.Kp;
PID_PARAM(Ki, e) = pidc.Ki;
PID_PARAM(Kd, e) = pidc.Kd;
#if ENABLED(PID_EXTRUSION_SCALING)
PID_PARAM(Kc, e) = pidc.Kc;
#endif
}
#endif
}
}
//
// PID Extrusion Scaling
//
{
_FIELD_TEST(lpq_len);
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(thermalManager.lpq_len);
#else
int16_t lpq_len;
EEPROM_READ(lpq_len);
#endif
}
//
// Heated Bed PID
//
{
PID_t pid;
EEPROM_READ(pid);
#if ENABLED(PIDTEMPBED)
if (!validating && pid.Kp != DUMMY_PID_VALUE)
memcpy(&thermalManager.bed_pid, &pid, sizeof(pid));
#endif
}
//
// LCD Contrast
//
{
_FIELD_TEST(lcd_contrast);
#if !HAS_LCD_CONTRAST
int16_t lcd_contrast;
#endif
EEPROM_READ(lcd_contrast);
}
//
// Firmware Retraction
//
{
_FIELD_TEST(fwretract_settings);
#if ENABLED(FWRETRACT)
EEPROM_READ(fwretract.settings);
#else
fwretract_settings_t fwretract_settings;
EEPROM_READ(fwretract_settings);
#endif
#if ENABLED(FWRETRACT) && ENABLED(FWRETRACT_AUTORETRACT)
EEPROM_READ(fwretract.autoretract_enabled);
#else
bool autoretract_enabled;
EEPROM_READ(autoretract_enabled);
#endif
}
//
// Volumetric & Filament Size
//
{
struct {
bool volumetric_enabled;
float filament_size[EXTRUDERS];
} storage;
_FIELD_TEST(parser_volumetric_enabled);
EEPROM_READ(storage);
#if DISABLED(NO_VOLUMETRICS)
if (!validating) {
parser.volumetric_enabled = storage.volumetric_enabled;
COPY(planner.filament_size, storage.filament_size);
}
#endif
}
//
// TMC Stepper Settings
//
if (!validating) reset_stepper_drivers();
// TMC Stepper Current
{
_FIELD_TEST(tmc_stepper_current);
tmc_stepper_current_t currents;
EEPROM_READ(currents);
#if HAS_TRINAMIC
#define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
if (!validating) {
#if AXIS_IS_TMC(X)
SET_CURR(X);
#endif
#if AXIS_IS_TMC(Y)
SET_CURR(Y);
#endif
#if AXIS_IS_TMC(Z)
SET_CURR(Z);
#endif
#if AXIS_IS_TMC(X2)
SET_CURR(X2);
#endif
#if AXIS_IS_TMC(Y2)
SET_CURR(Y2);
#endif
#if AXIS_IS_TMC(Z2)
SET_CURR(Z2);
#endif
#if AXIS_IS_TMC(Z3)
SET_CURR(Z3);
#endif
#if AXIS_IS_TMC(E0)
SET_CURR(E0);
#endif
#if AXIS_IS_TMC(E1)
SET_CURR(E1);
#endif
#if AXIS_IS_TMC(E2)
SET_CURR(E2);
#endif
#if AXIS_IS_TMC(E3)
SET_CURR(E3);
#endif
#if AXIS_IS_TMC(E4)
SET_CURR(E4);
#endif
#if AXIS_IS_TMC(E5)
SET_CURR(E5);
#endif
}
#endif
}
// TMC Hybrid Threshold
{
tmc_hybrid_threshold_t tmc_hybrid_threshold;
_FIELD_TEST(tmc_hybrid_threshold);
EEPROM_READ(tmc_hybrid_threshold);
#if ENABLED(HYBRID_THRESHOLD)
#define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
if (!validating) {
#if AXIS_HAS_STEALTHCHOP(X)
TMC_SET_PWMTHRS(X, X);
#endif
#if AXIS_HAS_STEALTHCHOP(Y)
TMC_SET_PWMTHRS(Y, Y);
#endif
#if AXIS_HAS_STEALTHCHOP(Z)
TMC_SET_PWMTHRS(Z, Z);
#endif
#if AXIS_HAS_STEALTHCHOP(X2)
TMC_SET_PWMTHRS(X, X2);
#endif
#if AXIS_HAS_STEALTHCHOP(Y2)
TMC_SET_PWMTHRS(Y, Y2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z2)
TMC_SET_PWMTHRS(Z, Z2);
#endif
#if AXIS_HAS_STEALTHCHOP(Z3)
TMC_SET_PWMTHRS(Z, Z3);
#endif
#if AXIS_HAS_STEALTHCHOP(E0)
TMC_SET_PWMTHRS(E, E0);
#endif
#if AXIS_HAS_STEALTHCHOP(E1)
TMC_SET_PWMTHRS(E, E1);
#endif
#if AXIS_HAS_STEALTHCHOP(E2)
TMC_SET_PWMTHRS(E, E2);
#endif
#if AXIS_HAS_STEALTHCHOP(E3)
TMC_SET_PWMTHRS(E, E3);
#endif
#if AXIS_HAS_STEALTHCHOP(E4)
TMC_SET_PWMTHRS(E, E4);
#endif
#if AXIS_HAS_STEALTHCHOP(E5)
TMC_SET_PWMTHRS(E, E5);
#endif
}
#endif
}
//
// TMC StallGuard threshold.
