138 lines
5.8 KiB
C++
138 lines
5.8 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* feature/z_stepper_align.cpp
|
|
*/
|
|
|
|
#include "../inc/MarlinConfigPre.h"
|
|
|
|
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
|
|
#include "z_stepper_align.h"
|
|
#include "../module/probe.h"
|
|
|
|
ZStepperAlign z_stepper_align;
|
|
|
|
xy_pos_t ZStepperAlign::xy[NUM_Z_STEPPER_DRIVERS];
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
xy_pos_t ZStepperAlign::stepper_xy[NUM_Z_STEPPER_DRIVERS];
|
|
#endif
|
|
|
|
void ZStepperAlign::reset_to_default() {
|
|
#ifdef Z_STEPPER_ALIGN_XY
|
|
|
|
constexpr xy_pos_t xy_init[] = Z_STEPPER_ALIGN_XY;
|
|
static_assert(COUNT(xy_init) == NUM_Z_STEPPER_DRIVERS,
|
|
"Z_STEPPER_ALIGN_XY requires "
|
|
#if NUM_Z_STEPPER_DRIVERS == 4
|
|
"four {X,Y} entries (Z, Z2, Z3, and Z4)."
|
|
#elif NUM_Z_STEPPER_DRIVERS == 3
|
|
"three {X,Y} entries (Z, Z2, and Z3)."
|
|
#else
|
|
"two {X,Y} entries (Z and Z2)."
|
|
#endif
|
|
);
|
|
|
|
constexpr xyz_pos_t dpo = NOZZLE_TO_PROBE_OFFSET;
|
|
|
|
#define LTEST(N) (xy_init[N].x >= _MAX(X_MIN_BED + PROBING_MARGIN_LEFT, X_MIN_POS + dpo.x) - 0.00001f)
|
|
#define RTEST(N) (xy_init[N].x <= _MIN(X_MAX_BED - PROBING_MARGIN_RIGHT, X_MAX_POS + dpo.x) + 0.00001f)
|
|
#define FTEST(N) (xy_init[N].y >= _MAX(Y_MIN_BED + PROBING_MARGIN_FRONT, Y_MIN_POS + dpo.y) - 0.00001f)
|
|
#define BTEST(N) (xy_init[N].y <= _MIN(Y_MAX_BED - PROBING_MARGIN_BACK, Y_MAX_POS + dpo.y) + 0.00001f)
|
|
|
|
static_assert(LTEST(0) && RTEST(0), "The 1st Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
|
|
static_assert(FTEST(0) && BTEST(0), "The 1st Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
|
|
static_assert(LTEST(1) && RTEST(1), "The 2nd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
|
|
static_assert(FTEST(1) && BTEST(1), "The 2nd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
|
|
#if NUM_Z_STEPPER_DRIVERS >= 3
|
|
static_assert(LTEST(2) && RTEST(2), "The 3rd Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
|
|
static_assert(FTEST(2) && BTEST(2), "The 3rd Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
|
|
#if NUM_Z_STEPPER_DRIVERS >= 4
|
|
static_assert(LTEST(3) && RTEST(3), "The 4th Z_STEPPER_ALIGN_XY X is unreachable with the default probe X offset.");
|
|
static_assert(FTEST(3) && BTEST(3), "The 4th Z_STEPPER_ALIGN_XY Y is unreachable with the default probe Y offset.");
|
|
#endif
|
|
#endif
|
|
|
|
#else // !defined(Z_STEPPER_ALIGN_XY)
|
|
|
|
const xy_pos_t xy_init[] = {
|
|
#if NUM_Z_STEPPER_DRIVERS >= 3 // First probe point...
|
|
#if !Z_STEPPERS_ORIENTATION
|
|
{ probe.min_x(), probe.min_y() }, // SW
|
|
#elif Z_STEPPERS_ORIENTATION == 1
|
|
{ probe.min_x(), probe.max_y() }, // NW
|
|
#elif Z_STEPPERS_ORIENTATION == 2
|
|
{ probe.max_x(), probe.max_y() }, // NE
|
|
#elif Z_STEPPERS_ORIENTATION == 3
|
|
{ probe.max_x(), probe.min_y() }, // SE
|
|
#else
|
|
#error "Z_STEPPERS_ORIENTATION must be from 0 to 3 (first point SW, NW, NE, SE)."
|
|
#endif
|
|
#if NUM_Z_STEPPER_DRIVERS == 4 // 3 more points...
|
|
#if !Z_STEPPERS_ORIENTATION
|
|
{ probe.min_x(), probe.max_y() }, { probe.max_x(), probe.max_y() }, { probe.max_x(), probe.min_y() } // SW
|
|
#elif Z_STEPPERS_ORIENTATION == 1
|
|
{ probe.max_x(), probe.max_y() }, { probe.max_x(), probe.min_y() }, { probe.min_x(), probe.min_y() } // NW
|
|
#elif Z_STEPPERS_ORIENTATION == 2
|
|
{ probe.max_x(), probe.min_y() }, { probe.min_x(), probe.min_y() }, { probe.min_x(), probe.max_y() } // NE
|
|
#elif Z_STEPPERS_ORIENTATION == 3
|
|
{ probe.min_x(), probe.min_y() }, { probe.min_x(), probe.max_y() }, { probe.max_x(), probe.max_y() } // SE
|
|
#endif
|
|
#elif !Z_STEPPERS_ORIENTATION // or 2 more points...
|
|
{ probe.max_x(), probe.min_y() }, { X_CENTER, probe.max_y() } // SW
|
|
#elif Z_STEPPERS_ORIENTATION == 1
|
|
{ probe.min_x(), probe.min_y() }, { probe.max_x(), Y_CENTER } // NW
|
|
#elif Z_STEPPERS_ORIENTATION == 2
|
|
{ probe.min_x(), probe.max_y() }, { X_CENTER, probe.min_y() } // NE
|
|
#elif Z_STEPPERS_ORIENTATION == 3
|
|
{ probe.max_x(), probe.max_y() }, { probe.min_x(), Y_CENTER } // SE
|
|
#endif
|
|
#elif Z_STEPPERS_ORIENTATION
|
|
{ X_CENTER, probe.min_y() }, { X_CENTER, probe.max_y() }
|
|
#else
|
|
{ probe.min_x(), Y_CENTER }, { probe.max_x(), Y_CENTER }
|
|
#endif
|
|
};
|
|
|
|
#endif // !defined(Z_STEPPER_ALIGN_XY)
|
|
|
|
COPY(xy, xy_init);
|
|
|
|
#if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
|
constexpr xy_pos_t stepper_xy_init[] = Z_STEPPER_ALIGN_STEPPER_XY;
|
|
static_assert(
|
|
COUNT(stepper_xy_init) == NUM_Z_STEPPER_DRIVERS,
|
|
"Z_STEPPER_ALIGN_STEPPER_XY requires "
|
|
#if NUM_Z_STEPPER_DRIVERS == 4
|
|
"four {X,Y} entries (Z, Z2, Z3, and Z4)."
|
|
#elif NUM_Z_STEPPER_DRIVERS == 3
|
|
"three {X,Y} entries (Z, Z2, and Z3)."
|
|
#endif
|
|
);
|
|
COPY(stepper_xy, stepper_xy_init);
|
|
#endif
|
|
}
|
|
|
|
#endif // Z_STEPPER_AUTO_ALIGN
|