Firmware2/Marlin/src/module/temperature.h
2019-09-16 20:31:21 -05:00

871 lines
25 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* temperature.h - temperature controller
*/
#include "thermistor/thermistors.h"
#include "../inc/MarlinConfig.h"
#if ENABLED(AUTO_POWER_CONTROL)
#include "../feature/power.h"
#endif
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
#if HOTENDS <= 1
#define HOTEND_INDEX 0
#define E_UNUSED() UNUSED(e)
#else
#define HOTEND_INDEX e
#define E_UNUSED()
#endif
// Identifiers for other heaters
typedef enum : int8_t {
INDEX_NONE = -4,
H_REDUNDANT, H_CHAMBER, H_BED,
H_E0, H_E1, H_E2, H_E3, H_E4, H_E5
} heater_ind_t;
// PID storage
typedef struct { float Kp, Ki, Kd; } PID_t;
typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t;
#if ENABLED(PID_EXTRUSION_SCALING)
typedef PIDC_t hotend_pid_t;
#if LPQ_MAX_LEN > 255
typedef uint16_t lpq_ptr_t;
#else
typedef uint8_t lpq_ptr_t;
#endif
#else
typedef PID_t hotend_pid_t;
#endif
#define DUMMY_PID_VALUE 3000.0f
#if ENABLED(PIDTEMP)
#define _PID_Kp(H) Temperature::temp_hotend[H].pid.Kp
#define _PID_Ki(H) Temperature::temp_hotend[H].pid.Ki
#define _PID_Kd(H) Temperature::temp_hotend[H].pid.Kd
#if ENABLED(PID_EXTRUSION_SCALING)
#define _PID_Kc(H) Temperature::temp_hotend[H].pid.Kc
#else
#define _PID_Kc(H) 1
#endif
#else
#define _PID_Kp(H) DUMMY_PID_VALUE
#define _PID_Ki(H) DUMMY_PID_VALUE
#define _PID_Kd(H) DUMMY_PID_VALUE
#define _PID_Kc(H) 1
#endif
#define PID_PARAM(F,H) _PID_##F(H)
/**
* States for ADC reading in the ISR
*/
enum ADCSensorState : char {
StartSampling,
#if HAS_TEMP_ADC_0
PrepareTemp_0, MeasureTemp_0,
#endif
#if HAS_HEATED_BED
PrepareTemp_BED, MeasureTemp_BED,
#endif
#if HAS_TEMP_CHAMBER
PrepareTemp_CHAMBER, MeasureTemp_CHAMBER,
#endif
#if HAS_TEMP_ADC_1
PrepareTemp_1, MeasureTemp_1,
#endif
#if HAS_TEMP_ADC_2
PrepareTemp_2, MeasureTemp_2,
#endif
#if HAS_TEMP_ADC_3
PrepareTemp_3, MeasureTemp_3,
#endif
#if HAS_TEMP_ADC_4
PrepareTemp_4, MeasureTemp_4,
#endif
#if HAS_TEMP_ADC_5
PrepareTemp_5, MeasureTemp_5,
#endif
#if HAS_JOY_ADC_X
PrepareJoy_X, MeasureJoy_X,
#endif
#if HAS_JOY_ADC_Y
PrepareJoy_Y, MeasureJoy_Y,
#endif
#if HAS_JOY_ADC_Z
PrepareJoy_Z, MeasureJoy_Z,
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
Prepare_FILWIDTH, Measure_FILWIDTH,
#endif
#if HAS_ADC_BUTTONS
Prepare_ADC_KEY, Measure_ADC_KEY,
#endif
SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
};
// Minimum number of Temperature::ISR loops between sensor readings.
// Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
// get all oversampled sensor readings
#define MIN_ADC_ISR_LOOPS 10
#define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
#if HAS_PID_HEATING
#define PID_K2 (1-float(PID_K1))
#define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
// Apply the scale factors to the PID values
#define scalePID_i(i) ( float(i) * PID_dT )
#define unscalePID_i(i) ( float(i) / PID_dT )
#define scalePID_d(d) ( float(d) / PID_dT )
#define unscalePID_d(d) ( float(d) * PID_dT )
#endif
#define G26_CLICK_CAN_CANCEL (HAS_LCD_MENU && ENABLED(G26_MESH_VALIDATION))
// A temperature sensor
typedef struct TempInfo {
uint16_t acc;
int16_t raw;
float celsius;
inline void reset() { acc = 0; }
inline void sample(const uint16_t s) { acc += s; }
inline void update() { raw = acc; }
} temp_info_t;
// A PWM heater with temperature sensor
typedef struct HeaterInfo : public TempInfo {
int16_t target;
uint8_t soft_pwm_amount;
} heater_info_t;
// A heater with PID stabilization
template<typename T>
struct PIDHeaterInfo : public HeaterInfo {
T pid; // Initialized by settings.load()
};
#if ENABLED(PIDTEMP)
typedef struct PIDHeaterInfo<hotend_pid_t> hotend_info_t;
#else
typedef heater_info_t hotend_info_t;
#endif
#if HAS_HEATED_BED
#if ENABLED(PIDTEMPBED)
typedef struct PIDHeaterInfo<PID_t> bed_info_t;
#else
typedef heater_info_t bed_info_t;
#endif
#endif
#if HAS_HEATED_CHAMBER
typedef heater_info_t chamber_info_t;
#elif HAS_TEMP_CHAMBER
typedef temp_info_t chamber_info_t;
#endif
// Heater idle handling
typedef struct {
millis_t timeout_ms;
bool timed_out;
inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; }
inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; }
inline void reset() { timeout_ms = 0; timed_out = false; }
inline void expire() { start(0); }
} heater_idle_t;
// Heater watch handling
typedef struct {
uint16_t target;
millis_t next_ms;
inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); }
inline bool elapsed() { return elapsed(millis()); }
} heater_watch_t;
// Temperature sensor read value ranges
typedef struct { int16_t raw_min, raw_max; } raw_range_t;
typedef struct { int16_t mintemp, maxtemp; } celsius_range_t;
typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t;
#define THERMISTOR_ADC_RESOLUTION 1024 // 10-bit ADC .. shame to waste 12-bits of resolution on 32-bit
#define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold !
#define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable
#if HAS_USER_THERMISTORS
enum CustomThermistorIndex : uint8_t {
#if ENABLED(HEATER_0_USER_THERMISTOR)
CTI_HOTEND_0,
#endif
#if ENABLED(HEATER_1_USER_THERMISTOR)
CTI_HOTEND_1,
#endif
#if ENABLED(HEATER_2_USER_THERMISTOR)
CTI_HOTEND_2,
#endif
#if ENABLED(HEATER_3_USER_THERMISTOR)
CTI_HOTEND_3,
#endif
#if ENABLED(HEATER_4_USER_THERMISTOR)
CTI_HOTEND_4,
#endif
#if ENABLED(HEATER_5_USER_THERMISTOR)
CTI_HOTEND_5,
#endif
#if ENABLED(HEATER_BED_USER_THERMISTOR)
CTI_BED,
#endif
#if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
CTI_CHAMBER,
#endif
USER_THERMISTORS
};
// User-defined thermistor
typedef struct {
bool pre_calc; // true if pre-calculations update needed
float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0'
sh_alpha,
series_res,
res_25, res_25_recip,
res_25_log,
beta, beta_recip;
} user_thermistor_t;
#endif
class Temperature {
public:
static volatile bool in_temp_isr;
#if HOTENDS
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
#define HOTEND_TEMPS (HOTENDS + 1)
