Firmware2/Marlin/src/gcode/calibrate/G76_M871.cpp
Scott Lahteine bfad23d3e2 (c) 2020
2020-02-03 08:00:57 -06:00

408 lines
14 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* G76_M871.cpp - Temperature calibration/compensation for z-probing
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(PROBE_TEMP_COMPENSATION)
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/planner.h"
#include "../../module/probe.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../module/temperature.h"
#include "../../module/probe.h"
#include "../../feature/probe_temp_compensation.h"
/**
* G76: calibrate probe and/or bed temperature offsets
* Notes:
* - When calibrating probe, bed temperature is held constant.
* Compensation values are deltas to first probe measurement at probe temp. = 30°C.
* - When calibrating bed, probe temperature is held constant.
* Compensation values are deltas to first probe measurement at bed temp. = 60°C.
* - The hotend will not be heated at any time.
* - On my Prusa MK3S clone I put a piece of paper between the probe and the hotend
* so the hotend fan would not cool my probe constantly. Alternativly you could just
* make sure the fan is not running while running the calibration process.
*
* Probe calibration:
* - Moves probe to cooldown point.
* - Heats up bed to 100°C.
* - Moves probe to probing point (1mm above heatbed).
* - Waits until probe reaches target temperature (30°C).
* - Does a z-probing (=base value) and increases target temperature by 5°C.
* - Waits until probe reaches increased target temperature.
* - Does a z-probing (delta to base value will be a compensation value) and increases target temperature by 5°C.
* - Repeats last two steps until max. temperature reached or timeout (i.e. probe does not heat up any further).
* - Compensation values of higher temperatures will be extrapolated (using linear regression first).
* While this is not exact by any means it is still better than simply using the last compensation value.
*
* Bed calibration:
* - Moves probe to cooldown point.
* - Heats up bed to 60°C.
* - Moves probe to probing point (1mm above heatbed).
* - Waits until probe reaches target temperature (30°C).
* - Does a z-probing (=base value) and increases bed temperature by 5°C.
* - Moves probe to cooldown point.
* - Waits until probe is below 30°C and bed has reached target temperature.
* - Moves probe to probing point and waits until it reaches target temperature (30°C).
* - Does a z-probing (delta to base value will be a compensation value) and increases bed temperature by 5°C.
* - Repeats last four points until max. bed temperature reached (110°C) or timeout.
* - Compensation values of higher temperatures will be extrapolated (using linear regression first).
* While this is not exact by any means it is still better than simply using the last compensation value.
*
* G76 [B | P]
* - no flag - Both calibration procedures will be run.
* - `B` - Run bed temperature calibration.
* - `P` - Run probe temperature calibration.
*/
void GcodeSuite::G76() {
// Check if heated bed is available and z-homing is done with probe
#if TEMP_SENSOR_BED == 0 || !(HOMING_Z_WITH_PROBE)
return;
#endif
#if ENABLED(BLTOUCH)
// Make sure any BLTouch error condition is cleared
bltouch_command(BLTOUCH_RESET, BLTOUCH_RESET_DELAY);
set_bltouch_deployed(false);
#endif
bool do_bed_cal = parser.boolval('B'),
do_probe_cal = parser.boolval('P');
if (!do_bed_cal && !do_probe_cal)
do_bed_cal = do_probe_cal = true;
// Synchronize with planner
planner.synchronize();
// Report temperatures every second and handle heating timeouts
millis_t next_temp_report = millis() + 1000;
if (do_bed_cal || do_probe_cal) {
// Ensure park position is reachable
if (!position_is_reachable(ProbeTempComp::park_point.x, ProbeTempComp::park_point.y)
|| !(WITHIN(ProbeTempComp::park_point.z, Z_MIN_POS - 0.001f, Z_MAX_POS + 0.001f))
) {
SERIAL_ECHOLNPGM("!Park position unreachable - aborting.");
return;
}
// Ensure probe position is reachable
destination.set(
temp_comp.measure_point_x - probe.offset_xy.x,
temp_comp.measure_point_y - probe.offset_xy.y
);
if (!position_is_reachable_by_probe(destination)) {
SERIAL_ECHOLNPGM("!Probe position unreachable - aborting.");
return;
}
G28(true);
}
/******************************************
* Calibrate bed temperature offsets
******************************************/
if (do_bed_cal) {
uint16_t target_bed = temp_comp.cali_info_init[TSI_BED].start_temp,
