d20f42c883
- Address Issue #1682 at hash #issuecomment-89756858
6014 lines
185 KiB
C++
6014 lines
185 KiB
C++
/* -*- c++ -*- */
|
|
|
|
/*
|
|
Reprap firmware based on Sprinter and grbl.
|
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
This firmware is a mashup between Sprinter and grbl.
|
|
(https://github.com/kliment/Sprinter)
|
|
(https://github.com/simen/grbl/tree)
|
|
|
|
It has preliminary support for Matthew Roberts advance algorithm
|
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
#include "vector_3.h"
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
#include "qr_solve.h"
|
|
#endif
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
#define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
#include "mesh_bed_leveling.h"
|
|
#endif
|
|
|
|
#include "ultralcd.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "motion_control.h"
|
|
#include "cardreader.h"
|
|
#include "watchdog.h"
|
|
#include "ConfigurationStore.h"
|
|
#include "language.h"
|
|
#include "pins_arduino.h"
|
|
#include "math.h"
|
|
|
|
#ifdef BLINKM
|
|
#include "BlinkM.h"
|
|
#include "Wire.h"
|
|
#endif
|
|
|
|
#if NUM_SERVOS > 0
|
|
#include "Servo.h"
|
|
#endif
|
|
|
|
#if HAS_DIGIPOTSS
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
|
|
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
|
|
//Implemented Codes
|
|
//-------------------
|
|
// G0 -> G1
|
|
// G1 - Coordinated Movement X Y Z E
|
|
// G2 - CW ARC
|
|
// G3 - CCW ARC
|
|
// G4 - Dwell S<seconds> or P<milliseconds>
|
|
// G10 - retract filament according to settings of M207
|
|
// G11 - retract recover filament according to settings of M208
|
|
// G28 - Home one or more axes
|
|
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
// G30 - Single Z Probe, probes bed at current XY location.
|
|
// G31 - Dock sled (Z_PROBE_SLED only)
|
|
// G32 - Undock sled (Z_PROBE_SLED only)
|
|
// G90 - Use Absolute Coordinates
|
|
// G91 - Use Relative Coordinates
|
|
// G92 - Set current position to coordinates given
|
|
|
|
// M Codes
|
|
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
// M1 - Same as M0
|
|
// M17 - Enable/Power all stepper motors
|
|
// M18 - Disable all stepper motors; same as M84
|
|
// M20 - List SD card
|
|
// M21 - Init SD card
|
|
// M22 - Release SD card
|
|
// M23 - Select SD file (M23 filename.g)
|
|
// M24 - Start/resume SD print
|
|
// M25 - Pause SD print
|
|
// M26 - Set SD position in bytes (M26 S12345)
|
|
// M27 - Report SD print status
|
|
// M28 - Start SD write (M28 filename.g)
|
|
// M29 - Stop SD write
|
|
// M30 - Delete file from SD (M30 filename.g)
|
|
// M31 - Output time since last M109 or SD card start to serial
|
|
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
|
|
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
|
|
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
|
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
|
// M48 - Measure Z_Probe repeatability. M48 [n # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
|
|
// M80 - Turn on Power Supply
|
|
// M81 - Turn off Power Supply
|
|
// M82 - Set E codes absolute (default)
|
|
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
|
// M84 - Disable steppers until next move,
|
|
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
|
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
// M92 - Set axis_steps_per_unit - same syntax as G92
|
|
// M104 - Set extruder target temp
|
|
// M105 - Read current temp
|
|
// M106 - Fan on
|
|
// M107 - Fan off
|
|
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
// M112 - Emergency stop
|
|
// M114 - Output current position to serial port
|
|
// M115 - Capabilities string
|
|
// M117 - display message
|
|
// M119 - Output Endstop status to serial port
|
|
// M120 - Enable endstop detection
|
|
// M121 - Disable endstop detection
|
|
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
|
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
|
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
// M140 - Set bed target temp
|
|
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
|
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
|
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
// M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
|
|
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
|
// M206 - Set additional homing offset
|
|
// M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
|
// M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
|
|
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
// M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
// M220 S<factor in percent>- set speed factor override percentage
|
|
// M221 S<factor in percent>- set extrude factor override percentage
|
|
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
// M240 - Trigger a camera to take a photograph
|
|
// M250 - Set LCD contrast C<contrast value> (value 0..63)
|
|
// M280 - Set servo position absolute. P: servo index, S: angle or microseconds
|
|
// M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
// M301 - Set PID parameters P I and D
|
|
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
// M304 - Set bed PID parameters P I and D
|
|
// M380 - Activate solenoid on active extruder
|
|
// M381 - Disable all solenoids
|
|
// M400 - Finish all moves
|
|
// M401 - Lower z-probe if present
|
|
// M402 - Raise z-probe if present
|
|
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
|
|
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
|
|
// M406 - Turn off Filament Sensor extrusion control
|
|
// M407 - Display measured filament diameter
|
|
// M500 - Store parameters in EEPROM
|
|
// M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
|
|
// M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
|
// M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
|
|
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
// M665 - Set delta configurations
|
|
// M666 - Set delta endstop adjustment
|
|
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
|
|
// M907 - Set digital trimpot motor current using axis codes.
|
|
// M908 - Control digital trimpot directly.
|
|
// M350 - Set microstepping mode.
|
|
// M351 - Toggle MS1 MS2 pins directly.
