610 lines
23 KiB
C++
610 lines
23 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
#pragma once
|
|
|
|
#if !defined(__has_include)
|
|
#define __has_include(...) 1
|
|
#endif
|
|
|
|
#define ABCE 4
|
|
#define XYZE 4
|
|
#define ABC 3
|
|
#define XYZ 3
|
|
#define XY 2
|
|
|
|
#define _AXIS(A) (A##_AXIS)
|
|
|
|
#define _XMIN_ 100
|
|
#define _YMIN_ 200
|
|
#define _ZMIN_ 300
|
|
#define _XMAX_ 101
|
|
#define _YMAX_ 201
|
|
#define _ZMAX_ 301
|
|
#define _XDIAG_ 102
|
|
#define _YDIAG_ 202
|
|
#define _ZDIAG_ 302
|
|
#define _E0DIAG_ 400
|
|
#define _E1DIAG_ 401
|
|
#define _E2DIAG_ 402
|
|
#define _E3DIAG_ 403
|
|
#define _E4DIAG_ 404
|
|
#define _E5DIAG_ 405
|
|
#define _E6DIAG_ 406
|
|
#define _E7DIAG_ 407
|
|
|
|
#define _FORCE_INLINE_ __attribute__((__always_inline__)) __inline__
|
|
#define FORCE_INLINE __attribute__((always_inline)) inline
|
|
#define NO_INLINE __attribute__((noinline))
|
|
#define _UNUSED __attribute__((unused))
|
|
#define _O0 __attribute__((optimize("O0")))
|
|
#define _Os __attribute__((optimize("Os")))
|
|
#define _O1 __attribute__((optimize("O1")))
|
|
#define _O2 __attribute__((optimize("O2")))
|
|
#define _O3 __attribute__((optimize("O3")))
|
|
|
|
#define IS_CONSTEXPR(...) __builtin_constant_p(__VA_ARGS__) // Only valid solution with C++14. Should use std::is_constant_evaluated() in C++20 instead
|
|
|
|
#ifndef UNUSED
|
|
#define UNUSED(x) ((void)(x))
|
|
#endif
|
|
|
|
// Clock speed factors
|
|
#if !defined(CYCLES_PER_MICROSECOND) && !defined(__STM32F1__)
|
|
#define CYCLES_PER_MICROSECOND (F_CPU / 1000000UL) // 16 or 20 on AVR
|
|
#endif
|
|
|
|
// Nanoseconds per cycle
|
|
#define NANOSECONDS_PER_CYCLE (1000000000.0 / F_CPU)
|
|
|
|
// Macros to make a string from a macro
|
|
#define STRINGIFY_(M) #M
|
|
#define STRINGIFY(M) STRINGIFY_(M)
|
|
|
|
#define A(CODE) " " CODE "\n\t"
|
|
#define L(CODE) CODE ":\n\t"
|
|
|
|
// Macros for bit masks
|
|
#undef _BV
|
|
#define _BV(n) (1<<(n))
|
|
#define TEST(n,b) (!!((n)&_BV(b)))
|
|
#define SET_BIT_TO(N,B,TF) do{ if (TF) SBI(N,B); else CBI(N,B); }while(0)
|
|
#ifndef SBI
|
|
#define SBI(A,B) (A |= _BV(B))
|
|
#endif
|
|
#ifndef CBI
|
|
#define CBI(A,B) (A &= ~_BV(B))
|
|
#endif
|
|
#define TBI(N,B) (N ^= _BV(B))
|
|
#define _BV32(b) (1UL << (b))
|
|
#define TEST32(n,b) !!((n)&_BV32(b))
|
|
#define SBI32(n,b) (n |= _BV32(b))
|
|
#define CBI32(n,b) (n &= ~_BV32(b))
|
|
#define TBI32(N,B) (N ^= _BV32(B))
|
|
|
|
#define cu(x) ({__typeof__(x) _x = (x); (_x)*(_x)*(_x);})
|
|
#define RADIANS(d) ((d)*float(M_PI)/180.0f)
|
|
#define DEGREES(r) ((r)*180.0f/float(M_PI))
|
|
#define HYPOT2(x,y) (sq(x)+sq(y))
|
|
#define NORMSQ(x,y,z) (sq(x)+sq(y)+sq(z))
|
|
|
|
#define CIRCLE_AREA(R) (float(M_PI) * sq(float(R)))
|
|
#define CIRCLE_CIRC(R) (2 * float(M_PI) * float(R))
|
|
|
|
#define SIGN(a) ({__typeof__(a) _a = (a); (_a>0)-(_a<0);})
|
|
#define IS_POWER_OF_2(x) ((x) && !((x) & ((x) - 1)))
|
|
|
|
// Macros to constrain values
|
|
#ifdef __cplusplus
|
|
|
|
// C++11 solution that is standards compliant.
