Firmware2/Marlin/src/HAL/SAMD51/HAL.cpp
2020-07-22 22:20:14 -05:00

474 lines
15 KiB
C++

/**
* Marlin 3D Printer Firmware
*
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* SAMD51 HAL developed by Giuliano Zaro (AKA GMagician)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef __SAMD51__
#include "../../inc/MarlinConfig.h"
#include <Adafruit_ZeroDMA.h>
#include <wiring_private.h>
// ------------------------
// Local defines
// ------------------------
#define GET_TEMP_0_ADC() TERN(HAS_TEMP_ADC_0, PIN_TO_ADC(TEMP_0_PIN), -1)
#define GET_TEMP_1_ADC() TERN(HAS_TEMP_ADC_1, PIN_TO_ADC(TEMP_1_PIN), -1)
#define GET_TEMP_2_ADC() TERN(HAS_TEMP_ADC_2, PIN_TO_ADC(TEMP_2_PIN), -1)
#define GET_TEMP_3_ADC() TERN(HAS_TEMP_ADC_3, PIN_TO_ADC(TEMP_3_PIN), -1)
#define GET_TEMP_4_ADC() TERN(HAS_TEMP_ADC_4, PIN_TO_ADC(TEMP_4_PIN), -1)
#define GET_TEMP_5_ADC() TERN(HAS_TEMP_ADC_5, PIN_TO_ADC(TEMP_5_PIN), -1)
#define GET_TEMP_6_ADC() TERN(HAS_TEMP_ADC_6, PIN_TO_ADC(TEMP_6_PIN), -1)
#define GET_TEMP_7_ADC() TERN(HAS_TEMP_ADC_7, PIN_TO_ADC(TEMP_7_PIN), -1)
#define GET_PROBE_ADC() TERN(HAS_TEMP_PROBE, PIN_TO_ADC(TEMP_PROBE_PIN), -1)
#define GET_BED_ADC() TERN(HAS_TEMP_ADC_BED, PIN_TO_ADC(TEMP_BED_PIN), -1)
#define GET_CHAMBER_ADC() TERN(HAS_TEMP_ADC_CHAMBER, PIN_TO_ADC(TEMP_CHAMBER_PIN), -1)
#define GET_FILAMENT_WIDTH_ADC() TERN(FILAMENT_WIDTH_SENSOR, PIN_TO_ADC(FILWIDTH_PIN), -1)
#define GET_BUTTONS_ADC() TERN(HAS_ADC_BUTTONS, PIN_TO_ADC(ADC_KEYPAD_PIN), -1)
#define IS_ADC_REQUIRED(n) ( \
GET_TEMP_0_ADC() == n || GET_TEMP_1_ADC() == n || GET_TEMP_2_ADC() == n || GET_TEMP_3_ADC() == n \
|| GET_TEMP_4_ADC() == n || GET_TEMP_5_ADC() == n || GET_TEMP_6_ADC() == n || GET_TEMP_7_ADC() == n \
|| GET_PROBE_ADC() == n \
|| GET_BED_ADC() == n \
|| GET_CHAMBER_ADC() == n \
|| GET_FILAMENT_WIDTH_ADC() == n \
|| GET_BUTTONS_ADC() == n \
)
#if IS_ADC_REQUIRED(0)
#define ADC0_IS_REQUIRED 1
#define FIRST_ADC 0
#else
#define FIRST_ADC 1
#endif
#if IS_ADC_REQUIRED(1)
#define ADC1_IS_REQUIRED 1
#define LAST_ADC 1
#else
#define LAST_ADC 0
#endif
#if ADC0_IS_REQUIRED || ADC1_IS_REQUIRED
#define ADC_IS_REQUIRED 1
#define DMA_IS_REQUIRED 1
#endif
// ------------------------
// Types
// ------------------------
#if DMA_IS_REQUIRED
// Struct must be 32 bits aligned because of DMA accesses but fields needs to be 8 bits packed
typedef struct __attribute__((aligned(4), packed)) {
ADC_INPUTCTRL_Type INPUTCTRL;
} HAL_DMA_DAC_Registers; // DMA transfered registers
#endif
// ------------------------
// Private Variables
// ------------------------
uint16_t HAL_adc_result;
#if ADC_IS_REQUIRED
// Pins used by ADC inputs. Order must be ADC0 inputs first then ADC1
const uint8_t adc_pins[] = {
// ADC0 pins
#if GET_TEMP_0_ADC() == 0
TEMP_0_PIN,
#endif
#if GET_TEMP_1_ADC() == 0
TEMP_1_PIN,
#endif
#if GET_TEMP_2_ADC() == 0
TEMP_2_PIN,
#endif
#if GET_TEMP_3_ADC() == 0
TEMP_3_PIN,
#endif
#if GET_TEMP_4_ADC() == 0
TEMP_4_PIN,
#endif
#if GET_TEMP_5_ADC() == 0
TEMP_5_PIN,
#endif
#if GET_TEMP_6_ADC() == 0
TEMP_6_PIN,