|
|
|
|
// ************ SCARA Specific - This can change to suit future G-code regulations
|
|
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
|
|
//************* SCARA End ***************
|
|
|
|
// M928 - Start SD logging (M928 filename.g) - ended by M29
|
|
// M999 - Restart after being stopped by error
|
|
|
|
#ifdef SDSUPPORT
|
|
CardReader card;
|
|
#endif
|
|
|
|
float homing_feedrate[] = HOMING_FEEDRATE;
|
|
int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
int feedmultiply = 100; //100->1 200->2
|
|
int saved_feedmultiply;
|
|
int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
|
|
bool volumetric_enabled = false;
|
|
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
|
|
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
|
|
float current_position[NUM_AXIS] = { 0.0 };
|
|
float home_offset[3] = { 0 };
|
|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
bool axis_known_position[3] = { false };
|
|
uint8_t active_extruder = 0;
|
|
int fanSpeed = 0;
|
|
bool cancel_heatup = false;
|
|
const char errormagic[] PROGMEM = "Error:";
|
|
const char echomagic[] PROGMEM = "echo:";
|
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
static float destination[NUM_AXIS] = { 0 };
|
|
static float offset[3] = { 0 };
|
|
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
|
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
|
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
|
static int bufindr = 0;
|
|
static int bufindw = 0;
|
|
static int buflen = 0;
|
|
static char serial_char;
|
|
static int serial_count = 0;
|
|
static boolean comment_mode = false;
|
|
static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
|
|
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
|
|
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
|
|
// Inactivity shutdown
|
|
unsigned long previous_millis_cmd = 0;
|
|
static unsigned long max_inactive_time = 0;
|
|
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
|
|
unsigned long starttime = 0; ///< Print job start time
|
|
unsigned long stoptime = 0; ///< Print job stop time
|
|
static uint8_t target_extruder;
|
|
bool Stopped = false;
|
|
bool CooldownNoWait = true;
|
|
bool target_direction;
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
int xy_travel_speed = XY_TRAVEL_SPEED;
|
|
float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
|
|
#if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
|
|
float z_endstop_adj = 0;
|
|
#endif
|
|
|
|
// Extruder offsets
|
|
#if EXTRUDERS > 1
|
|
#ifndef EXTRUDER_OFFSET_X
|
|
#define EXTRUDER_OFFSET_X { 0 }
|
|
#endif
|
|
#ifndef EXTRUDER_OFFSET_Y
|
|
#define EXTRUDER_OFFSET_Y { 0 }
|
|
#endif
|
|
float extruder_offset[][EXTRUDERS] = {
|
|
EXTRUDER_OFFSET_X,
|
|
EXTRUDER_OFFSET_Y
|
|
#ifdef DUAL_X_CARRIAGE
|
|
, { 0 } // supports offsets in XYZ plane
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
int servo_endstops[] = SERVO_ENDSTOPS;
|
|
int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
|
|
#endif
|
|
|
|
#ifdef BARICUDA
|
|
int ValvePressure = 0;
|
|
int EtoPPressure = 0;
|
|
#endif
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
bool autoretract_enabled = false;
|
|
bool retracted[EXTRUDERS] = { false };
|
|
bool retracted_swap[EXTRUDERS] = { false };
|
|
|
|
float retract_length = RETRACT_LENGTH;
|
|
float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
float retract_feedrate = RETRACT_FEEDRATE;
|
|
float retract_zlift = RETRACT_ZLIFT;
|
|
float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if defined(ULTIPANEL) && HAS_POWER_SWITCH
|
|
bool powersupply =
|
|
#ifdef PS_DEFAULT_OFF
|
|
false
|
|
#else
|
|
true
|
|
#endif
|
|
;
|
|
#endif
|
|
|
|
#ifdef DELTA
|
|
float delta[3] = { 0 };
|
|
#define SIN_60 0.8660254037844386
|
|
#define COS_60 0.5
|
|
float endstop_adj[3] = { 0 };
|
|
// these are the default values, can be overriden with M665
|
|
float delta_radius = DELTA_RADIUS;
|
|
float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
|
|
float delta_tower1_y = -COS_60 * delta_radius;
|
|
float delta_tower2_x = SIN_60 * delta_radius; // front right tower
|
|
float delta_tower2_y = -COS_60 * delta_radius;
|
|
float delta_tower3_x = 0; // back middle tower
|
|
float delta_tower3_y = delta_radius;
|
|
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
|
|
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
int delta_grid_spacing[2] = { 0, 0 };
|
|
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
|
|
#endif
|
|
#else
|
|
static bool home_all_axis = true;
|
|
#endif
|
|
|
|
#ifdef SCARA
|
|
static float delta[3] = { 0 };
|
|
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
//Variables for Filament Sensor input
|
|
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
|
|
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
|
|
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
|
|
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
|
|
int delay_index1 = 0; //index into ring buffer
|
|
int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
|
|
float delay_dist = 0; //delay distance counter
|
|
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
|
#endif
|
|
|
|
#ifdef FILAMENT_RUNOUT_SENSOR
|
|
static bool filrunoutEnqued = false;
|
|
#endif
|
|
|
|
#ifdef SDSUPPORT
|
|
static bool fromsd[BUFSIZE];
|
|
#endif
|
|
|
|
#if NUM_SERVOS > 0
|
|
Servo servos[NUM_SERVOS];
|
|
#endif
|
|
|
|
#ifdef CHDK
|
|
unsigned long chdkHigh = 0;
|
|
boolean chdkActive = false;
|
|
#endif
|
|
|
|
//===========================================================================
|
|
//================================ Functions ================================
|
|
//===========================================================================
|
|
|
|
void get_arc_coordinates();
|
|
bool setTargetedHotend(int code);
|
|
|
|
void serial_echopair_P(const char *s_P, float v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char *s_P, double v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char *s_P, unsigned long v)
|
|
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
#ifdef SDSUPPORT
|
|
#include "SdFatUtil.h"
|
|
int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
#else
|
|
extern "C" {
|
|
extern unsigned int __bss_end;
|
|
extern unsigned int __heap_start;
|
|
extern void *__brkval;
|
|
|
|
int freeMemory() {
|
|
int free_memory;
|
|
|
|
if ((int)__brkval == 0)
|
|
free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
else
|
|
free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
|
|
return free_memory;
|
|
}
|
|
}
|
|
#endif //!SDSUPPORT
|
|
|
|
//Injects the next command from the pending sequence of commands, when possible
|
|
//Return false if and only if no command was pending
|
|
static bool drain_queued_commands_P() {
|
|
if (!queued_commands_P) return false;
|
|
|
|
// Get the next 30 chars from the sequence of gcodes to run
|
|
char cmd[30];
|
|
strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
|
|
cmd[sizeof(cmd) - 1] = '\0';
|
|
|
|
// Look for the end of line, or the end of sequence
|
|
size_t i = 0;
|
|
char c;
|
|
while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
|
|
cmd[i] = '\0';
|
|
if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
|
|
if (c)
|
|
queued_commands_P += i + 1; // move to next command
|
|
else
|
|
queued_commands_P = NULL; // will have no more commands in the sequence
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//Record one or many commands to run from program memory.
|
|
//Aborts the current queue, if any.
|
|
//Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
|
|
void enquecommands_P(const char* pgcode) {
|
|
queued_commands_P = pgcode;
|
|
drain_queued_commands_P(); // first command executed asap (when possible)
|
|
}
|
|
|
|
//adds a single command to the main command buffer, from RAM
|
|
//that is really done in a non-safe way.