|
|
template <class V, class N> static inline constexpr void NOLESS(V& v, const N n) {
|
|
if (n > v) v = n;
|
|
}
|
|
template <class V, class N> static inline constexpr void NOMORE(V& v, const N n) {
|
|
if (n < v) v = n;
|
|
}
|
|
template <class V, class N1, class N2> static inline constexpr void LIMIT(V& v, const N1 n1, const N2 n2) {
|
|
if (n1 > v) v = n1;
|
|
else if (n2 < v) v = n2;
|
|
}
|
|
|
|
#else
|
|
|
|
#define NOLESS(v, n) \
|
|
do{ \
|
|
__typeof__(v) _n = (n); \
|
|
if (_n > v) v = _n; \
|
|
}while(0)
|
|
|
|
#define NOMORE(v, n) \
|
|
do{ \
|
|
__typeof__(v) _n = (n); \
|
|
if (_n < v) v = _n; \
|
|
}while(0)
|
|
|
|
#define LIMIT(v, n1, n2) \
|
|
do{ \
|
|
__typeof__(v) _n1 = (n1); \
|
|
__typeof__(v) _n2 = (n2); \
|
|
if (_n1 > v) v = _n1; \
|
|
else if (_n2 < v) v = _n2; \
|
|
}while(0)
|
|
|
|
#endif
|
|
|
|
// Macros to chain up to 14 conditions
|
|
#define _DO_1(W,C,A) (_##W##_1(A))
|
|
#define _DO_2(W,C,A,B) (_##W##_1(A) C _##W##_1(B))
|
|
#define _DO_3(W,C,A,V...) (_##W##_1(A) C _DO_2(W,C,V))
|
|
#define _DO_4(W,C,A,V...) (_##W##_1(A) C _DO_3(W,C,V))
|
|
#define _DO_5(W,C,A,V...) (_##W##_1(A) C _DO_4(W,C,V))
|
|
#define _DO_6(W,C,A,V...) (_##W##_1(A) C _DO_5(W,C,V))
|
|
#define _DO_7(W,C,A,V...) (_##W##_1(A) C _DO_6(W,C,V))
|
|
#define _DO_8(W,C,A,V...) (_##W##_1(A) C _DO_7(W,C,V))
|
|
#define _DO_9(W,C,A,V...) (_##W##_1(A) C _DO_8(W,C,V))
|
|
#define _DO_10(W,C,A,V...) (_##W##_1(A) C _DO_9(W,C,V))
|
|
#define _DO_11(W,C,A,V...) (_##W##_1(A) C _DO_10(W,C,V))
|
|
#define _DO_12(W,C,A,V...) (_##W##_1(A) C _DO_11(W,C,V))
|
|
#define _DO_13(W,C,A,V...) (_##W##_1(A) C _DO_12(W,C,V))
|
|
#define _DO_14(W,C,A,V...) (_##W##_1(A) C _DO_13(W,C,V))
|
|
#define _DO_15(W,C,A,V...) (_##W##_1(A) C _DO_14(W,C,V))
|
|
#define __DO_N(W,C,N,V...) _DO_##N(W,C,V)
|
|
#define _DO_N(W,C,N,V...) __DO_N(W,C,N,V)
|
|
#define DO(W,C,V...) (_DO_N(W,C,NUM_ARGS(V),V))
|
|
|
|
// Macros to support option testing
|
|
#define _CAT(a,V...) a##V
|
|
#define CAT(a,V...) _CAT(a,V)
|
|
|
|
#define _ISENA_ ~,1
|
|
#define _ISENA_1 ~,1
|
|
#define _ISENA_0x1 ~,1
|
|
#define _ISENA_true ~,1
|
|
#define _ISENA(V...) IS_PROBE(V)
|
|
|
|
#define _ENA_1(O) _ISENA(CAT(_IS,CAT(ENA_, O)))
|
|
#define _DIS_1(O) NOT(_ENA_1(O))
|
|
#define ENABLED(V...) DO(ENA,&&,V)
|
|
#define DISABLED(V...) DO(DIS,&&,V)
|
|
#define COUNT_ENABLED(V...) DO(ENA,+,V)
|
|
|
|
#define TERN(O,A,B) _TERN(_ENA_1(O),B,A) // OPTION converted to '0' or '1'
|
|
#define TERN0(O,A) _TERN(_ENA_1(O),0,A) // OPTION converted to A or '0'
|
|
#define TERN1(O,A) _TERN(_ENA_1(O),1,A) // OPTION converted to A or '1'
|
|
#define TERN_(O,A) _TERN(_ENA_1(O),,A) // OPTION converted to A or '<nul>'
|
|
#define _TERN(E,V...) __TERN(_CAT(T_,E),V) // Prepend 'T_' to get 'T_0' or 'T_1'
|
|
#define __TERN(T,V...) ___TERN(_CAT(_NO,T),V) // Prepend '_NO' to get '_NOT_0' or '_NOT_1'
|
|
#define ___TERN(P,V...) THIRD(P,V) // If first argument has a comma, A. Else B.