// X and X2 use the same value
// Y and Y2 use the same value
// Z, Z2 and Z3 use the same value
//
{
tmc_sgt_t tmc_sgt;
_FIELD_TEST(tmc_sgt);
EEPROM_READ(tmc_sgt);
#if USE_SENSORLESS
if (!validating) {
#ifdef X_STALL_SENSITIVITY
#if AXIS_HAS_STALLGUARD(X)
stepperX.sgt(tmc_sgt.X);
#endif
#if AXIS_HAS_STALLGUARD(X2)
stepperX2.sgt(tmc_sgt.X);
#endif
#endif
#ifdef Y_STALL_SENSITIVITY
#if AXIS_HAS_STALLGUARD(Y)
stepperY.sgt(tmc_sgt.Y);
#endif
#if AXIS_HAS_STALLGUARD(Y2)
stepperY2.sgt(tmc_sgt.Y);
#endif
#endif
#ifdef Z_STALL_SENSITIVITY
#if AXIS_HAS_STALLGUARD(Z)
stepperZ.sgt(tmc_sgt.Z);
#endif
#if AXIS_HAS_STALLGUARD(Z2)
stepperZ2.sgt(tmc_sgt.Z);
#endif
#if AXIS_HAS_STALLGUARD(Z3)
stepperZ3.sgt(tmc_sgt.Z);
#endif
#endif
}
#endif
}
//
// Linear Advance
//
{
float extruder_advance_K[EXTRUDERS];
_FIELD_TEST(planner_extruder_advance_K);
EEPROM_READ(extruder_advance_K);
#if ENABLED(LIN_ADVANCE)
if (!validating)
COPY(planner.extruder_advance_K, extruder_advance_K);
#endif
}
//
// Motor Current PWM
//
{
uint32_t motor_current_setting[3];
_FIELD_TEST(motor_current_setting);
EEPROM_READ(motor_current_setting);
#if HAS_MOTOR_CURRENT_PWM
if (!validating)
COPY(stepper.motor_current_setting, motor_current_setting);
#endif
}
//
// CNC Coordinate System
//
{
_FIELD_TEST(coordinate_system);
#if ENABLED(CNC_COORDINATE_SYSTEMS)
if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
EEPROM_READ(gcode.coordinate_system);
#else
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
EEPROM_READ(coordinate_system);
#endif
}
//
// Skew correction factors
//
{
skew_factor_t skew_factor;
_FIELD_TEST(planner_skew_factor);
EEPROM_READ(skew_factor);
#if ENABLED(SKEW_CORRECTION_GCODE)
if (!validating) {
planner.skew_factor.xy = skew_factor.xy;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
planner.skew_factor.xz = skew_factor.xz;
planner.skew_factor.yz = skew_factor.yz;
#endif
}
#endif
}
//
// Advanced Pause filament load & unload lengths
//
{
#if DISABLED(ADVANCED_PAUSE_FEATURE)
fil_change_settings_t fc_settings[EXTRUDERS];
#endif
_FIELD_TEST(fc_settings);
EEPROM_READ(fc_settings);
}
//
// Tool-change settings
//
#if EXTRUDERS > 1
_FIELD_TEST(toolchange_settings);
EEPROM_READ(toolchange_settings);
#endif
eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
if (eeprom_error) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
#endif
}
else if (working_crc != stored_crc) {
eeprom_error = true;
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START_P(port);
SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
SERIAL_ERROR_P(port, stored_crc);
SERIAL_ERRORPGM_P(port, " != ");
SERIAL_ERROR_P(port, working_crc);
SERIAL_ERRORLNPGM_P(port, " (calculated)!");
#endif
}
else if (!validating) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHO_P(port, version);
SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
SERIAL_ECHOLNPGM_P(port, ")");
#endif
}
if (!validating && !eeprom_error) postprocess();
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (!validating) {
ubl.report_state();
if (!ubl.sanity_check()) {
SERIAL_EOL_P(port);
#if ENABLED(EEPROM_CHITCHAT)
ubl.echo_name();
SERIAL_ECHOLNPGM_P(port, " initialized.\n");
#endif
}
else {
eeprom_error = true;
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
ubl.echo_name();
SERIAL_PROTOCOLLNPGM_P(port, ".");
#endif
ubl.reset();
}
if (ubl.storage_slot >= 0) {
load_mesh(ubl.storage_slot);
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
#endif
}
else {
ubl.reset();
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
#endif
}
}
#endif
}
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
if (!validating) report(PORTVAR_SOLO);
#endif
EEPROM_FINISH();
return !eeprom_error;
}
bool MarlinSettings::validate(PORTARG_SOLO) {
validating = true;