|
|
//needs overworking someday
|
|
//Returns false if it failed to do so
|
|
bool enquecommand(const char *cmd)
|
|
{
|
|
if(*cmd==';')
|
|
return false;
|
|
if(buflen >= BUFSIZE)
|
|
return false;
|
|
//this is dangerous if a mixing of serial and this happens
|
|
strcpy(&(cmdbuffer[bufindw][0]),cmd);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_Enqueing);
|
|
SERIAL_ECHO(cmdbuffer[bufindw]);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
bufindw= (bufindw + 1)%BUFSIZE;
|
|
buflen += 1;
|
|
return true;
|
|
}
|
|
|
|
void setup_killpin()
|
|
{
|
|
#if HAS_KILL
|
|
SET_INPUT(KILL_PIN);
|
|
WRITE(KILL_PIN, HIGH);
|
|
#endif
|
|
}
|
|
|
|
void setup_filrunoutpin()
|
|
{
|
|
#if HAS_FILRUNOUT
|
|
pinMode(FILRUNOUT_PIN, INPUT);
|
|
#ifdef ENDSTOPPULLUP_FIL_RUNOUT
|
|
WRITE(FILLRUNOUT_PIN, HIGH);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// Set home pin
|
|
void setup_homepin(void)
|
|
{
|
|
#if HAS_HOME
|
|
SET_INPUT(HOME_PIN);
|
|
WRITE(HOME_PIN, HIGH);
|
|
#endif
|
|
}
|
|
|
|
|
|
void setup_photpin()
|
|
{
|
|
#if HAS_PHOTOGRAPH
|
|
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void setup_powerhold()
|
|
{
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
#if HAS_POWER_SWITCH
|
|
#ifdef PS_DEFAULT_OFF
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#else
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void suicide()
|
|
{
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void servo_init()
|
|
{
|
|
#if NUM_SERVOS >= 1 && HAS_SERVO_0
|
|
servos[0].attach(SERVO0_PIN);
|
|
#endif
|
|
#if NUM_SERVOS >= 2 && HAS_SERVO_1
|
|
servos[1].attach(SERVO1_PIN);
|
|
#endif
|
|
#if NUM_SERVOS >= 3 && HAS_SERVO_2
|
|
servos[2].attach(SERVO2_PIN);
|
|
#endif
|
|
#if NUM_SERVOS >= 4 && HAS_SERVO_3
|
|
servos[3].attach(SERVO3_PIN);
|
|
#endif
|
|
|
|
// Set position of Servo Endstops that are defined
|
|
#ifdef SERVO_ENDSTOPS
|
|
for (int i = 0; i < 3; i++)
|
|
if (servo_endstops[i] >= 0)
|
|
servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
|
|
#endif
|
|
|
|
#if SERVO_LEVELING
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_endstops[Z_AXIS]].detach();
|
|
#endif
|
|
}
|
|
|
|
|
|
void setup()
|
|
{
|
|
setup_killpin();
|
|
setup_filrunoutpin();
|
|
setup_powerhold();
|
|
MYSERIAL.begin(BAUDRATE);
|
|
SERIAL_PROTOCOLLNPGM("start");
|
|
SERIAL_ECHO_START;
|
|
|
|
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
byte mcu = MCUSR;
|
|
if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
|
|
if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
|
|
if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
|
|
if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
|
|
if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
|
|
MCUSR=0;
|
|
|
|
SERIAL_ECHOPGM(MSG_MARLIN);
|
|
SERIAL_ECHOLNPGM(STRING_VERSION);
|
|
#ifdef STRING_VERSION_CONFIG_H
|
|
#ifdef STRING_CONFIG_H_AUTHOR
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
|
|
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
|
|
SERIAL_ECHOPGM(MSG_AUTHOR);
|
|
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
|
|
SERIAL_ECHOPGM("Compiled: ");
|
|
SERIAL_ECHOLNPGM(__DATE__);
|
|
#endif // STRING_CONFIG_H_AUTHOR
|
|
#endif // STRING_VERSION_CONFIG_H
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_FREE_MEMORY);
|
|
SERIAL_ECHO(freeMemory());
|
|
SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
|
|
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
#ifdef SDSUPPORT
|
|
for(int8_t i = 0; i < BUFSIZE; i++)
|
|
{
|
|
fromsd[i] = false;
|
|
}
|
|
#endif //!SDSUPPORT
|
|
|
|
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
|
|
Config_RetrieveSettings();
|
|
|
|
tp_init(); // Initialize temperature loop
|
|
plan_init(); // Initialize planner;
|
|
watchdog_init();
|
|
st_init(); // Initialize stepper, this enables interrupts!
|
|
setup_photpin();
|
|
servo_init();
|
|
|
|
|
|
lcd_init();
|
|
_delay_ms(1000); // wait 1sec to display the splash screen
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
#endif
|
|
|
|
#ifdef DIGIPOT_I2C
|
|
digipot_i2c_init();
|
|
#endif
|
|
#ifdef Z_PROBE_SLED
|
|
pinMode(SERVO0_PIN, OUTPUT);
|
|
digitalWrite(SERVO0_PIN, LOW); // turn it off
|
|
#endif // Z_PROBE_SLED
|
|
setup_homepin();
|
|
|
|
#ifdef STAT_LED_RED
|
|
pinMode(STAT_LED_RED, OUTPUT);
|
|
digitalWrite(STAT_LED_RED, LOW); // turn it off
|
|
#endif
|
|
#ifdef STAT_LED_BLUE
|
|
pinMode(STAT_LED_BLUE, OUTPUT);
|
|
digitalWrite(STAT_LED_BLUE, LOW); // turn it off
|
|
#endif
|
|
}
|
|
|
|
|
|
void loop() {
|
|
if (buflen < BUFSIZE - 1) get_command();
|
|
|
|
#ifdef SDSUPPORT
|
|
card.checkautostart(false);
|
|
#endif
|
|
|
|
if (buflen) {
|
|
#ifdef SDSUPPORT
|
|
if (card.saving) {
|
|
if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
|
|
card.write_command(cmdbuffer[bufindr]);
|
|
if (card.logging)
|
|
process_commands();
|
|
else
|
|
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
|
}
|
|
else {
|
|
card.closefile();
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
|
|
}
|
|
}
|
|
else
|
|
process_commands();
|
|
#else
|
|
process_commands();
|
|
#endif // SDSUPPORT
|
|
buflen--;
|
|
bufindr = (bufindr + 1) % BUFSIZE;
|
|
}
|
|
// Check heater every n milliseconds
|
|
manage_heater();
|
|
manage_inactivity();
|
|
checkHitEndstops();
|
|
lcd_update();
|
|
}
|
|
|
|
void get_command()
|
|
{
|
|
if (drain_queued_commands_P()) // priority is given to non-serial commands
|
|
return;
|
|
|
|
while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
|
|
serial_char = MYSERIAL.read();
|
|
if(serial_char == '\n' ||
|
|
serial_char == '\r' ||
|
|
serial_count >= (MAX_CMD_SIZE - 1) )
|
|
{
|
|
// end of line == end of comment
|
|
comment_mode = false;
|
|
|
|
if(!serial_count) {
|
|
// short cut for empty lines
|
|
return;
|
|
}
|
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
|
#ifdef SDSUPPORT
|
|
fromsd[bufindw] = false;
|
|
#endif //!SDSUPPORT
|
|
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
|
|
{
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
|
gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
|
|
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
//Serial.println(gcode_N);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
|
|
if(strchr(cmdbuffer[bufindw], '*') != NULL)
|
|
{
|
|
byte checksum = 0;
|
|
byte count = 0;
|
|
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
|
|
|
if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
//if no errors, continue parsing
|
|
}
|
|
else
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
|
|
gcode_LastN = gcode_N;
|
|
//if no errors, continue parsing
|
|
}
|
|