#else
#define HOTEND_TEMPS HOTENDS
#endif
static hotend_info_t temp_hotend[HOTEND_TEMPS];
#endif
#if HAS_HEATED_BED
static bed_info_t temp_bed;
#endif
#if HAS_TEMP_CHAMBER
static chamber_info_t temp_chamber;
#endif
#if ENABLED(AUTO_POWER_E_FANS)
static uint8_t autofan_speed[HOTENDS];
#endif
#if ENABLED(AUTO_POWER_CHAMBER_FAN)
static uint8_t chamberfan_speed;
#endif
#if ENABLED(FAN_SOFT_PWM)
static uint8_t soft_pwm_amount_fan[FAN_COUNT],
soft_pwm_count_fan[FAN_COUNT];
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
static bool allow_cold_extrude;
static int16_t extrude_min_temp;
FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) {
E_UNUSED();
return tooCold(degHotend(HOTEND_INDEX));
}
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) {
E_UNUSED();
return tooCold(degTargetHotend(HOTEND_INDEX));
}
#else
FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
#endif
FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
#if HEATER_IDLE_HANDLER
static heater_idle_t hotend_idle[HOTENDS];
#if HAS_HEATED_BED
static heater_idle_t bed_idle;
#endif
#if HAS_HEATED_CHAMBER
static heater_idle_t chamber_idle;
#endif
#endif
private:
#if EARLY_WATCHDOG
static bool inited; // If temperature controller is running
#endif
static volatile bool temp_meas_ready;
#if WATCH_HOTENDS
static heater_watch_t watch_hotend[HOTENDS];
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static uint16_t redundant_temperature_raw;
static float redundant_temperature;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
static int32_t last_e_position, lpq[LPQ_MAX_LEN];
static lpq_ptr_t lpq_ptr;
#endif
#if HOTENDS
static temp_range_t temp_range[HOTENDS];
#endif
#if HAS_HEATED_BED
#if WATCH_BED
static heater_watch_t watch_bed;
#endif
#if DISABLED(PIDTEMPBED)
static millis_t next_bed_check_ms;
#endif
#ifdef BED_MINTEMP
static int16_t mintemp_raw_BED;
#endif
#ifdef BED_MAXTEMP
static int16_t maxtemp_raw_BED;
#endif
#endif
#if HAS_HEATED_CHAMBER
#if WATCH_CHAMBER
static heater_watch_t watch_chamber;
#endif
static millis_t next_chamber_check_ms;
#ifdef CHAMBER_MINTEMP
static int16_t mintemp_raw_CHAMBER;
#endif
#ifdef CHAMBER_MAXTEMP
static int16_t maxtemp_raw_CHAMBER;
#endif
#endif
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
static uint8_t consecutive_low_temperature_error[HOTENDS];
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
static millis_t preheat_end_time[HOTENDS];
#endif
#if HAS_AUTO_FAN
static millis_t next_auto_fan_check_ms;
#endif
#if ENABLED(PROBING_HEATERS_OFF)
static bool paused;
#endif
public:
#if HAS_ADC_BUTTONS
static uint32_t current_ADCKey_raw;
static uint8_t ADCKey_count;
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
static int16_t lpq_len;
#endif
/**
* Instance Methods
*/
void init();
/**
* Static (class) methods
*/
#if HAS_USER_THERMISTORS
static user_thermistor_t user_thermistor[USER_THERMISTORS];
static void log_user_thermistor(const uint8_t t_index, const bool eprom=false);
static void reset_user_thermistors();
static float user_thermistor_to_deg_c(const uint8_t t_index, const int raw);
static bool set_pull_up_res(int8_t t_index, float value) {
//if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false;
if (!WITHIN(value, 1, 1000000)) return false;
user_thermistor[t_index].series_res = value;
return true;
}
static bool set_res25(int8_t t_index, float value) {
if (!WITHIN(value, 1, 10000000)) return false;
user_thermistor[t_index].res_25 = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