|
|
|
|
#define IF_ENABLED TERN_
|
|
#define IF_DISABLED(O,A) TERN(O,,A)
|
|
|
|
#define ANY(V...) !DISABLED(V)
|
|
#define NONE(V...) DISABLED(V)
|
|
#define ALL(V...) ENABLED(V)
|
|
#define BOTH(V1,V2) ALL(V1,V2)
|
|
#define EITHER(V1,V2) ANY(V1,V2)
|
|
#define MANY(V...) (COUNT_ENABLED(V) > 1)
|
|
|
|
// Macros to support pins/buttons exist testing
|
|
#define PIN_EXISTS(PN) (defined(PN##_PIN) && PN##_PIN >= 0)
|
|
#define _PINEX_1 PIN_EXISTS
|
|
#define PINS_EXIST(V...) DO(PINEX,&&,V)
|
|
#define ANY_PIN(V...) DO(PINEX,||,V)
|
|
|
|
#define BUTTON_EXISTS(BN) (defined(BTN_##BN) && BTN_##BN >= 0)
|
|
#define _BTNEX_1 BUTTON_EXISTS
|
|
#define BUTTONS_EXIST(V...) DO(BTNEX,&&,V)
|
|
#define ANY_BUTTON(V...) DO(BTNEX,||,V)
|
|
|
|
#define WITHIN(N,L,H) ((N) >= (L) && (N) <= (H))
|
|
#define ISEOL(C) ((C) == '\n' || (C) == '\r')
|
|
#define NUMERIC(a) WITHIN(a, '0', '9')
|
|
#define DECIMAL(a) (NUMERIC(a) || a == '.')
|
|
#define HEXCHR(a) (NUMERIC(a) ? (a) - '0' : WITHIN(a, 'a', 'f') ? ((a) - 'a' + 10) : WITHIN(a, 'A', 'F') ? ((a) - 'A' + 10) : -1)
|
|
#define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-' || (a) == '+')
|
|
#define DECIMAL_SIGNED(a) (DECIMAL(a) || (a) == '-' || (a) == '+')
|
|
#define COUNT(a) (sizeof(a)/sizeof(*a))
|
|
#define ZERO(a) memset(a,0,sizeof(a))
|
|
#define COPY(a,b) do{ \
|
|
static_assert(sizeof(a[0]) == sizeof(b[0]), "COPY: '" STRINGIFY(a) "' and '" STRINGIFY(b) "' types (sizes) don't match!"); \
|
|
memcpy(&a[0],&b[0],_MIN(sizeof(a),sizeof(b))); \
|
|
}while(0)
|
|
|
|
// Macros for initializing arrays
|
|
#define LIST_16(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P
|
|
#define LIST_15(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N,O
|
|
#define LIST_14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,...) A,B,C,D,E,F,G,H,I,J,K,L,M,N
|
|
#define LIST_13(A,B,C,D,E,F,G,H,I,J,K,L,M,...) A,B,C,D,E,F,G,H,I,J,K,L,M
|
|
#define LIST_12(A,B,C,D,E,F,G,H,I,J,K,L,...) A,B,C,D,E,F,G,H,I,J,K,L
|
|
#define LIST_11(A,B,C,D,E,F,G,H,I,J,K,...) A,B,C,D,E,F,G,H,I,J,K
|
|
#define LIST_10(A,B,C,D,E,F,G,H,I,J,...) A,B,C,D,E,F,G,H,I,J
|
|
#define LIST_9( A,B,C,D,E,F,G,H,I,...) A,B,C,D,E,F,G,H,I
|
|
#define LIST_8( A,B,C,D,E,F,G,H,...) A,B,C,D,E,F,G,H
|
|
#define LIST_7( A,B,C,D,E,F,G,...) A,B,C,D,E,F,G
|
|
#define LIST_6( A,B,C,D,E,F,...) A,B,C,D,E,F
|
|
#define LIST_5( A,B,C,D,E,...) A,B,C,D,E
|
|
#define LIST_4( A,B,C,D,...) A,B,C,D
|
|
#define LIST_3( A,B,C,...) A,B,C
|
|
#define LIST_2( A,B,...) A,B
|
|
#define LIST_1( A,...) A
|
|
|
|
#define _LIST_N(N,V...) LIST_##N(V)
|
|
#define LIST_N(N,V...) _LIST_N(N,V)
|
|
#define ARRAY_N(N,V...) { _LIST_N(N,V) }
|
|
|
|
#define _JOIN_1(O) (O)
|
|
#define JOIN_N(N,C,V...) (DO(JOIN,C,LIST_N(N,V)))
|
|
|
|
#define LOOP_S_LE_N(VAR, S, N) for (uint8_t VAR=(S); VAR<=(N); VAR++)
|
|
#define LOOP_S_L_N(VAR, S, N) for (uint8_t VAR=(S); VAR<(N); VAR++)
|
|
#define LOOP_LE_N(VAR, N) LOOP_S_LE_N(VAR, 0, N)
|
|
#define LOOP_L_N(VAR, N) LOOP_S_L_N(VAR, 0, N)
|
|
|
|
#define NOOP (void(0))
|
|
|
|
#define CEILING(x,y) (((x) + (y) - 1) / (y))
|
|
|
|
#undef ABS
|
|
#ifdef __cplusplus
|
|
template <class T> static inline constexpr const T ABS(const T v) { return v >= 0 ? v : -v; }