else // if we don't receive 'N' but still see '*'
|
|
{
|
|
if((strchr(cmdbuffer[bufindw], '*') != NULL))
|
|
{
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
serial_count = 0;
|
|
return;
|
|
}
|
|
}
|
|
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
|
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
|
switch(strtol(strchr_pointer + 1, NULL, 10)){
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
if (Stopped == true) {
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
//If command was e-stop process now
|
|
if(strcmp(cmdbuffer[bufindw], "M112") == 0)
|
|
kill();
|
|
|
|
bufindw = (bufindw + 1)%BUFSIZE;
|
|
buflen += 1;
|
|
|
|
serial_count = 0; //clear buffer
|
|
}
|
|
else if(serial_char == '\\') { //Handle escapes
|
|
|
|
if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
|
|
// if we have one more character, copy it over
|
|
serial_char = MYSERIAL.read();
|
|
cmdbuffer[bufindw][serial_count++] = serial_char;
|
|
}
|
|
|
|
//otherwise do nothing
|
|
}
|
|
else { // its not a newline, carriage return or escape char
|
|
if(serial_char == ';') comment_mode = true;
|
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
|
}
|
|
}
|
|
#ifdef SDSUPPORT
|
|
if(!card.sdprinting || serial_count!=0){
|
|
return;
|
|
}
|
|
|
|
//'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
|
|
// if it occurs, stop_buffering is triggered and the buffer is ran dry.
|
|
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
|
|
|
|
static bool stop_buffering=false;
|
|
if(buflen==0) stop_buffering=false;
|
|
|
|
while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
|
|
int16_t n=card.get();
|
|
serial_char = (char)n;
|
|
if(serial_char == '\n' ||
|
|
serial_char == '\r' ||
|
|
(serial_char == '#' && comment_mode == false) ||
|
|
(serial_char == ':' && comment_mode == false) ||
|
|
serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
|
|
{
|
|
if(card.eof()){
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
|
|
stoptime=millis();
|
|
char time[30];
|
|
unsigned long t=(stoptime-starttime)/1000;
|
|
int hours, minutes;
|
|
minutes=(t/60)%60;
|
|
hours=t/60/60;
|
|
sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time, true);
|
|
card.printingHasFinished();
|
|
card.checkautostart(true);
|
|
|
|
}
|
|
if(serial_char=='#')
|
|
stop_buffering=true;
|
|
|
|
if(!serial_count)
|
|
{
|
|
comment_mode = false; //for new command
|
|
return; //if empty line
|
|
}
|
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
|
// if(!comment_mode){
|
|
fromsd[bufindw] = true;
|
|
buflen += 1;
|
|
bufindw = (bufindw + 1)%BUFSIZE;
|
|
// }
|
|
comment_mode = false; //for new command
|
|
serial_count = 0; //clear buffer
|
|
}
|
|
else
|
|
{
|
|
if(serial_char == ';') comment_mode = true;
|
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
|
}
|
|
}
|
|
|
|
#endif //SDSUPPORT
|
|
|
|
}
|
|
|
|
float code_value() {
|
|
float ret;
|
|
char *e = strchr(strchr_pointer, 'E');
|
|
if (e) {
|
|
*e = 0;
|
|
ret = strtod(strchr_pointer+1, NULL);
|
|
*e = 'E';
|
|
}
|
|
else
|
|
ret = strtod(strchr_pointer+1, NULL);
|
|
return ret;
|
|
}
|
|
|
|
long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
|
|
|
|
int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
|
|
|
|
bool code_seen(char code) {
|
|
strchr_pointer = strchr(cmdbuffer[bufindr], code);
|
|
return (strchr_pointer != NULL); //Return True if a character was found
|
|
}
|
|
|
|
#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
static inline type pgm_read_any(const type *p) \
|
|
{ return pgm_read_##reader##_near(p); }
|
|
|
|
DEFINE_PGM_READ_ANY(float, float);
|
|
DEFINE_PGM_READ_ANY(signed char, byte);
|
|
|
|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
static const PROGMEM type array##_P[3] = \
|
|
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
static inline type array(int axis) \
|
|
{ return pgm_read_any(&array##_P[axis]); }
|
|
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
|
|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
#define DXC_FULL_CONTROL_MODE 0
|
|
#define DXC_AUTO_PARK_MODE 1
|
|
#define DXC_DUPLICATION_MODE 2
|
|
|
|
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
|
|
static float x_home_pos(int extruder) {
|
|
if (extruder == 0)
|
|
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
else
|
|
// In dual carriage mode the extruder offset provides an override of the
|
|
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
|
|
// This allow soft recalibration of the second extruder offset position without firmware reflash
|
|
// (through the M218 command).
|
|
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
|
|
}
|
|
|
|
static int x_home_dir(int extruder) {
|
|
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
|
|
}
|
|
|
|
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
|
|
static bool active_extruder_parked = false; // used in mode 1 & 2
|
|
static float raised_parked_position[NUM_AXIS]; // used in mode 1
|
|
static unsigned long delayed_move_time = 0; // used in mode 1
|
|
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
|
|
static float duplicate_extruder_temp_offset = 0; // used in mode 2
|
|
bool extruder_duplication_enabled = false; // used in mode 2
|
|
|
|
#endif //DUAL_X_CARRIAGE
|
|
|
|
static void axis_is_at_home(int axis) {
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (axis == X_AXIS) {
|
|
if (active_extruder != 0) {
|
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
min_pos[X_AXIS] = X2_MIN_POS;
|
|
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
|
|
return;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
float xoff = home_offset[X_AXIS];
|
|
current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
|
|
min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
|
|
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SCARA
|
|
float homeposition[3];
|
|
|
|
if (axis < 2) {
|
|
|
|
for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
|
|
|
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
|
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
|
// Works out real Homeposition angles using inverse kinematics,
|
|
// and calculates homing offset using forward kinematics
|
|
calculate_delta(homeposition);
|
|
|
|
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
|
|
|
|
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
calculate_SCARA_forward_Transform(delta);
|
|
|
|
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
current_position[axis] = delta[axis];
|
|
|
|
// SCARA home positions are based on configuration since the actual limits are determined by the
|
|
// inverse kinematic transform.