#endif
#if GET_TEMP_7_ADC() == 0
TEMP_7_PIN,
#endif
#if GET_PROBE_ADC() == 0
TEMP_PROBE_PIN,
#endif
#if GET_BED_ADC() == 0
TEMP_BED_PIN,
#endif
#if GET_CHAMBER_ADC() == 0
TEMP_CHAMBER_PIN,
#endif
#if GET_FILAMENT_WIDTH_ADC() == 0
FILWIDTH_PIN,
#endif
#if GET_BUTTONS_ADC() == 0
ADC_KEYPAD_PIN,
#endif
// ADC1 pins
#if GET_TEMP_0_ADC() == 1
TEMP_0_PIN,
#endif
#if GET_TEMP_1_ADC() == 1
TEMP_1_PIN,
#endif
#if GET_TEMP_2_ADC() == 1
TEMP_2_PIN,
#endif
#if GET_TEMP_3_ADC() == 1
TEMP_3_PIN,
#endif
#if GET_TEMP_4_ADC() == 1
TEMP_4_PIN,
#endif
#if GET_TEMP_5_ADC() == 1
TEMP_5_PIN,
#endif
#if GET_TEMP_6_ADC() == 1
TEMP_6_PIN,
#endif
#if GET_TEMP_7_ADC() == 1
TEMP_7_PIN,
#endif
#if GET_PROBE_ADC() == 1
TEMP_PROBE_PIN,
#endif
#if GET_BED_ADC() == 1
TEMP_BED_PIN,
#endif
#if GET_CHAMBER_ADC() == 1
TEMP_CHAMBER_PIN,
#endif
#if GET_FILAMENT_WIDTH_ADC() == 1
FILWIDTH_PIN,
#endif
#if GET_BUTTONS_ADC() == 1
ADC_KEYPAD_PIN,
#endif
};
uint16_t HAL_adc_results[COUNT(adc_pins)];
#if ADC0_IS_REQUIRED
Adafruit_ZeroDMA adc0DMAProgram,
adc0DMARead;
const HAL_DMA_DAC_Registers adc0_dma_regs_list[] = {
#if GET_TEMP_0_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_0_PIN) },
#endif
#if GET_TEMP_1_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_1_PIN) },
#endif
#if GET_TEMP_2_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_2_PIN) },
#endif
#if GET_TEMP_3_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_3_PIN) },
#endif
#if GET_TEMP_4_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_4_PIN) },
#endif
#if GET_TEMP_5_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_5_PIN) },
#endif
#if GET_TEMP_6_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_6_PIN) },
#endif
#if GET_TEMP_7_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_7_PIN) },
#endif
#if GET_PROBE_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_PROBE_PIN) },
#endif
#if GET_BED_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_BED_PIN) },
#endif
#if GET_CHAMBER_ADC() == 0
{ PIN_TO_INPUTCTRL(TEMP_CHAMBER_PIN) },
#endif
#if GET_FILAMENT_WIDTH_ADC() == 0
{ PIN_TO_INPUTCTRL(FILWIDTH_PIN) },
#endif
#if GET_BUTTONS_ADC() == 0
{ PIN_TO_INPUTCTRL(ADC_KEYPAD_PIN) },
#endif
};
#define ADC0_AINCOUNT COUNT(adc0_dma_regs_list)
#endif // ADC0_IS_REQUIRED
#if ADC1_IS_REQUIRED
Adafruit_ZeroDMA adc1DMAProgram,
adc1DMARead;
const HAL_DMA_DAC_Registers adc1_dma_regs_list[] = {
#if GET_TEMP_0_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_0_PIN) },
#endif
#if GET_TEMP_1_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_1_PIN) },
#endif
#if GET_TEMP_2_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_2_PIN) },
#endif
#if GET_TEMP_3_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_3_PIN) },
#endif
#if GET_TEMP_4_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_4_PIN) },
#endif
#if GET_TEMP_5_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_5_PIN) },
#endif
#if GET_TEMP_6_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_6_PIN) },
#endif
#if GET_TEMP_7_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_7_PIN) },