|
|
#else
|
|
#define ABS(a) ({__typeof__(a) _a = (a); _a >= 0 ? _a : -_a;})
|
|
#endif
|
|
|
|
#define UNEAR_ZERO(x) ((x) < 0.000001f)
|
|
#define NEAR_ZERO(x) WITHIN(x, -0.000001f, 0.000001f)
|
|
#define NEAR(x,y) NEAR_ZERO((x)-(y))
|
|
|
|
#define RECIPROCAL(x) (NEAR_ZERO(x) ? 0 : (1 / float(x)))
|
|
#define FIXFLOAT(f) ({__typeof__(f) _f = (f); _f + (_f < 0 ? -0.0000005f : 0.0000005f);})
|
|
|
|
//
|
|
// Maths macros that can be overridden by HAL
|
|
//
|
|
#define ACOS(x) acosf(x)
|
|
#define ATAN2(y, x) atan2f(y, x)
|
|
#define POW(x, y) powf(x, y)
|
|
#define SQRT(x) sqrtf(x)
|
|
#define RSQRT(x) (1.0f / sqrtf(x))
|
|
#define CEIL(x) ceilf(x)
|
|
#define FLOOR(x) floorf(x)
|
|
#define TRUNC(x) truncf(x)
|
|
#define LROUND(x) lroundf(x)
|
|
#define FMOD(x, y) fmodf(x, y)
|
|
#define HYPOT(x,y) SQRT(HYPOT2(x,y))
|
|
|
|
// Use NUM_ARGS(__VA_ARGS__) to get the number of variadic arguments
|
|
#define _NUM_ARGS(_,Z,Y,X,W,V,U,T,S,R,Q,P,O,N,M,L,K,J,I,H,G,F,E,D,C,B,A,OUT,...) OUT
|
|
#define NUM_ARGS(V...) _NUM_ARGS(0,V,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0)
|
|
|
|
#ifdef __cplusplus
|
|
|
|
#ifndef _MINMAX_H_
|
|
#define _MINMAX_H_
|
|
|
|
extern "C++" {
|
|
|
|
// C++11 solution that is standards compliant. Return type is deduced automatically
|
|
template <class L, class R> static inline constexpr auto _MIN(const L lhs, const R rhs) -> decltype(lhs + rhs) {
|
|
return lhs < rhs ? lhs : rhs;
|
|
}
|
|
template <class L, class R> static inline constexpr auto _MAX(const L lhs, const R rhs) -> decltype(lhs + rhs) {
|
|
return lhs > rhs ? lhs : rhs;
|
|
}
|
|
template<class T, class ... Ts> static inline constexpr const T _MIN(T V, Ts... Vs) { return _MIN(V, _MIN(Vs...)); }
|
|
template<class T, class ... Ts> static inline constexpr const T _MAX(T V, Ts... Vs) { return _MAX(V, _MAX(Vs...)); }
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// Allow manipulating enumeration value like flags without ugly cast everywhere
|
|
#define ENUM_FLAGS(T) \
|
|
FORCE_INLINE constexpr T operator&(T x, T y) { return static_cast<T>(static_cast<int>(x) & static_cast<int>(y)); } \
|
|
FORCE_INLINE constexpr T operator|(T x, T y) { return static_cast<T>(static_cast<int>(x) | static_cast<int>(y)); } \
|
|
FORCE_INLINE constexpr T operator^(T x, T y) { return static_cast<T>(static_cast<int>(x) ^ static_cast<int>(y)); } \
|
|
FORCE_INLINE constexpr T operator~(T x) { return static_cast<T>(~static_cast<int>(x)); } \
|
|
FORCE_INLINE T & operator&=(T &x, T y) { return x &= y; } \
|
|
FORCE_INLINE T & operator|=(T &x, T y) { return x |= y; } \
|
|
FORCE_INLINE T & operator^=(T &x, T y) { return x ^= y; }
|
|
|
|
// C++11 solution that is standard compliant. <type_traits> is not available on all platform
|
|
namespace Private {
|
|
template<bool, typename _Tp = void> struct enable_if { };
|
|
template<typename _Tp> struct enable_if<true, _Tp> { typedef _Tp type; };
|
|
|
|
template<typename T, typename U> struct is_same { enum { value = false }; };
|
|
template<typename T> struct is_same<T, T> { enum { value = true }; };
|
|
|
|