|
|
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
|
|
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
|
|
}
|
|
else {
|
|
current_position[axis] = base_home_pos(axis) + home_offset[axis];
|
|
min_pos[axis] = base_min_pos(axis) + home_offset[axis];
|
|
max_pos[axis] = base_max_pos(axis) + home_offset[axis];
|
|
}
|
|
#else
|
|
current_position[axis] = base_home_pos(axis) + home_offset[axis];
|
|
min_pos[axis] = base_min_pos(axis) + home_offset[axis];
|
|
max_pos[axis] = base_max_pos(axis) + home_offset[axis];
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Some planner shorthand inline functions
|
|
*/
|
|
inline void line_to_current_position() {
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
|
|
}
|
|
inline void line_to_z(float zPosition) {
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
|
|
}
|
|
inline void line_to_destination() {
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
|
}
|
|
inline void sync_plan_position() {
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
#if defined(DELTA) || defined(SCARA)
|
|
inline void sync_plan_position_delta() {
|
|
calculate_delta(current_position);
|
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
#endif
|
|
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
|
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
#ifdef DELTA
|
|
/**
|
|
* Calculate delta, start a line, and set current_position to destination
|
|
*/
|
|
void prepare_move_raw() {
|
|
refresh_cmd_timeout();
|
|
calculate_delta(destination);
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
|
set_current_to_destination();
|
|
}
|
|
#endif
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
#ifndef DELTA
|
|
|
|
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
|
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
planeNormal.debug("planeNormal");
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
//bedLevel.debug("bedLevel");
|
|
|
|
//plan_bed_level_matrix.debug("bed level before");
|
|
//vector_3 uncorrected_position = plan_get_position_mm();
|
|
//uncorrected_position.debug("position before");
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
//corrected_position.debug("position after");
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
sync_plan_position();
|
|
}
|
|
|
|
#endif // !DELTA
|
|
|
|
#else // !AUTO_BED_LEVELING_GRID
|
|
|
|
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
|
|
|
|
if (planeNormal.z < 0) {
|
|
planeNormal.x = -planeNormal.x;
|
|
planeNormal.y = -planeNormal.y;
|
|
planeNormal.z = -planeNormal.z;
|
|
}
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
vector_3 corrected_position = plan_get_position();
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
sync_plan_position();
|
|
}
|
|
|
|
#endif // !AUTO_BED_LEVELING_GRID
|
|
|
|
static void run_z_probe() {
|
|
|
|
#ifdef DELTA
|
|
|
|
float start_z = current_position[Z_AXIS];
|
|
long start_steps = st_get_position(Z_AXIS);
|
|
|
|
// move down slowly until you find the bed
|
|
feedrate = homing_feedrate[Z_AXIS] / 4;
|
|
destination[Z_AXIS] = -10;
|
|
prepare_move_raw();
|
|
st_synchronize();
|
|
endstops_hit_on_purpose(); // clear endstop hit flags
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
long stop_steps = st_get_position(Z_AXIS);
|
|
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
|
|
current_position[Z_AXIS] = mm;
|
|
sync_plan_position_delta();
|
|
|
|
#else // !DELTA
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
// move down until you find the bed
|
|
float zPosition = -10;
|
|
line_to_z(zPosition);
|
|
st_synchronize();
|
|
|
|
// we have to let the planner know where we are right now as it is not where we said to go.
|
|
zPosition = st_get_position_mm(Z_AXIS);
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
|
|
|
|
// move up the retract distance
|
|
zPosition += home_bump_mm(Z_AXIS);
|
|
line_to_z(zPosition);
|
|
st_synchronize();
|
|
endstops_hit_on_purpose(); // clear endstop hit flags
|
|
|
|
// move back down slowly to find bed
|
|
if (homing_bump_divisor[Z_AXIS] >= 1)
|
|
feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
|
|
else {
|
|
feedrate = homing_feedrate[Z_AXIS] / 10;
|
|
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
|
|
}
|
|
|
|
zPosition -= home_bump_mm(Z_AXIS) * 2;
|
|
line_to_z(zPosition);
|
|
st_synchronize();
|
|
endstops_hit_on_purpose(); // clear endstop hit flags
|
|
|
|
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
|
|
// make sure the planner knows where we are as it may be a bit different than we last said to move to
|
|
sync_plan_position();
|
|
|
|
#endif // !DELTA
|
|
}
|
|
|
|
/**
|
|
*
|
|
*/
|
|
static void do_blocking_move_to(float x, float y, float z) {
|
|
float oldFeedRate = feedrate;
|
|
|
|
#ifdef DELTA
|
|
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
destination[X_AXIS] = x;
|
|
destination[Y_AXIS] = y;
|
|
destination[Z_AXIS] = z;
|
|
prepare_move_raw();
|
|
st_synchronize();
|
|
|
|
#else
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
current_position[Z_AXIS] = z;
|
|
line_to_current_position();
|
|
st_synchronize();
|
|
|
|
feedrate = xy_travel_speed;
|
|
|
|
current_position[X_AXIS] = x;
|
|
current_position[Y_AXIS] = y;
|
|
line_to_current_position();
|
|
st_synchronize();
|
|
|
|
#endif
|
|
|
|
feedrate = oldFeedRate;
|
|
}
|
|
|
|
static void setup_for_endstop_move() {
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
refresh_cmd_timeout();
|
|
enable_endstops(true);
|
|
}
|
|
|
|
static void clean_up_after_endstop_move() {
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
enable_endstops(false);
|
|
#endif
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
refresh_cmd_timeout();
|
|
}
|
|
|
|
static void deploy_z_probe() {
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
|
|
// Engage Z Servo endstop if enabled
|
|
if (servo_endstops[Z_AXIS] >= 0) {
|
|
#if SERVO_LEVELING
|
|
servos[servo_endstops[Z_AXIS]].attach(0);
|
|
#endif
|
|
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
|
|
#if SERVO_LEVELING
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_endstops[Z_AXIS]].detach();
|
|
#endif
|
|
}
|
|
|
|
#elif defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
|
|
// Move to the start position to initiate deployment
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
|
|
prepare_move_raw();
|
|
|
|
// Home X to touch the belt
|
|
feedrate = homing_feedrate[X_AXIS]/10;
|
|
destination[X_AXIS] = 0;
|
|
prepare_move_raw();
|
|
|
|
// Home Y for safety
|
|