const bool success = _load(PORTVAR_SOLO);
validating = false;
return success;
}
bool MarlinSettings::load(PORTARG_SOLO) {
if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
reset();
return true;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
#if ENABLED(EEPROM_CHITCHAT)
void ubl_invalid_slot(const int s) {
SERIAL_PROTOCOLLNPGM("?Invalid slot.");
SERIAL_PROTOCOL(s);
SERIAL_PROTOCOLLNPGM(" mesh slots available.");
}
#endif
const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
// is a placeholder for the size of the MAT; the MAT will always
// live at the very end of the eeprom
uint16_t MarlinSettings::meshes_start_index() {
return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
// or down a little bit without disrupting the mesh data
}
uint16_t MarlinSettings::calc_num_meshes() {
return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
}
int MarlinSettings::mesh_slot_offset(const int8_t slot) {
return meshes_end - (slot + 1) * sizeof(ubl.z_values);
}
void MarlinSettings::store_mesh(const int8_t slot) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
#if ENABLED(EEPROM_CHITCHAT)
ubl_invalid_slot(a);
SERIAL_PROTOCOLPAIR("E2END=", persistentStore.capacity() - 1);
SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
SERIAL_PROTOCOLLNPAIR(" slot=", slot);
SERIAL_EOL();
#endif
return;
}
int pos = mesh_slot_offset(slot);
uint16_t crc = 0;
persistentStore.access_start();
const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
persistentStore.access_finish();
if (status)
SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
// Write crc to MAT along with other data, or just tack on to the beginning or end
#if ENABLED(EEPROM_CHITCHAT)
if (!status)
SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
#endif
#else
// Other mesh types
#endif
}
void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const int16_t a = settings.calc_num_meshes();
if (!WITHIN(slot, 0, a - 1)) {
#if ENABLED(EEPROM_CHITCHAT)
ubl_invalid_slot(a);
#endif
return;
}
int pos = mesh_slot_offset(slot);
uint16_t crc = 0;
uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
persistentStore.access_start();
const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
persistentStore.access_finish();
if (status)
SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
#if ENABLED(EEPROM_CHITCHAT)
else
SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
#endif
EEPROM_FINISH();
#else
// Other mesh types
#endif
}
//void MarlinSettings::delete_mesh() { return; }
//void MarlinSettings::defrag_meshes() { return; }
#endif // AUTO_BED_LEVELING_UBL
#else // !EEPROM_SETTINGS
bool MarlinSettings::save(PORTARG_SOLO) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START_P(port);
SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
#endif
return false;
}
#endif // !EEPROM_SETTINGS
/**
* M502 - Reset Configuration
*/
void MarlinSettings::reset(PORTARG_SOLO) {
static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
LOOP_XYZE_N(i) {
planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
}
planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
planner.settings.acceleration = DEFAULT_ACCELERATION;
planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
#if HAS_CLASSIC_JERK
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
#if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
#endif
#endif
#if ENABLED(JUNCTION_DEVIATION)
planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
#endif
#if HAS_SCARA_OFFSET
ZERO(scara_home_offset);
#elif HAS_HOME_OFFSET
ZERO(home_offset);
#endif
#if HAS_HOTEND_OFFSET
constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
static_assert(
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
"Offsets for the first hotend must be 0.0."