template <typename T, typename ... Args> struct first_type_of { typedef T type; };
|
|
template <typename T> struct first_type_of<T> { typedef T type; };
|
|
}
|
|
// C++11 solution using SFINAE to detect the existance of a member in a class at compile time.
|
|
// It creates a HasMember<Type> structure containing 'value' set to true if the member exists
|
|
#define HAS_MEMBER_IMPL(Member) \
|
|
namespace Private { \
|
|
template <typename Type, typename Yes=char, typename No=long> struct HasMember_ ## Member { \
|
|
template <typename C> static Yes& test( decltype(&C::Member) ) ; \
|
|
template <typename C> static No& test(...); \
|
|
enum { value = sizeof(test<Type>(0)) == sizeof(Yes) }; }; \
|
|
}
|
|
|
|
// Call the method if it exists, but do nothing if it does not. The method is detected at compile time.
|
|
// If the method exists, this is inlined and does not cost anything. Else, an "empty" wrapper is created, returning a default value
|
|
#define CALL_IF_EXISTS_IMPL(Return, Method, ...) \
|
|
HAS_MEMBER_IMPL(Method) \
|
|
namespace Private { \
|
|
template <typename T, typename ... Args> FORCE_INLINE typename enable_if<HasMember_ ## Method <T>::value, Return>::type Call_ ## Method(T * t, Args... a) { return static_cast<Return>(t->Method(a...)); } \
|
|
_UNUSED static Return Call_ ## Method(...) { return __VA_ARGS__; } \
|
|
}
|
|
#define CALL_IF_EXISTS(Return, That, Method, ...) \
|
|
static_cast<Return>(Private::Call_ ## Method(That, ##__VA_ARGS__))
|
|
|
|
// Compile-time string manipulation
|
|
namespace CompileTimeString {
|
|
// Simple compile-time parser to find the position of the end of a string
|
|
constexpr const char* findStringEnd(const char *str) {
|
|
return *str ? findStringEnd(str + 1) : str;
|
|
}
|
|
|
|
// Check whether a string contains a specific character
|
|
constexpr bool contains(const char *str, const char ch) {
|
|
return *str == ch ? true : (*str ? contains(str + 1, ch) : false);
|
|
}
|
|
// Find the last position of the specific character (should be called with findStringEnd)
|
|
constexpr const char* findLastPos(const char *str, const char ch) {
|
|
return *str == ch ? (str + 1) : findLastPos(str - 1, ch);
|
|
}
|
|
// Compile-time evaluation of the last part of a file path
|
|
// Typically used to shorten the path to file in compiled strings
|
|
// CompileTimeString::baseName(__FILE__) returns "macros.h" and not /path/to/Marlin/src/core/macros.h
|
|
constexpr const char* baseName(const char *str) {
|
|
return contains(str, '/') ? findLastPos(findStringEnd(str), '/') : str;
|
|
}
|
|
|
|
// Find the first occurence of a character in a string (or return the last position in the string)
|
|
constexpr const char* findFirst(const char *str, const char ch) {
|
|
return *str == ch || *str == 0 ? (str + 1) : findFirst(str + 1, ch);
|
|
}
|
|
// Compute the string length at compile time
|
|
constexpr unsigned stringLen(const char *str) {
|
|
return *str == 0 ? 0 : 1 + stringLen(str + 1);
|
|
}
|
|
}
|
|
|
|
#define ONLY_FILENAME CompileTimeString::baseName(__FILE__)
|
|
/** Get the templated type name. This does not depends on RTTI, but on the preprocessor, so it should be quite safe to use even on old compilers.