#endif
#if GET_PROBE_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_PROBE_PIN) },
#endif
#if GET_BED_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_BED_PIN) },
#endif
#if GET_CHAMBER_ADC() == 1
{ PIN_TO_INPUTCTRL(TEMP_CHAMBER_PIN) },
#endif
#if GET_FILAMENT_WIDTH_ADC() == 1
{ PIN_TO_INPUTCTRL(FILWIDTH_PIN) },
#endif
#if GET_BUTTONS_ADC() == 1
{ PIN_TO_INPUTCTRL(ADC_KEYPAD_PIN) },
#endif
};
#define ADC1_AINCOUNT COUNT(adc1_dma_regs_list)
#endif // ADC1_IS_REQUIRED
#endif // ADC_IS_REQUIRED
// ------------------------
// Private functions
// ------------------------
#if DMA_IS_REQUIRED
void dma_init() {
DmacDescriptor *descriptor;
#if ADC0_IS_REQUIRED
adc0DMAProgram.setTrigger(ADC0_DMAC_ID_SEQ);
adc0DMAProgram.setAction(DMA_TRIGGER_ACTON_BEAT);
adc0DMAProgram.loop(true);
if (adc0DMAProgram.allocate() == DMA_STATUS_OK) {
descriptor = adc0DMAProgram.addDescriptor(
(void *)adc0_dma_regs_list, // SRC
(void *)&ADC0->DSEQDATA.reg, // DEST
sizeof(adc0_dma_regs_list) / 4, // CNT
DMA_BEAT_SIZE_WORD,
true, // SRCINC
false, // DSTINC
DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE
DMA_STEPSEL_SRC // STEPSEL
);
if (descriptor != nullptr)
descriptor->BTCTRL.bit.EVOSEL = DMA_EVENT_OUTPUT_BEAT;
adc0DMAProgram.startJob();
}
adc0DMARead.setTrigger(ADC0_DMAC_ID_RESRDY);
adc0DMARead.setAction(DMA_TRIGGER_ACTON_BEAT);
adc0DMARead.loop(true);
if (adc0DMARead.allocate() == DMA_STATUS_OK) {
adc0DMARead.addDescriptor(
(void *)&ADC0->RESULT.reg, // SRC
&HAL_adc_results, // DEST
ADC0_AINCOUNT, // CNT
DMA_BEAT_SIZE_HWORD,
false, // SRCINC
true, // DSTINC
DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE
DMA_STEPSEL_DST // STEPSEL
);
adc0DMARead.startJob();
}
#endif
#if ADC1_IS_REQUIRED
adc1DMAProgram.setTrigger(ADC1_DMAC_ID_SEQ);
adc1DMAProgram.setAction(DMA_TRIGGER_ACTON_BEAT);
adc1DMAProgram.loop(true);
if (adc1DMAProgram.allocate() == DMA_STATUS_OK) {
descriptor = adc1DMAProgram.addDescriptor(
(void *)adc1_dma_regs_list, // SRC
(void *)&ADC1->DSEQDATA.reg, // DEST
sizeof(adc1_dma_regs_list) / 4, // CNT
DMA_BEAT_SIZE_WORD,
true, // SRCINC
false, // DSTINC
DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE
DMA_STEPSEL_SRC // STEPSEL
);
if (descriptor != nullptr)
descriptor->BTCTRL.bit.EVOSEL = DMA_EVENT_OUTPUT_BEAT;
adc1DMAProgram.startJob();
}
adc1DMARead.setTrigger(ADC1_DMAC_ID_RESRDY);
adc1DMARead.setAction(DMA_TRIGGER_ACTON_BEAT);
adc1DMARead.loop(true);
if (adc1DMARead.allocate() == DMA_STATUS_OK) {
adc1DMARead.addDescriptor(
(void *)&ADC1->RESULT.reg, // SRC
&HAL_adc_results[ADC0_AINCOUNT], // DEST
ADC1_AINCOUNT, // CNT
DMA_BEAT_SIZE_HWORD,
false, // SRCINC
true, // DSTINC
DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE
DMA_STEPSEL_DST // STEPSEL
);
adc1DMARead.startJob();
}
#endif
DMAC->PRICTRL0.bit.RRLVLEN0 = true; // Activate round robin for DMA channels required by ADCs
}
#endif // DMA_IS_REQUIRED
// ------------------------
// Public functions
// ------------------------
// HAL initialization task