);
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
#if ENABLED(DUAL_X_CARRIAGE)
hotend_offset[X_AXIS][1] = MAX(X2_HOME_POS, X2_MAX_POS);
#endif
#endif
#if EXTRUDERS > 1
#if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
#endif
#if ENABLED(TOOLCHANGE_PARK)
toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
#endif
toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
#endif
//
// Global Leveling
//
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
new_z_fade_height = 0.0;
#endif
#if HAS_LEVELING
reset_bed_level();
#endif
#if HAS_BED_PROBE
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
//
// Servo Angles
//
#if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
#if ENABLED(SWITCHING_EXTRUDER)
#if EXTRUDERS > 3
#define REQ_ANGLES 4
#else
#define REQ_ANGLES 2
#endif
constexpr uint16_t sesa[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
static_assert(COUNT(sesa) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = sesa[0];
servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = sesa[1];
#if EXTRUDERS > 3
servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][0] = sesa[2];
servo_angles[SWITCHING_EXTRUDER_E23_SERVO_NR][1] = sesa[3];
#endif
#elif ENABLED(SWITCHING_NOZZLE)
constexpr uint16_t snsa[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = snsa[0];
servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = snsa[1];
#elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
constexpr uint16_t zsa[2] = Z_SERVO_ANGLES;
servo_angles[Z_PROBE_SERVO_NR][0] = zsa[0];
servo_angles[Z_PROBE_SERVO_NR][1] = zsa[1];
#endif
#endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
#if ENABLED(DELTA)
const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
delta_height = DELTA_HEIGHT;
COPY(delta_endstop_adj, adj);
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
COPY(delta_tower_angle_trim, dta);
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
#if ENABLED(X_DUAL_ENDSTOPS)
endstops.x2_endstop_adj = (
#ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
X_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
endstops.y2_endstop_adj = (
#ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
Y_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
endstops.z2_endstop_adj = (
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
Z_DUAL_ENDSTOPS_ADJUSTMENT
#else
0
#endif
);
#elif ENABLED(Z_TRIPLE_ENDSTOPS)
endstops.z2_endstop_adj = (
#ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
#else
0
#endif
);
endstops.z3_endstop_adj = (
#ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
#else
0
#endif
);
#endif
#endif
#if ENABLED(ULTIPANEL)
lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
#endif
#if ENABLED(PIDTEMP)
HOTEND_LOOP() {
PID_PARAM(Kp, e) = float(DEFAULT_Kp);
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#if ENABLED(PID_EXTRUSION_SCALING)
PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif
}
#if ENABLED(PID_EXTRUSION_SCALING)
thermalManager.lpq_len = 20; // default last-position-queue size
#endif
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
thermalManager.bed_pid.Kp = DEFAULT_bedKp;
thermalManager.bed_pid.Ki = scalePID_i(DEFAULT_bedKi);
thermalManager.bed_pid.Kd = scalePID_d(DEFAULT_bedKd);
#endif
#if HAS_LCD_CONTRAST
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#if ENABLED(FWRETRACT)
fwretract.reset();
#endif
#if DISABLED(NO_VOLUMETRICS)
parser.volumetric_enabled =
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
true
#else
false
#endif
;
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif
endstops.enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
true
#else
false
#endif
);
reset_stepper_drivers();
#if ENABLED(LIN_ADVANCE)
LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
#endif
#if HAS_MOTOR_CURRENT_PWM
uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
for (uint8_t q = 3; q--;)
stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
#endif
#if ENABLED(SKEW_CORRECTION_GCODE)
planner.skew_factor.xy = XY_SKEW_FACTOR;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
planner.skew_factor.xz = XZ_SKEW_FACTOR;
planner.skew_factor.yz = YZ_SKEW_FACTOR;
#endif
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t e = 0; e < EXTRUDERS; e++) {
fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
}
#endif
postprocess();
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START_P(port);
SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
#endif
}
#if DISABLED(DISABLE_M503)
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
#if HAS_TRINAMIC
void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); }
#if ENABLED(HYBRID_THRESHOLD)
void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); }
#endif
#if USE_SENSORLESS
void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); }
#endif
#endif
#if ENABLED(ADVANCED_PAUSE_FEATURE)
void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); }
#endif
inline void say_units(
#if NUM_SERIAL > 1
const int8_t port,
#endif
const bool colon
) {
serialprintPGM_P(port,