feedrate = homing_feedrate[X_AXIS]/2;
|
|
destination[Y_AXIS] = 0;
|
|
prepare_move_raw();
|
|
|
|
st_synchronize();
|
|
|
|
#ifdef Z_PROBE_ENDSTOP
|
|
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
|
if (z_probe_endstop)
|
|
#else
|
|
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
if (z_min_endstop)
|
|
#endif
|
|
{
|
|
if (!Stopped) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
}
|
|
Stop();
|
|
}
|
|
|
|
#endif // Z_PROBE_ALLEN_KEY
|
|
|
|
}
|
|
|
|
static void stow_z_probe() {
|
|
|
|
#ifdef SERVO_ENDSTOPS
|
|
|
|
// Retract Z Servo endstop if enabled
|
|
if (servo_endstops[Z_AXIS] >= 0) {
|
|
|
|
#if Z_RAISE_AFTER_PROBING > 0
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
|
|
st_synchronize();
|
|
#endif
|
|
|
|
#if SERVO_LEVELING
|
|
servos[servo_endstops[Z_AXIS]].attach(0);
|
|
#endif
|
|
|
|
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
|
|
|
|
#if SERVO_LEVELING
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_endstops[Z_AXIS]].detach();
|
|
#endif
|
|
}
|
|
|
|
#elif defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
// Move up for safety
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
|
|
prepare_move_raw();
|
|
|
|
// Move to the start position to initiate retraction
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
|
|
prepare_move_raw();
|
|
|
|
// Move the nozzle down to push the probe into retracted position
|
|
feedrate = homing_feedrate[Z_AXIS]/10;
|
|
destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
|
|
prepare_move_raw();
|
|
|
|
// Move up for safety
|
|
feedrate = homing_feedrate[Z_AXIS]/2;
|
|
destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
|
|
prepare_move_raw();
|
|
|
|
// Home XY for safety
|
|
feedrate = homing_feedrate[X_AXIS]/2;
|
|
destination[X_AXIS] = 0;
|
|
destination[Y_AXIS] = 0;
|
|
prepare_move_raw();
|
|
|
|
st_synchronize();
|
|
|
|
#ifdef Z_PROBE_ENDSTOP
|
|
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
|
|
if (!z_probe_endstop)
|
|
#else
|
|
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
if (!z_min_endstop)
|
|
#endif
|
|
{
|
|
if (!Stopped) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
}
|
|
Stop();
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
enum ProbeAction {
|
|
ProbeStay = 0,
|
|
ProbeDeploy = BIT(0),
|
|
ProbeStow = BIT(1),
|
|
ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
|
|
};
|
|
|
|
// Probe bed height at position (x,y), returns the measured z value
|
|
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
|
|
// move to right place
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
|
|
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
|
|
|
|
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
|
if (retract_action & ProbeDeploy) deploy_z_probe();
|
|
#endif
|
|
|
|
run_z_probe();
|
|
float measured_z = current_position[Z_AXIS];
|
|
|
|
#if Z_RAISE_BETWEEN_PROBINGS > 0
|
|
if (retract_action == ProbeStay) {
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
st_synchronize();
|
|
}
|
|
#endif
|
|
|
|
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
|
|
if (retract_action & ProbeStow) stow_z_probe();
|
|
#endif
|
|
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
SERIAL_PROTOCOL_F(x, 3);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL_F(y, 3);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL_F(measured_z, 3);
|
|
SERIAL_EOL;
|
|
}
|
|
return measured_z;
|
|
}
|
|
|
|
#ifdef DELTA
|
|
|
|
/**
|
|
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
|
|
*/
|
|
|
|
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
|
|
if (bed_level[x][y] != 0.0) {
|
|
return; // Don't overwrite good values.
|
|
}
|
|
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
|
|
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
|
|
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
|
|
float median = c; // Median is robust (ignores outliers).
|
|
if (a < b) {
|
|
if (b < c) median = b;
|
|
if (c < a) median = a;
|
|
} else { // b <= a
|
|
if (c < b) median = b;
|
|
if (a < c) median = a;
|
|
}
|
|
bed_level[x][y] = median;
|
|
}
|
|
|
|
// Fill in the unprobed points (corners of circular print surface)
|
|
// using linear extrapolation, away from the center.
|
|
static void extrapolate_unprobed_bed_level() {
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
|
|
for (int y = 0; y <= half; y++) {
|
|
for (int x = 0; x <= half; x++) {
|
|
if (x + y < 3) continue;
|
|
extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
|
|
extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
|
|
extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
|
|
extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print calibration results for plotting or manual frame adjustment.
|
|
static void print_bed_level() {
|
|
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
|
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
|
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
// Reset calibration results to zero.
|
|
void reset_bed_level() {
|
|
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
|
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
|
bed_level[x][y] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
/**
|
|
* Home an individual axis
|
|
*/
|
|
|
|
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
|
|
|
static void homeaxis(int axis) {
|
|
#define HOMEAXIS_DO(LETTER) \
|
|
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
|
|
if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
|
|
|
|
int axis_home_dir;
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
|
|
#else
|
|
axis_home_dir = home_dir(axis);
|
|
#endif
|
|
|
|
// Set the axis position as setup for the move
|
|
current_position[axis] = 0;
|
|
sync_plan_position();
|
|
|
|
// Engage Servo endstop if enabled
|
|
#if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
|
|
|
|
#if SERVO_LEVELING
|
|
if (axis == Z_AXIS) deploy_z_probe(); else
|
|
#endif
|
|
{
|
|
if (servo_endstops[axis] > -1)
|
|
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
|
|
}
|
|
|
|
#endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
if (axis == Z_AXIS) In_Homing_Process(true);
|
|
#endif
|
|
|
|
// Move towards the endstop until an endstop is triggered
|
|
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
|
feedrate = homing_feedrate[axis];
|
|
line_to_destination();
|
|
st_synchronize();
|
|
|
|
// Set the axis position as setup for the move
|
|
current_position[axis] = 0;
|
|
sync_plan_position();
|
|
|
|
// Move away from the endstop by the axis HOME_BUMP_MM