target_probe = temp_comp.bed_calib_probe_temp;
SERIAL_ECHOLNPGM("Waiting for printer to cool down.");
while (thermalManager.degBed() > target_bed
|| thermalManager.degProbe() > target_probe
) {
idle(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
true
#endif
);
const millis_t ms = millis();
if (ELAPSED(ms, next_temp_report)) {
thermalManager.print_heater_states(active_extruder);
next_temp_report = ms + 1000;
}
}
// Disable leveling so it won't mess with us
#if HAS_LEVELING
set_bed_leveling_enabled(false);
#endif
bool timeout = false;
while (true) {
thermalManager.setTargetBed(target_bed);
SERIAL_ECHOLNPAIR("Target Bed: ", target_bed, "; Probe: ", target_probe);
// Park nozzle
do_blocking_move_to(ProbeTempComp::park_point.x, ProbeTempComp::park_point.y, ProbeTempComp::park_point.z);
// Wait for heatbed to reach target temp and probe to cool below target temp
SERIAL_ECHOLNPGM("Waiting for bed and probe to reach target temp.");
const millis_t probe_timeout_ms = millis() + 900UL * 1000UL;
while (fabs(thermalManager.degBed() - float(target_bed)) > 0.1 || thermalManager.degProbe() > target_probe) {
idle(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
true
#endif
);
const millis_t ms = millis();
if (ELAPSED(ms, next_temp_report)) {
thermalManager.print_heater_states(active_extruder);
next_temp_report = ms + 1000;
}
if (ELAPSED(ms, probe_timeout_ms)) {
SERIAL_ECHOLNPGM("!Bed heating timeout.");
timeout = true;
break;
}
}
if (timeout) break;
// Move probe to probing point and wait for probe to reach target temp
destination.set(temp_comp.measure_point_x, temp_comp.measure_point_y, 0.5);
do_blocking_move_to(destination.x, destination.y, destination.z);
SERIAL_ECHOLNPGM("Waiting for probe heating.");
while (thermalManager.degProbe() < target_probe) {
idle(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
true
#endif
);
const millis_t ms = millis();
if (ELAPSED(ms, next_temp_report)) {
thermalManager.print_heater_states(active_extruder);
next_temp_report = ms + 1000;
}
}
// Raise nozzle before probing
destination.z = 5.0;
do_blocking_move_to_z(destination.z);
// Do a single probe
remember_feedrate_scaling_off();
const float measured_z = probe.probe_at_point(
destination.x + probe.offset_xy.x,
destination.y + probe.offset_xy.y,
PROBE_PT_NONE
);
restore_feedrate_and_scaling();
if (isnan(measured_z)) {
SERIAL_ECHOLNPGM("!Received NAN measurement - aborting.");
break;
}
else
SERIAL_ECHOLNPAIR_F("Measured: ", measured_z);
if (target_bed == temp_comp.cali_info_init[TSI_BED].start_temp)
temp_comp.prepare_new_calibration(measured_z);
else
temp_comp.push_back_new_measurement(TSI_BED, measured_z);
target_bed += temp_comp.cali_info_init[TSI_BED].temp_res;
if (target_bed > temp_comp.max_bed_temp) break;
}
SERIAL_ECHOLNPAIR("Retrieved measurements: ", temp_comp.get_index());
if (temp_comp.finish_calibration(TSI_BED))
SERIAL_ECHOLNPGM("Successfully calibrated bed.");
else
SERIAL_ECHOLNPGM("!Failed to calibrated bed - reset calibration values.");
// Cleanup
thermalManager.setTargetBed(0);
#if HAS_LEVELING
set_bed_leveling_enabled(true);
#endif
} // do_bed_cal
/********************************************
* Calibrate probe temperature offsets
********************************************/
if (do_probe_cal) {
// Park nozzle
do_blocking_move_to(ProbeTempComp::park_point.x, ProbeTempComp::park_point.y, ProbeTempComp::park_point.z);
// Initialize temperatures
uint16_t target_bed = temp_comp.probe_calib_bed_temp,
target_probe = temp_comp.cali_info_init[TSI_PROBE].start_temp;
thermalManager.setTargetBed(target_bed);
SERIAL_ECHOLNPGM("Waiting for bed and probe temperature.");
while (fabs(thermalManager.degBed() - float(target_bed)) > 0.1f
|| thermalManager.degProbe() > target_probe
) {
idle(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
true
#endif
);
const millis_t ms = millis();
if (ELAPSED(ms, next_temp_report)) {
thermalManager.print_heater_states(active_extruder);
next_temp_report = ms + 1000;
}
}
// Disable leveling so it won't mess with us
#if HAS_LEVELING
set_bed_leveling_enabled(false);
#endif
bool timeout = false;
while (true) {
// Move probe to probing point and wait for it to reach target temperature
destination.set(temp_comp.measure_point_x, temp_comp.measure_point_y, 0.5);
do_blocking_move_to(destination);
SERIAL_ECHOLNPAIR(
"Bed temp: ", target_bed,
"; Probe temp: ", target_probe,
" Waiting for probe heating."