|
|
WARNING: DO NOT RENAME THIS FUNCTION (or change the text inside the function to match what the preprocessor will generate)
|
|
The name is chosen very short since the binary will store "const char* gtn(T*) [with T = YourTypeHere]" so avoid long function name here */
|
|
template <typename T>
|
|
inline const char* gtn(T*) {
|
|
// It works on GCC by instantiating __PRETTY_FUNCTION__ and parsing the result. So the syntax here is very limited to GCC output
|
|
constexpr unsigned verboseChatLen = sizeof("const char* gtn(T*) [with T = ") - 1;
|
|
static char templateType[sizeof(__PRETTY_FUNCTION__) - verboseChatLen] = {};
|
|
__builtin_memcpy(templateType, __PRETTY_FUNCTION__ + verboseChatLen, sizeof(__PRETTY_FUNCTION__) - verboseChatLen - 2);
|
|
return templateType;
|
|
}
|
|
|
|
#else
|
|
|
|
#define MIN_2(a,b) ((a)<(b)?(a):(b))
|
|
#define MIN_3(a,V...) MIN_2(a,MIN_2(V))
|
|
#define MIN_4(a,V...) MIN_2(a,MIN_3(V))
|
|
#define MIN_5(a,V...) MIN_2(a,MIN_4(V))
|
|
#define MIN_6(a,V...) MIN_2(a,MIN_5(V))
|
|
#define MIN_7(a,V...) MIN_2(a,MIN_6(V))
|
|
#define MIN_8(a,V...) MIN_2(a,MIN_7(V))
|
|
#define MIN_9(a,V...) MIN_2(a,MIN_8(V))
|
|
#define MIN_10(a,V...) MIN_2(a,MIN_9(V))
|
|
#define __MIN_N(N,V...) MIN_##N(V)
|
|
#define _MIN_N(N,V...) __MIN_N(N,V)
|
|
#define _MIN(V...) _MIN_N(NUM_ARGS(V), V)
|
|
|
|
#define MAX_2(a,b) ((a)>(b)?(a):(b))
|
|
#define MAX_3(a,V...) MAX_2(a,MAX_2(V))
|
|
#define MAX_4(a,V...) MAX_2(a,MAX_3(V))
|
|
#define MAX_5(a,V...) MAX_2(a,MAX_4(V))
|
|
#define MAX_6(a,V...) MAX_2(a,MAX_5(V))
|
|
#define MAX_7(a,V...) MAX_2(a,MAX_6(V))
|
|
#define MAX_8(a,V...) MAX_2(a,MAX_7(V))
|
|
#define MAX_9(a,V...) MAX_2(a,MAX_8(V))
|
|
#define MAX_10(a,V...) MAX_2(a,MAX_9(V))
|
|
#define __MAX_N(N,V...) MAX_##N(V)
|
|
#define _MAX_N(N,V...) __MAX_N(N,V)
|
|
#define _MAX(V...) _MAX_N(NUM_ARGS(V), V)
|
|
|
|
#endif
|
|
|
|
// Macros for adding
|
|
#define INC_0 1
|
|
#define INC_1 2
|
|
#define INC_2 3
|
|
#define INC_3 4
|
|
#define INC_4 5
|
|
#define INC_5 6
|
|
#define INC_6 7
|
|
#define INC_7 8
|
|
#define INC_8 9
|
|
#define INC_9 10
|
|
#define INC_10 11
|
|
#define INC_11 12
|
|
#define INC_12 13
|
|
#define INC_13 14
|
|
#define INC_14 15
|
|
#define INC_15 16
|
|
#define INCREMENT_(n) INC_##n
|
|
#define INCREMENT(n) INCREMENT_(n)
|
|
|
|
#define ADD0(N) N
|
|
#define ADD1(N) INCREMENT_(N)
|
|
#define ADD2(N) ADD1(ADD1(N))
|
|
#define ADD3(N) ADD1(ADD2(N))
|
|
#define ADD4(N) ADD2(ADD2(N))