#if ENABLED(INCH_MODE_SUPPORT)
parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
#endif
PSTR(" (mm)")
);
if (colon) SERIAL_ECHOLNPGM_P(port, ":");
}
#if NUM_SERIAL > 1
#define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON)
#else
#define SAY_UNITS_P(PORT, COLON) say_units(COLON)
#endif
/**
* M503 - Report current settings in RAM
*
* Unless specifically disabled, M503 is available even without EEPROM
*/
void MarlinSettings::report(const bool forReplay
#if NUM_SERIAL > 1
, const int8_t port/*=-1*/
#endif
) {
/**
* Announce current units, in case inches are being displayed
*/
CONFIG_ECHO_START;
#if ENABLED(INCH_MODE_SUPPORT)
SERIAL_ECHOPGM_P(port, " G2");
SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
SERIAL_ECHOPGM_P(port, " ;");
SAY_UNITS_P(port, false);
#else
SERIAL_ECHOPGM_P(port, " G21 ; Units in mm");
SAY_UNITS_P(port, false);
#endif
SERIAL_EOL_P(port);
#if ENABLED(ULTIPANEL)
// Temperature units - for Ultipanel temperature options
CONFIG_ECHO_START;
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
SERIAL_ECHOPGM_P(port, " M149 ");
SERIAL_CHAR_P(port, parser.temp_units_code());
SERIAL_ECHOPGM_P(port, " ; Units in ");
serialprintPGM_P(port, parser.temp_units_name());
#else
SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
#endif
#endif
SERIAL_EOL_P(port);
#if DISABLED(NO_VOLUMETRICS)
/**
* Volumetric extrusion M200
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM_P(port, "Filament settings:");
if (parser.volumetric_enabled)
SERIAL_EOL_P(port);
else
SERIAL_ECHOLNPGM_P(port, " Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 1
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 4
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
SERIAL_EOL_P(port);
#if EXTRUDERS > 5
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
SERIAL_EOL_P(port);
#endif // EXTRUDERS > 5
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
if (!parser.volumetric_enabled) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, " M200 D0");
}
#endif // !NO_VOLUMETRICS
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
#endif
SERIAL_EOL_P(port);
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS]));
#endif
SERIAL_EOL_P(port);
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]));
#if DISABLED(DISTINCT_E_FACTORS)
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS]));
#endif
SERIAL_EOL_P(port);
#if ENABLED(DISTINCT_E_FACTORS)
CONFIG_ECHO_START;
for (uint8_t i = 0; i < E_STEPPERS; i++) {
SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS + i]));
}
#endif
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.settings.acceleration));
SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.settings.retract_acceleration));
SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.settings.travel_acceleration));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM_P(port, "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
#if ENABLED(JUNCTION_DEVIATION)
SERIAL_ECHOPGM_P(port, " J<junc_dev>");
#endif
#if HAS_CLASSIC_JERK
SERIAL_ECHOPGM_P(port, " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
#if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
SERIAL_ECHOPGM_P(port, " E<max_e_jerk>");
#endif
#endif
SERIAL_EOL_P(port);
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us));
SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s));
SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s));
#if ENABLED(JUNCTION_DEVIATION)
SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm));
#endif
#if HAS_CLASSIC_JERK
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
#if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
#endif
#endif
SERIAL_EOL_P(port);
#if HAS_M206_COMMAND
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Home offset:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
#endif
#if HAS_HOTEND_OFFSET
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
}
CONFIG_ECHO_START;
for (uint8_t e = 1; e < HOTENDS; e++) {
SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
SERIAL_ECHO_P(port, " Z");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
SERIAL_EOL_P(port);
}
#endif
/**
* Bed Leveling
*/
#if HAS_LEVELING
#if ENABLED(MESH_BED_LEVELING)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (!forReplay) {
CONFIG_ECHO_START;
ubl.echo_name();
SERIAL_ECHOLNPGM_P(port, ":");
}
#elif HAS_ABL
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
}
#endif
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
#endif
SERIAL_EOL_P(port);
#if ENABLED(MESH_BED_LEVELING)
if (leveling_is_valid()) {
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
SERIAL_ECHOPGM_P(port, " Z");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
SERIAL_EOL_P(port);
}
}
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (!forReplay) {
SERIAL_EOL_P(port);
ubl.report_state();
SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
SERIAL_ECHOLNPGM_P(port, " meshes.\n");
}
// ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse)
// solution needs to be found.