);
const millis_t probe_timeout_ms = millis() + 900UL * 1000UL;
while (thermalManager.degProbe() < target_probe) {
idle(
#if ENABLED(ADVANCED_PAUSE_FEATURE)
true
#endif
);
const millis_t ms = millis();
if (ELAPSED(ms, next_temp_report)) {
thermalManager.print_heater_states(active_extruder);
next_temp_report = ms + 1000;
}
if (ELAPSED(ms, probe_timeout_ms)) {
SERIAL_ECHOLNPGM("!Probe heating aborted due to timeout.");
timeout = true;
break;
}
}
if (timeout) break;
// Raise nozzle before probing
destination.z = 5.0;
do_blocking_move_to_z(destination.z);
// Do a single probe
remember_feedrate_scaling_off();
const float measured_z = probe.probe_at_point(
destination.x + probe.offset_xy.x,
destination.y + probe.offset_xy.y,
PROBE_PT_NONE
);
restore_feedrate_and_scaling();
if (isnan(measured_z)) {
SERIAL_ECHOLNPGM("!Received NAN measurement - aborting.");
break;
}
else
SERIAL_ECHOLNPAIR_F("Measured: ", measured_z);
if (target_probe == temp_comp.cali_info_init[TSI_PROBE].start_temp)
temp_comp.prepare_new_calibration(measured_z);
else
temp_comp.push_back_new_measurement(TSI_PROBE, measured_z);
target_probe += temp_comp.cali_info_init[TSI_PROBE].temp_res;
if (target_probe > temp_comp.cali_info_init[TSI_PROBE].end_temp) break;
}
SERIAL_ECHOLNPAIR("Retrieved measurements: ", temp_comp.get_index());
if (temp_comp.finish_calibration(TSI_PROBE))
SERIAL_ECHOLNPGM("Successfully calibrated probe.");
else
SERIAL_ECHOLNPGM("!Failed to calibrated probe.");
// Cleanup
thermalManager.setTargetBed(0);
#if HAS_LEVELING
set_bed_leveling_enabled(true);
#endif
SERIAL_ECHOLNPGM("Final compensation values:");
temp_comp.print_offsets();
} // do_probe_cal
}
/**
* M871: Report / reset temperature compensation offsets.
* Note: This does not affect values in EEPROM until M500.
*
* M871 [ R | B | P | E ]
*
* No Parameters - Print current offset values.
*
* Select only one of these flags:
* R - Reset all offsets to zero (i.e., disable compensation).
* B - Manually set offset for bed
* P - Manually set offset for probe
* E - Manually set offset for extruder
*
* With B, P, or E:
* I[index] - Index in the array
* V[value] - Adjustment in µm
*/
void GcodeSuite::M871() {
if (parser.seen('R')) {
// Reset z-probe offsets to factory defaults
temp_comp.clear_all_offsets();
SERIAL_ECHOLNPGM("Offsets reset to default.");
}
else if (parser.seen("BPE")) {
if (!parser.seenval('V')) return;
const int16_t val = parser.value_int();
if (!parser.seenval('I')) return;
const int16_t idx = parser.value_int();
const TempSensorID mod = (parser.seen('B') ? TSI_BED :
#if ENABLED(USE_TEMP_EXT_COMPENSATION)
parser.seen('E') ? TSI_EXT :
#endif
TSI_PROBE
);
if (idx > 0 && temp_comp.set_offset(mod, idx - 1, val))
SERIAL_ECHOLNPAIR("Set value: ", val);
else
SERIAL_ECHOLNPGM("!Invalid index. Failed to set value (note: value at index 0 is constant).");
}
else // Print current Z-probe adjustments. Note: Values in EEPROM might differ.
temp_comp.print_offsets();
}
#endif // PROBE_TEMP_COMPENSATION