|
|
#define ADD5(N) ADD2(ADD3(N))
|
|
#define ADD6(N) ADD3(ADD3(N))
|
|
#define ADD7(N) ADD3(ADD4(N))
|
|
#define ADD8(N) ADD4(ADD4(N))
|
|
#define ADD9(N) ADD4(ADD5(N))
|
|
#define ADD10(N) ADD5(ADD5(N))
|
|
|
|
// Macros for subtracting
|
|
#define DEC_0 0
|
|
#define DEC_1 0
|
|
#define DEC_2 1
|
|
#define DEC_3 2
|
|
#define DEC_4 3
|
|
#define DEC_5 4
|
|
#define DEC_6 5
|
|
#define DEC_7 6
|
|
#define DEC_8 7
|
|
#define DEC_9 8
|
|
#define DEC_10 9
|
|
#define DEC_11 10
|
|
#define DEC_12 11
|
|
#define DEC_13 12
|
|
#define DEC_14 13
|
|
#define DEC_15 14
|
|
#define DECREMENT_(n) DEC_##n
|
|
#define DECREMENT(n) DECREMENT_(n)
|
|
|
|
#define SUB0(N) N
|
|
#define SUB1(N) DECREMENT_(N)
|
|
#define SUB2(N) SUB1(SUB1(N))
|
|
#define SUB3(N) SUB1(SUB2(N))
|
|
#define SUB4(N) SUB2(SUB2(N))
|
|
#define SUB5(N) SUB2(SUB3(N))
|
|
#define SUB6(N) SUB3(SUB3(N))
|
|
#define SUB7(N) SUB3(SUB4(N))
|
|
#define SUB8(N) SUB4(SUB4(N))
|
|
#define SUB9(N) SUB4(SUB5(N))
|
|
#define SUB10(N) SUB5(SUB5(N))
|
|
|
|
//
|
|
// Primitives supporting precompiler REPEAT
|
|
//
|
|
#define FIRST(a,...) a
|
|
#define SECOND(a,b,...) b
|
|
#define THIRD(a,b,c,...) c
|
|
|
|
// Defer expansion
|
|
#define EMPTY()
|
|
#define DEFER(M) M EMPTY()
|
|
#define DEFER2(M) M EMPTY EMPTY()()
|
|
#define DEFER3(M) M EMPTY EMPTY EMPTY()()()
|
|
#define DEFER4(M) M EMPTY EMPTY EMPTY EMPTY()()()()
|
|
|
|
// Force define expansion
|
|
#define EVAL(V...) EVAL16(V)
|
|
#define EVAL1024(V...) EVAL512(EVAL512(V))
|
|
#define EVAL512(V...) EVAL256(EVAL256(V))
|
|
#define EVAL256(V...) EVAL128(EVAL128(V))
|
|
#define EVAL128(V...) EVAL64(EVAL64(V))
|
|
#define EVAL64(V...) EVAL32(EVAL32(V))
|
|
#define EVAL32(V...) EVAL16(EVAL16(V))
|
|
#define EVAL16(V...) EVAL8(EVAL8(V))
|
|
#define EVAL8(V...) EVAL4(EVAL4(V))
|
|
#define EVAL4(V...) EVAL2(EVAL2(V))
|
|
#define EVAL2(V...) EVAL1(EVAL1(V))
|
|
#define EVAL1(V...) V
|
|
|
|
#define IS_PROBE(V...) SECOND(V, 0) // Get the second item passed, or 0
|
|
#define PROBE() ~, 1 // Second item will be 1 if this is passed
|
|
#define _NOT_0 PROBE()
|
|
#define NOT(x) IS_PROBE(_CAT(_NOT_, x)) // NOT('0') gets '1'. Anything else gets '0'.
|
|
#define _BOOL(x) NOT(NOT(x)) // NOT('0') gets '0'. Anything else gets '1'.
|
|
|
|
#define IF_ELSE(TF) _IF_ELSE(_BOOL(TF))
|
|
#define _IF_ELSE(TF) _CAT(_IF_, TF)
|
|
|
|
#define _IF_1(V...) V _IF_1_ELSE
|
|
#define _IF_0(...) _IF_0_ELSE
|
|
|
|
#define _IF_1_ELSE(...)