static bool set_beta(int8_t t_index, float value) {
if (!WITHIN(value, 1, 1000000)) return false;
user_thermistor[t_index].beta = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
static bool set_sh_coeff(int8_t t_index, float value) {
if (!WITHIN(value, -0.01f, 0.01f)) return false;
user_thermistor[t_index].sh_c_coeff = value;
user_thermistor[t_index].pre_calc = true;
return true;
}
#endif
#if HOTENDS
static float analog_to_celsius_hotend(const int raw, const uint8_t e);
#endif
#if HAS_HEATED_BED
static float analog_to_celsius_bed(const int raw);
#endif
#if HAS_TEMP_CHAMBER
static float analog_to_celsius_chamber(const int raw);
#endif
#if FAN_COUNT > 0
static uint8_t fan_speed[FAN_COUNT];
#define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT)
static void set_fan_speed(const uint8_t target, const uint16_t speed);
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
static bool fans_paused;
static uint8_t saved_fan_speed[FAN_COUNT];
#endif
static constexpr inline uint8_t fanPercent(const uint8_t speed) { return ui8_to_percent(speed); }
#if ENABLED(ADAPTIVE_FAN_SLOWING)
static uint8_t fan_speed_scaler[FAN_COUNT];
#else
static constexpr uint8_t fan_speed_scaler[FAN_COUNT] = ARRAY_N(FAN_COUNT, 128, 128, 128, 128, 128, 128);
#endif
static inline uint8_t scaledFanSpeed(const uint8_t target, const uint8_t fs) {
return (fs * uint16_t(fan_speed_scaler[target])) >> 7;
}
static inline uint8_t scaledFanSpeed(const uint8_t target) {
return scaledFanSpeed(target, fan_speed[target]);
}
#if ENABLED(EXTRA_FAN_SPEED)
static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT];
static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp);
#endif
#if HAS_LCD_MENU
static uint8_t lcd_tmpfan_speed[
#if ENABLED(SINGLENOZZLE)
_MAX(EXTRUDERS, FAN_COUNT)
#else
FAN_COUNT
#endif
];
static inline void lcd_setFanSpeed(const uint8_t target) { set_fan_speed(target, lcd_tmpfan_speed[target]); }
#if HAS_FAN0
FORCE_INLINE static void lcd_setFanSpeed0() { lcd_setFanSpeed(0); }
#endif
#if HAS_FAN1 || (ENABLED(SINGLENOZZLE) && EXTRUDERS > 1)
FORCE_INLINE static void lcd_setFanSpeed1() { lcd_setFanSpeed(1); }
#endif
#if HAS_FAN2 || (ENABLED(SINGLENOZZLE) && EXTRUDERS > 2)
FORCE_INLINE static void lcd_setFanSpeed2() { lcd_setFanSpeed(2); }
#endif
#endif // HAS_LCD_MENU
#if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
void set_fans_paused(const bool p);
#endif
#endif // FAN_COUNT > 0
static inline void zero_fan_speeds() {
#if FAN_COUNT > 0
FANS_LOOP(i) set_fan_speed(i, 0);
#endif
}
/**
* Called from the Temperature ISR
*/
static void readings_ready();
static void isr();
/**
* Call periodically to manage heaters
*/
static void manage_heater() _O2; // Added _O2 to work around a compiler error
/**
* Preheating hotends
*/
#ifdef MILLISECONDS_PREHEAT_TIME
static bool is_preheating(const uint8_t e) {
E_UNUSED();
return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
}
static void start_preheat_time(const uint8_t e) {
E_UNUSED();
preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
}
static void reset_preheat_time(const uint8_t e) {
E_UNUSED();
preheat_end_time[HOTEND_INDEX] = 0;
}
#else
#define is_preheating(n) (false)
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE static float degHotend(const uint8_t e) {
E_UNUSED();
#if HOTENDS
return temp_hotend[HOTEND_INDEX].celsius;
#else
return 0;
#endif
}
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE static int16_t rawHotendTemp(const uint8_t e) {
E_UNUSED();
#if HOTENDS
return temp_hotend[HOTEND_INDEX].raw;