void HAL_init() {
TERN_(DMA_IS_REQUIRED, dma_init());
#if ENABLED(SDSUPPORT)
#if SD_CONNECTION_IS(ONBOARD) && PIN_EXISTS(SD_DETECT)
SET_INPUT_PULLUP(SD_DETECT_PIN);
#endif
OUT_WRITE(SDSS, HIGH); // Try to set SDSS inactive before any other SPI users start up
#endif
}
// HAL idle task
/*
void HAL_idletask() {
}
*/
void HAL_clear_reset_source() { }
#pragma push_macro("WDT")
#undef WDT // Required to be able to use '.bit.WDT'. Compiler wrongly replace struct field with WDT define
uint8_t HAL_get_reset_source() {
RSTC_RCAUSE_Type resetCause;
resetCause.reg = REG_RSTC_RCAUSE;
if (resetCause.bit.POR) return RST_POWER_ON;
else if (resetCause.bit.EXT) return RST_EXTERNAL;
else if (resetCause.bit.BODCORE || resetCause.bit.BODVDD) return RST_BROWN_OUT;
else if (resetCause.bit.WDT) return RST_WATCHDOG;
else if (resetCause.bit.SYST || resetCause.bit.NVM) return RST_SOFTWARE;
else if (resetCause.bit.BACKUP) return RST_BACKUP;
return 0;
}
#pragma pop_macro("WDT")
extern "C" {
void * _sbrk(int incr);
extern unsigned int __bss_end__; // end of bss section
}
// Return free memory between end of heap (or end bss) and whatever is current
int freeMemory() {
int free_memory, heap_end = (int)_sbrk(0);
return (int)&free_memory - (heap_end ?: (int)&__bss_end__);
}
// ------------------------
// ADC
// ------------------------
void HAL_adc_init() {
#if ADC_IS_REQUIRED
memset(HAL_adc_results, 0xFF, sizeof(HAL_adc_results)); // Fill result with invalid values
LOOP_L_N(pi, COUNT(adc_pins))
pinPeripheral(adc_pins[pi], PIO_ANALOG);
LOOP_S_LE_N(ai, FIRST_ADC, LAST_ADC) {
Adc* adc = ((Adc*[])ADC_INSTS)[ai];
// ADC clock setup
GCLK->PCHCTRL[ADC0_GCLK_ID + ai].bit.CHEN = false;
SYNC(GCLK->PCHCTRL[ADC0_GCLK_ID + ai].bit.CHEN);
GCLK->PCHCTRL[ADC0_GCLK_ID + ai].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN; // 48MHz startup code programmed
SYNC(!GCLK->PCHCTRL[ADC0_GCLK_ID + ai].bit.CHEN);
adc->CTRLA.bit.PRESCALER = ADC_CTRLA_PRESCALER_DIV32_Val; // 1.5MHZ adc clock
// ADC setup
// Preloaded data (fixed for all ADC instances hence not loaded by DMA)
adc->REFCTRL.bit.REFSEL = ADC_REFCTRL_REFSEL_AREFA_Val; // VRefA pin
SYNC(adc->SYNCBUSY.bit.REFCTRL);
adc->CTRLB.bit.RESSEL = ADC_CTRLB_RESSEL_10BIT_Val; // ... ADC_CTRLB_RESSEL_16BIT_Val
SYNC(adc->SYNCBUSY.bit.CTRLB);
adc->SAMPCTRL.bit.SAMPLEN = (6 - 1); // Sampling clocks
//adc->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_16 | ADC_AVGCTRL_ADJRES(4); // 16 Accumulated conversions and shift 4 to get oversampled 12 bits result
//SYNC(adc->SYNCBUSY.bit.AVGCTRL);
// Registers loaded by DMA
adc->DSEQCTRL.bit.INPUTCTRL = true;
adc->DSEQCTRL.bit.AUTOSTART = true; // Start conversion after DMA sequence
adc->CTRLA.bit.ENABLE = true; // Enable ADC
SYNC(adc->SYNCBUSY.bit.ENABLE);
}
#endif // ADC_IS_REQUIRED
}
void HAL_adc_start_conversion(const uint8_t adc_pin) {
#if ADC_IS_REQUIRED
LOOP_L_N(pi, COUNT(adc_pins)) {
if (adc_pin == adc_pins[pi]) {
HAL_adc_result = HAL_adc_results[pi];
return;
}
}
#endif
HAL_adc_result = 0xFFFF;
}
#endif // __SAMD51__