|
|
#define _IF_0_ELSE(V...) V
|
|
|
|
#define HAS_ARGS(V...) _BOOL(FIRST(_END_OF_ARGUMENTS_ V)())
|
|
#define _END_OF_ARGUMENTS_() 0
|
|
|
|
|
|
// Simple Inline IF Macros, friendly to use in other macro definitions
|
|
#define IF(O, A, B) ((O) ? (A) : (B))
|
|
#define IF_0(O, A) IF(O, A, 0)
|
|
#define IF_1(O, A) IF(O, A, 1)
|
|
|
|
//
|
|
// REPEAT core macros. Recurse N times with ascending I.
|
|
//
|
|
|
|
// Call OP(I) N times with ascending counter.
|
|
#define _REPEAT(_RPT_I,_RPT_N,_RPT_OP) \
|
|
_RPT_OP(_RPT_I) \
|
|
IF_ELSE(SUB1(_RPT_N)) \
|
|
( DEFER2(__REPEAT)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP) ) \
|
|
( /* Do nothing */ )
|
|
#define __REPEAT() _REPEAT
|
|
|
|
// Call OP(I, ...) N times with ascending counter.
|
|
#define _REPEAT2(_RPT_I,_RPT_N,_RPT_OP,V...) \
|
|
_RPT_OP(_RPT_I,V) \
|
|
IF_ELSE(SUB1(_RPT_N)) \
|
|
( DEFER2(__REPEAT2)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP,V) ) \
|
|
( /* Do nothing */ )
|
|
#define __REPEAT2() _REPEAT2
|
|
|
|
// Repeat a macro passing S...N-1.
|
|
#define REPEAT_S(S,N,OP) EVAL(_REPEAT(S,SUB##S(N),OP))
|
|
#define REPEAT(N,OP) REPEAT_S(0,N,OP)
|
|
|
|
// Repeat a macro passing 0...N-1 plus additional arguments.
|
|
#define REPEAT2_S(S,N,OP,V...) EVAL(_REPEAT2(S,SUB##S(N),OP,V))
|
|
#define REPEAT2(N,OP,V...) REPEAT2_S(0,N,OP,V)
|
|
|
|
// Use RREPEAT macros with REPEAT macros for nesting
|
|
#define _RREPEAT(_RPT_I,_RPT_N,_RPT_OP) \
|
|
_RPT_OP(_RPT_I) \
|
|
IF_ELSE(SUB1(_RPT_N)) \
|
|
( DEFER2(__RREPEAT)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP) ) \
|
|
( /* Do nothing */ )
|
|
#define __RREPEAT() _RREPEAT
|
|
#define _RREPEAT2(_RPT_I,_RPT_N,_RPT_OP,V...) \
|
|
_RPT_OP(_RPT_I,V) \
|
|
IF_ELSE(SUB1(_RPT_N)) \
|
|
( DEFER2(__RREPEAT2)()(ADD1(_RPT_I),SUB1(_RPT_N),_RPT_OP,V) ) \
|
|
( /* Do nothing */ )
|
|
#define __RREPEAT2() _RREPEAT2
|
|
#define RREPEAT_S(S,N,OP) EVAL1024(_RREPEAT(S,SUB##S(N),OP))
|
|
#define RREPEAT(N,OP) RREPEAT_S(0,N,OP)
|
|
#define RREPEAT2_S(S,N,OP,V...) EVAL1024(_RREPEAT2(S,SUB##S(N),OP,V))
|
|
#define RREPEAT2(N,OP,V...) RREPEAT2_S(0,N,OP,V)
|
|
|
|
// See https://github.com/swansontec/map-macro
|
|
#define MAP_OUT
|
|
#define MAP_END(...)
|
|
#define MAP_GET_END() 0, MAP_END
|
|
#define MAP_NEXT0(test, next, ...) next MAP_OUT
|
|
#define MAP_NEXT1(test, next) MAP_NEXT0 (test, next, 0)
|
|
#define MAP_NEXT(test, next) MAP_NEXT1 (MAP_GET_END test, next)
|
|
#define MAP0(f, x, peek, ...) f(x) MAP_NEXT (peek, MAP1) (f, peek, __VA_ARGS__)
|
|
#define MAP1(f, x, peek, ...) f(x) MAP_NEXT (peek, MAP0) (f, peek, __VA_ARGS__)
|
|
#define MAP(f, ...) EVAL512 (MAP1 (f, __VA_ARGS__, (), 0))
|