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (leveling_is_valid()) {
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px);
SERIAL_ECHOPAIR_P(port, " J", (int)py);
SERIAL_ECHOPGM_P(port, " Z");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
SERIAL_EOL_P(port);
}
}
}
#endif
#endif // HAS_LEVELING
#if HAS_SERVOS && ENABLED(EDITABLE_SERVO_ANGLES)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Servo Angles:");
}
for (uint8_t i = 0; i < NUM_SERVOS; i++) {
switch (i) {
#if ENABLED(SWITCHING_EXTRUDER)
case SWITCHING_EXTRUDER_SERVO_NR:
#if EXTRUDERS > 3
case SWITCHING_EXTRUDER_E23_SERVO_NR:
#endif
#elif ENABLED(SWITCHING_NOZZLE)
case SWITCHING_NOZZLE_SERVO_NR:
#elif defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
case Z_PROBE_SERVO_NR:
#endif
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M281 P", int(i));
SERIAL_ECHOPAIR_P(port, " L", servo_angles[i][0]);
SERIAL_ECHOPAIR_P(port, " U", servo_angles[i][1]);
SERIAL_EOL_P(port);
default: break;
}
}
#endif // HAS_SERVOS && EDITABLE_SERVO_ANGLES
#if HAS_SCARA_OFFSET
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M665 S", delta_segments_per_second);
SERIAL_ECHOPAIR_P(port, " P", scara_home_offset[A_AXIS]);
SERIAL_ECHOPAIR_P(port, " T", scara_home_offset[B_AXIS]);
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS]));
SERIAL_EOL_P(port);
#elif ENABLED(DELTA)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
SERIAL_EOL_P(port);
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
}
CONFIG_ECHO_START;
SERIAL_ECHOPGM_P(port, " M666");
#if ENABLED(X_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x2_endstop_adj));
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y2_endstop_adj));
#endif
#if ENABLED(Z_TRIPLE_ENDSTOPS)
SERIAL_ECHOLNPAIR_P(port, "S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
#elif ENABLED(Z_DUAL_ENDSTOPS)
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z2_endstop_adj));
#endif
SERIAL_EOL_P(port);
#endif // [XYZ]_DUAL_ENDSTOPS
#if ENABLED(ULTIPANEL)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
}
for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
SERIAL_ECHOLNPAIR_P(port, " F", int(lcd_preheat_fan_speed[i]));
}
#endif // ULTIPANEL
#if HAS_PID_HEATING
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "PID settings:");
}
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M301 E", e);
SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
#endif
SERIAL_EOL_P(port);
}
}
else
#endif // HOTENDS > 1
// !forReplay || HOTENDS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
#endif
SERIAL_EOL_P(port);
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bed_pid.Kp);
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bed_pid.Ki));
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bed_pid.Kd));
SERIAL_EOL_P(port);
#endif
#endif // PIDTEMP || PIDTEMPBED
#if HAS_LCD_CONTRAST
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast);
#endif
#if ENABLED(FWRETRACT)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.settings.retract_length));
SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_length));
SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s)));
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.settings.retract_zraise));
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_length));
SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_length));
SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s)));
#if ENABLED(FWRETRACT_AUTORETRACT)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
#endif // FWRETRACT_AUTORETRACT
#endif // FWRETRACT
/**
* Probe Offset
*/
#if HAS_BED_PROBE
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM_P(port, "Z-Probe Offset (mm):");
SAY_UNITS_P(port, true);
}
CONFIG_ECHO_START;
SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
#endif
/**
* Bed Skew Correction
*/
#if ENABLED(SKEW_CORRECTION_GCODE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
}
CONFIG_ECHO_START;
#if ENABLED(SKEW_CORRECTION_FOR_Z)