#else
return 0;
#endif
}
#endif
FORCE_INLINE static int16_t degTargetHotend(const uint8_t e) {
E_UNUSED();
#if HOTENDS
return temp_hotend[HOTEND_INDEX].target;
#else
return 0;
#endif
}
#if WATCH_HOTENDS
static void start_watching_hotend(const uint8_t e=0);
#else
static inline void start_watching_hotend(const uint8_t e=0) { UNUSED(e); }
#endif
#if HOTENDS
#if HAS_LCD_MENU
static inline void start_watching_E0() { start_watching_hotend(0); }
static inline void start_watching_E1() { start_watching_hotend(1); }
static inline void start_watching_E2() { start_watching_hotend(2); }
static inline void start_watching_E3() { start_watching_hotend(3); }
static inline void start_watching_E4() { start_watching_hotend(4); }
static inline void start_watching_E5() { start_watching_hotend(5); }
#endif
static void setTargetHotend(const int16_t celsius, const uint8_t e) {
E_UNUSED();
const uint8_t ee = HOTEND_INDEX;
#ifdef MILLISECONDS_PREHEAT_TIME
if (celsius == 0)
reset_preheat_time(ee);
else if (temp_hotend[ee].target == 0)
start_preheat_time(ee);
#endif
#if ENABLED(AUTO_POWER_CONTROL)
powerManager.power_on();
#endif
temp_hotend[ee].target = _MIN(celsius, temp_range[ee].maxtemp - 15);
start_watching_hotend(ee);
}
FORCE_INLINE static bool isHeatingHotend(const uint8_t e) {
E_UNUSED();
return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius;
}
FORCE_INLINE static bool isCoolingHotend(const uint8_t e) {
E_UNUSED();
return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius;
}
#if HAS_TEMP_HOTEND
static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true
#if G26_CLICK_CAN_CANCEL
, const bool click_to_cancel=false
#endif
);
#endif
FORCE_INLINE static bool still_heating(const uint8_t e) {
return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
}
#endif // HOTENDS
#if HAS_HEATED_BED
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; }
#endif
FORCE_INLINE static float degBed() { return temp_bed.celsius; }
FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; }
FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; }
FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; }
#if WATCH_BED
static void start_watching_bed();
#else
static inline void start_watching_bed() {}
#endif
static void setTargetBed(const int16_t celsius) {
#if ENABLED(AUTO_POWER_CONTROL)
powerManager.power_on();
#endif
temp_bed.target =
#ifdef BED_MAXTEMP
_MIN(celsius, BED_MAXTEMP - 10)
#else
celsius
#endif
;
start_watching_bed();
}
static bool wait_for_bed(const bool no_wait_for_cooling=true
#if G26_CLICK_CAN_CANCEL
, const bool click_to_cancel=false
#endif
);
#endif // HAS_HEATED_BED
#if HAS_TEMP_CHAMBER
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; }
#endif
FORCE_INLINE static float degChamber() { return temp_chamber.celsius; }
#if HAS_HEATED_CHAMBER
FORCE_INLINE static int16_t degTargetChamber() { return temp_chamber.target; }
FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; }
FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; }
static bool wait_for_chamber(const bool no_wait_for_cooling=true);
#endif
#endif // HAS_TEMP_CHAMBER
#if WATCH_CHAMBER
static void start_watching_chamber();
#else
static inline void start_watching_chamber() {}
#endif
#if HAS_HEATED_CHAMBER
static void setTargetChamber(const int16_t celsius) {
temp_chamber.target =
#ifdef CHAMBER_MAXTEMP
_MIN(celsius, CHAMBER_MAXTEMP)
#else
celsius
#endif
;
start_watching_chamber();
}
#endif // HAS_HEATED_CHAMBER
/**
* The software PWM power for a heater
*/