|
|
destination[axis] = -home_bump_mm(axis) * axis_home_dir;
|
|
line_to_destination();
|
|
st_synchronize();
|
|
|
|
// Slow down the feedrate for the next move
|
|
if (homing_bump_divisor[axis] >= 1)
|
|
feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
|
|
else {
|
|
feedrate = homing_feedrate[axis] / 10;
|
|
SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
|
|
}
|
|
|
|
// Move slowly towards the endstop until triggered
|
|
destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
|
|
line_to_destination();
|
|
st_synchronize();
|
|
|
|
#ifdef Z_DUAL_ENDSTOPS
|
|
if (axis == Z_AXIS) {
|
|
float adj = fabs(z_endstop_adj);
|
|
bool lockZ1;
|
|
if (axis_home_dir > 0) {
|
|
adj = -adj;
|
|
lockZ1 = (z_endstop_adj > 0);
|
|
}
|
|
else
|
|
lockZ1 = (z_endstop_adj < 0);
|
|
|
|
if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
|
|
sync_plan_position();
|
|
|
|
// Move to the adjusted endstop height
|
|
feedrate = homing_feedrate[axis];
|
|
destination[Z_AXIS] = adj;
|
|
line_to_destination();
|
|
st_synchronize();
|
|
|
|
if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
|
|
In_Homing_Process(false);
|
|
} // Z_AXIS
|
|
#endif
|
|
|
|
#ifdef DELTA
|
|
// retrace by the amount specified in endstop_adj
|
|
if (endstop_adj[axis] * axis_home_dir < 0) {
|
|
sync_plan_position();
|
|
destination[axis] = endstop_adj[axis];
|
|
line_to_destination();
|
|
st_synchronize();
|
|
}
|
|
#endif
|
|
|
|
// Set the axis position to its home position (plus home offsets)
|
|
axis_is_at_home(axis);
|
|
|
|
destination[axis] = current_position[axis];
|
|
feedrate = 0.0;
|
|
endstops_hit_on_purpose(); // clear endstop hit flags
|
|
axis_known_position[axis] = true;
|
|
|
|
// Retract Servo endstop if enabled
|
|
#ifdef SERVO_ENDSTOPS
|
|
if (servo_endstops[axis] > -1)
|
|
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
|
|
#endif
|
|
|
|
#if SERVO_LEVELING && !defined(Z_PROBE_SLED)
|
|
if (axis == Z_AXIS) stow_z_probe();
|
|
#endif
|
|
|
|
}
|
|
}
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
void retract(bool retracting, bool swapretract = false) {
|
|
|
|
if (retracting == retracted[active_extruder]) return;
|
|
|
|
float oldFeedrate = feedrate;
|
|
|
|
set_destination_to_current();
|
|
|
|
if (retracting) {
|
|
|
|
feedrate = retract_feedrate * 60;
|
|
current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
prepare_move();
|
|
|
|
if (retract_zlift > 0.01) {
|
|
current_position[Z_AXIS] -= retract_zlift;
|
|
#ifdef DELTA
|
|
sync_plan_position_delta();
|
|
#else
|
|
sync_plan_position();
|
|
#endif
|
|
prepare_move();
|
|
}
|
|
}
|
|
else {
|
|
|
|
if (retract_zlift > 0.01) {
|
|
current_position[Z_AXIS] += retract_zlift;
|
|
#ifdef DELTA
|
|
sync_plan_position_delta();
|
|
#else
|
|
sync_plan_position();
|
|
#endif
|
|
//prepare_move();
|
|
}
|
|
|
|
feedrate = retract_recover_feedrate * 60;
|
|
float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
|
|
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
prepare_move();
|
|
}
|
|
|
|
feedrate = oldFeedrate;
|
|
retracted[active_extruder] = retracting;
|
|
|
|
} // retract()
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
|
|
#ifndef SLED_DOCKING_OFFSET
|
|
#define SLED_DOCKING_OFFSET 0
|
|
#endif
|
|
|
|
//
|
|
// Method to dock/undock a sled designed by Charles Bell.
|
|
//
|
|
// dock[in] If true, move to MAX_X and engage the electromagnet
|
|
// offset[in] The additional distance to move to adjust docking location
|
|
//
|
|
static void dock_sled(bool dock, int offset=0) {
|
|
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
return;
|
|
}
|
|
|
|
if (dock) {
|
|
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
digitalWrite(SERVO0_PIN, LOW); // turn off magnet
|
|
} else {
|
|
float z_loc = current_position[Z_AXIS];
|
|
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
|
|
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
|
|
digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
|
|
}
|
|
}
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
/**
|
|
*
|
|
* G-Code Handler functions
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* G0, G1: Coordinated movement of X Y Z E axes
|
|
*/
|
|
inline void gcode_G0_G1() {
|
|
if (!Stopped) {
|
|
get_coordinates(); // For X Y Z E F
|
|
#ifdef FWRETRACT
|
|
if (autoretract_enabled)
|
|
if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
|
float echange = destination[E_AXIS] - current_position[E_AXIS];
|
|
// Is this move an attempt to retract or recover?
|
|
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
|
|
plan_set_e_position(current_position[E_AXIS]); // AND from the planner
|
|
retract(!retracted[active_extruder]);
|
|
return;
|
|
}
|
|
}
|
|
#endif //FWRETRACT
|
|
prepare_move();
|
|
//ClearToSend();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* G2: Clockwise Arc
|
|
* G3: Counterclockwise Arc
|
|
*/
|
|
inline void gcode_G2_G3(bool clockwise) {
|
|
if (!Stopped) {
|
|
get_arc_coordinates();
|
|
prepare_arc_move(clockwise);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* G4: Dwell S<seconds> or P<milliseconds>
|
|
*/
|
|
inline void gcode_G4() {
|
|
unsigned long codenum = 0;
|
|
|
|
LCD_MESSAGEPGM(MSG_DWELL);
|
|
|
|
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
|
|
if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
|
|
|
|
st_synchronize();
|
|
refresh_cmd_timeout();
|
|
codenum += previous_millis_cmd; // keep track of when we started waiting
|
|
while (millis() < codenum) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
}
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
/**
|
|
* G10 - Retract filament according to settings of M207
|
|
* G11 - Recover filament according to settings of M208
|
|
*/
|
|
inline void gcode_G10_G11(bool doRetract=false) {
|
|
#if EXTRUDERS > 1
|
|
if (doRetract) {
|
|
retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
|
|
}
|
|
#endif
|
|
retract(doRetract
|
|
#if EXTRUDERS > 1
|
|
, retracted_swap[active_extruder]
|
|
#endif
|
|
);
|
|
}
|
|
|
|
#endif //FWRETRACT
|
|
|
|
/**
|
|
* G28: Home all axes according to settings
|
|
*
|
|
* Parameters
|
|
*
|
|
* None Home to all axes with no parameters.
|
|
* With QUICK_HOME enabled XY will home together, then Z.
|
|
*
|
|
* Cartesian parameters
|
|
*
|
|
* X Home to the X endstop
|
|
* Y Home to the Y endstop
|
|
* Z Home to the Z endstop
|
|
*
|
|
* If numbers are included with XYZ set the position as with G92
|
|
* Currently adds the home_offset, which may be wrong and removed soon.