SERIAL_ECHOPGM_P(port, " M852 I");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
SERIAL_ECHOPGM_P(port, " J");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xz), 6);
SERIAL_ECHOPGM_P(port, " K");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.yz), 6);
SERIAL_EOL_P(port);
#else
SERIAL_ECHOPGM_P(port, " M852 S");
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.skew_factor.xy), 6);
SERIAL_EOL_P(port);
#endif
#endif
#if HAS_TRINAMIC
/**
* TMC stepper driver current
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
}
CONFIG_ECHO_START;
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
say_M906(PORTVAR_SOLO);
#endif
#if AXIS_IS_TMC(X)
SERIAL_ECHOPAIR_P(port, " X", stepperX.getMilliamps());
#endif
#if AXIS_IS_TMC(Y)
SERIAL_ECHOPAIR_P(port, " Y", stepperY.getMilliamps());
#endif
#if AXIS_IS_TMC(Z)
SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getMilliamps());
#endif
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
SERIAL_EOL_P(port);
#endif
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
say_M906(PORTVAR_SOLO);
SERIAL_ECHOPGM_P(port, " I1");
#endif
#if AXIS_IS_TMC(X2)
SERIAL_ECHOPAIR_P(port, " X", stepperX2.getMilliamps());
#endif
#if AXIS_IS_TMC(Y2)
SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getMilliamps());
#endif
#if AXIS_IS_TMC(Z2)
SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getMilliamps());
#endif
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
SERIAL_EOL_P(port);
#endif
#if AXIS_IS_TMC(Z3)
say_M906(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " I2 Z", stepperZ3.getMilliamps());
#endif
#if AXIS_IS_TMC(E0)
say_M906(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getMilliamps());
#endif
#if AXIS_IS_TMC(E1)
say_M906(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getMilliamps());
#endif
#if AXIS_IS_TMC(E2)
say_M906(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getMilliamps());
#endif
#if AXIS_IS_TMC(E3)
say_M906(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getMilliamps());
#endif
#if AXIS_IS_TMC(E4)
say_M906(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getMilliamps());
#endif
#if AXIS_IS_TMC(E5)
say_M906(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T5 E", stepperE5.getMilliamps());
#endif
SERIAL_EOL_P(port);
/**
* TMC Hybrid Threshold
*/
#if ENABLED(HYBRID_THRESHOLD)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:");
}
CONFIG_ECHO_START;
#if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
say_M913(PORTVAR_SOLO);
#endif
#if AXIS_HAS_STEALTHCHOP(X)
SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
#endif
#if AXIS_HAS_STEALTHCHOP(Y)
SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
#endif
#if AXIS_HAS_STEALTHCHOP(Z)
SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
#endif
#if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
SERIAL_EOL_P(port);
#endif
#if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
say_M913(PORTVAR_SOLO);
SERIAL_ECHOPGM_P(port, " I1");
#endif
#if AXIS_HAS_STEALTHCHOP(X2)
SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
#endif
#if AXIS_HAS_STEALTHCHOP(Y2)
SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
#endif
#if AXIS_HAS_STEALTHCHOP(Z2)
SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
#endif
#if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
SERIAL_EOL_P(port);
#endif
#if AXIS_HAS_STEALTHCHOP(Z3)
say_M913(PORTVAR_SOLO);
SERIAL_ECHOPGM_P(port, " I2");
SERIAL_ECHOLNPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z3));
#endif
#if AXIS_HAS_STEALTHCHOP(E0)
say_M913(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0));
#endif
#if AXIS_HAS_STEALTHCHOP(E1)
say_M913(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1));
#endif
#if AXIS_HAS_STEALTHCHOP(E2)
say_M913(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2));
#endif
#if AXIS_HAS_STEALTHCHOP(E3)
say_M913(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3));
#endif
#if AXIS_HAS_STEALTHCHOP(E4)