static int16_t getHeaterPower(const heater_ind_t heater);
/**
* Switch off all heaters, set all target temperatures to 0
*/
static void disable_all_heaters();
/**
* Perform auto-tuning for hotend or bed in response to M303
*/
#if HAS_PID_HEATING
static void PID_autotune(const float &target, const heater_ind_t hotend, const int8_t ncycles, const bool set_result=false);
#if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
static bool adaptive_fan_slowing;
#elif ENABLED(ADAPTIVE_FAN_SLOWING)
static constexpr bool adaptive_fan_slowing = true;
#endif
/**
* Update the temp manager when PID values change
*/
#if ENABLED(PIDTEMP)
FORCE_INLINE static void updatePID() {
#if ENABLED(PID_EXTRUSION_SCALING)
last_e_position = 0;
#endif
}
#endif
#endif
#if ENABLED(PROBING_HEATERS_OFF)
static void pause(const bool p);
FORCE_INLINE static bool is_paused() { return paused; }
#endif
#if HEATER_IDLE_HANDLER
static void reset_heater_idle_timer(const uint8_t e) {
E_UNUSED();
hotend_idle[HOTEND_INDEX].reset();
start_watching_hotend(HOTEND_INDEX);
}
#if HAS_HEATED_BED
static void reset_bed_idle_timer() {
bed_idle.reset();
start_watching_bed();
}
#endif
#endif // HEATER_IDLE_HANDLER
#if HAS_TEMP_SENSOR
static void print_heater_states(const uint8_t target_extruder
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
, const bool include_r=false
#endif
);
#if ENABLED(AUTO_REPORT_TEMPERATURES)
static uint8_t auto_report_temp_interval;
static millis_t next_temp_report_ms;
static void auto_report_temperatures();
static inline void set_auto_report_interval(uint8_t v) {
NOMORE(v, 60);
auto_report_temp_interval = v;
next_temp_report_ms = millis() + 1000UL * v;
}
#endif
#endif
#if HAS_DISPLAY
static void set_heating_message(const uint8_t e);
#endif
private:
static void set_current_temp_raw();
static void updateTemperaturesFromRawValues();
#define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
#if HAS_MAX6675
#if BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
#define COUNT_6675 2
#else
#define COUNT_6675 1
#endif
#if COUNT_6675 > 1
#define READ_MAX6675(N) read_max6675(N)
#else
#define READ_MAX6675(N) read_max6675()
#endif
static int read_max6675(
#if COUNT_6675 > 1
const uint8_t hindex=0
#endif
);
#endif
static void checkExtruderAutoFans();
static float get_pid_output_hotend(const uint8_t e);
#if ENABLED(PIDTEMPBED)
static float get_pid_output_bed();
#endif
#if HAS_HEATED_CHAMBER
static float get_pid_output_chamber();
#endif
static void _temp_error(const heater_ind_t e, PGM_P const serial_msg, PGM_P const lcd_msg);
static void min_temp_error(const heater_ind_t e);
static void max_temp_error(const heater_ind_t e);
#define HAS_THERMAL_PROTECTION (EITHER(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER) || HAS_THERMALLY_PROTECTED_BED)
#if HAS_THERMAL_PROTECTION
enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
typedef struct {
millis_t timer = 0;
TRState state = TRInactive;
} tr_state_machine_t;
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
static tr_state_machine_t tr_state_machine[HOTENDS];
#endif
#if HAS_THERMALLY_PROTECTED_BED
static tr_state_machine_t tr_state_machine_bed;
#endif
#if ENABLED(THERMAL_PROTECTION_CHAMBER)
static tr_state_machine_t tr_state_machine_chamber;
#endif
static void thermal_runaway_protection(tr_state_machine_t &state, const float &current, const float &target, const heater_ind_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
#endif // HAS_THERMAL_PROTECTION
};
extern Temperature thermalManager;