say_M913(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4));
#endif
#if AXIS_HAS_STEALTHCHOP(E5)
say_M913(PORTVAR_SOLO);
SERIAL_ECHOLNPAIR_P(port, " T5 E", TMC_GET_PWMTHRS(E, E5));
#endif
SERIAL_EOL_P(port);
#endif // HYBRID_THRESHOLD
/**
* TMC Sensorless homing thresholds
*/
#if USE_SENSORLESS
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "TMC2130 StallGuard threshold:");
}
CONFIG_ECHO_START;
#if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
say_M914(PORTVAR_SOLO);
#if X_SENSORLESS
SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
#endif
#if Y_SENSORLESS
SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
#endif
#if Z_SENSORLESS
SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
#endif
SERIAL_EOL_P(port);
#endif
#define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
#define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
#define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
#define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
#if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
say_M914(PORTVAR_SOLO);
SERIAL_ECHOPGM_P(port, " I1");
#if HAS_X2_SENSORLESS
SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
#endif
#if HAS_Y2_SENSORLESS
SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
#endif
#if HAS_Z2_SENSORLESS
SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
#endif
SERIAL_EOL_P(port);
#endif
#if HAS_Z3_SENSORLESS
say_M914(PORTVAR_SOLO);
SERIAL_ECHOPGM_P(port, " I2");
SERIAL_ECHOLNPAIR_P(port, " Z", stepperZ3.sgt());
#endif
#endif // USE_SENSORLESS
#endif // HAS_TRINAMIC
/**
* Linear Advance
*/
#if ENABLED(LIN_ADVANCE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
}
CONFIG_ECHO_START;
#if EXTRUDERS < 2
SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K[0]);
#else
LOOP_L_N(i, EXTRUDERS) {
SERIAL_ECHOPAIR_P(port, " M900 T", int(i));
SERIAL_ECHOLNPAIR_P(port, " K", planner.extruder_advance_K[i]);
}
#endif
#endif
#if HAS_MOTOR_CURRENT_PWM
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
SERIAL_EOL_P(port);
#endif
/**
* Advanced Pause filament load & unload lengths
*/
#if ENABLED(ADVANCED_PAUSE_FEATURE)
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
}
CONFIG_ECHO_START;
#if EXTRUDERS == 1
say_M603(PORTVAR_SOLO);
SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(fc_settings[0].load_length));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
#else
say_M603(PORTVAR_SOLO);
SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(fc_settings[0].load_length));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[0].unload_length));
CONFIG_ECHO_START;
say_M603(PORTVAR_SOLO);
SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(fc_settings[1].load_length));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[1].unload_length));
#if EXTRUDERS > 2
CONFIG_ECHO_START;
say_M603(PORTVAR_SOLO);
SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(fc_settings[2].load_length));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[2].unload_length));
#if EXTRUDERS > 3
CONFIG_ECHO_START;
say_M603(PORTVAR_SOLO);
SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(fc_settings[3].load_length));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[3].unload_length));
#if EXTRUDERS > 4
CONFIG_ECHO_START;
say_M603(PORTVAR_SOLO);
SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(fc_settings[4].load_length));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[4].unload_length));
#if EXTRUDERS > 5
CONFIG_ECHO_START;
say_M603(PORTVAR_SOLO);
SERIAL_ECHOPAIR_P(port, "T5 L", LINEAR_UNIT(fc_settings[5].load_length));
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(fc_settings[5].unload_length));
#endif // EXTRUDERS > 5
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS == 1
#endif // ADVANCED_PAUSE_FEATURE
#if EXTRUDERS > 1
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM_P(port, "Tool-changing:");
CONFIG_ECHO_START;
}
M217_report(true);
#endif
}
#endif // !DISABLE_M503
#pragma pack(pop)