|
|
*
|
|
* Xn Home X, setting X to n + home_offset[X_AXIS]
|
|
* Yn Home Y, setting Y to n + home_offset[Y_AXIS]
|
|
* Zn Home Z, setting Z to n + home_offset[Z_AXIS]
|
|
*/
|
|
inline void gcode_G28() {
|
|
|
|
// For auto bed leveling, clear the level matrix
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
plan_bed_level_matrix.set_to_identity();
|
|
#ifdef DELTA
|
|
reset_bed_level();
|
|
#endif
|
|
#endif
|
|
|
|
// For manual bed leveling deactivate the matrix temporarily
|
|
#ifdef MESH_BED_LEVELING
|
|
uint8_t mbl_was_active = mbl.active;
|
|
mbl.active = 0;
|
|
#endif
|
|
|
|
saved_feedrate = feedrate;
|
|
saved_feedmultiply = feedmultiply;
|
|
feedmultiply = 100;
|
|
refresh_cmd_timeout();
|
|
|
|
enable_endstops(true);
|
|
|
|
set_destination_to_current();
|
|
|
|
feedrate = 0.0;
|
|
|
|
#ifdef DELTA
|
|
// A delta can only safely home all axis at the same time
|
|
// all axis have to home at the same time
|
|
|
|
// Pretend the current position is 0,0,0
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
|
|
sync_plan_position();
|
|
|
|
// Move all carriages up together until the first endstop is hit.
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
|
|
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
|
line_to_destination();
|
|
st_synchronize();
|
|
endstops_hit_on_purpose(); // clear endstop hit flags
|
|
|
|
// Destination reached
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
|
|
|
|
// take care of back off and rehome now we are all at the top
|
|
HOMEAXIS(X);
|
|
HOMEAXIS(Y);
|
|
HOMEAXIS(Z);
|
|
|
|
sync_plan_position_delta();
|
|
|
|
#else // NOT DELTA
|
|
|
|
bool homeX = code_seen(axis_codes[X_AXIS]),
|
|
homeY = code_seen(axis_codes[Y_AXIS]),
|
|
homeZ = code_seen(axis_codes[Z_AXIS]);
|
|
|
|
home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
|
if (home_all_axis || homeZ) HOMEAXIS(Z);
|
|
|
|
#elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
|
|
|
|
// Raise Z before homing any other axes
|
|
if (home_all_axis || homeZ) {
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
feedrate = max_feedrate[Z_AXIS] * 60;
|
|
line_to_destination();
|
|
st_synchronize();
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef QUICK_HOME
|
|
|
|
if (home_all_axis || (homeX && homeY)) { // First diagonal move
|
|
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
int x_axis_home_dir = x_home_dir(active_extruder);
|
|
extruder_duplication_enabled = false;
|
|
#else
|
|
int x_axis_home_dir = home_dir(X_AXIS);
|
|
#endif
|
|
|
|
sync_plan_position();
|
|
|
|
float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
|
|
mlratio = mlx>mly ? mly/mlx : mlx/mly;
|
|
|
|
destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
|
|
destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
|
|
feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
|
|
line_to_destination();
|
|
st_synchronize();
|
|
|
|
axis_is_at_home(X_AXIS);
|
|
axis_is_at_home(Y_AXIS);
|
|
sync_plan_position();
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
line_to_destination();
|
|
feedrate = 0.0;
|
|
st_synchronize();
|
|
endstops_hit_on_purpose(); // clear endstop hit flags
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
#ifndef SCARA
|
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
|
#endif
|
|
}
|
|
|
|
#endif // QUICK_HOME
|
|
|
|
// Home X
|
|
if (home_all_axis || homeX) {
|
|
#ifdef DUAL_X_CARRIAGE
|
|
int tmp_extruder = active_extruder;
|
|
extruder_duplication_enabled = false;
|
|
active_extruder = !active_extruder;
|
|
HOMEAXIS(X);
|
|
inactive_extruder_x_pos = current_position[X_AXIS];
|
|
active_extruder = tmp_extruder;
|
|
HOMEAXIS(X);
|
|
// reset state used by the different modes
|
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
delayed_move_time = 0;
|
|
active_extruder_parked = true;
|
|
#else
|
|
HOMEAXIS(X);
|
|
#endif
|
|
}
|
|
|
|
// Home Y
|
|
if (home_all_axis || homeY) HOMEAXIS(Y);
|
|
|
|
// Set the X position, if included
|
|
// Adds the home_offset as well, which may be wrong
|
|
if (code_seen(axis_codes[X_AXIS])) {
|
|
float v = code_value();
|
|
if (v) current_position[X_AXIS] = v
|
|
#ifndef SCARA
|
|
+ home_offset[X_AXIS]
|
|
#endif
|
|
;
|
|
}
|
|
|
|
// Set the Y position, if included
|
|
// Adds the home_offset as well, which may be wrong
|
|
if (code_seen(axis_codes[Y_AXIS])) {
|
|
float v = code_value();
|
|
if (v) current_position[Y_AXIS] = v
|
|
#ifndef SCARA
|
|
+ home_offset[Y_AXIS]
|
|
#endif
|
|
;
|
|
}
|
|
|
|
// Home Z last if homing towards the bed
|
|
#if Z_HOME_DIR < 0
|
|
|
|
#ifndef Z_SAFE_HOMING
|
|
|
|
if (home_all_axis || homeZ) HOMEAXIS(Z);
|
|
|
|
#else // Z_SAFE_HOMING
|
|
|
|
if (home_all_axis) {
|
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
current_position[Z_AXIS] = 0;
|
|
|
|
sync_plan_position();
|
|
line_to_destination();
|
|
st_synchronize();
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
HOMEAXIS(Z);
|
|
}
|
|
|
|
// Let's see if X and Y are homed and probe is inside bed area.
|
|
if (homeZ) {
|
|
|
|
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
|
|
|
|
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
|
|
if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
|
|
&& cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
|
|
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
|
|
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
|
|
current_position[Z_AXIS] = 0;
|
|
plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
|
|
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
|
|
feedrate = max_feedrate[Z_AXIS] * 60; // max_feedrate is in mm/s. line_to_destination is feedrate/60.
|
|
line_to_destination();
|
|
st_synchronize();
|
|
HOMEAXIS(Z);
|
|
}
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
|
}
|
|
}
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
}
|
|
}
|
|
|
|
#endif // Z_SAFE_HOMING
|
|
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
// Set the Z position, if included
|
|
// Adds the home_offset as well, which may be wrong
|
|
if (code_seen(axis_codes[Z_AXIS])) {
|
|
float v = code_value();
|
|
if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
|
|
}
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
|
|
if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
|
|
#endif
|
|
sync_plan_position();
|
|
|
|
#endif // else DELTA
|
|
|
|
#ifdef SCARA
|
|
sync_plan_position_delta();
|
|
#endif
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
enable_endstops(false);
|
|
#endif
|
|
|
|
// For manual leveling move back to 0,0
|
|
#ifdef MESH_BED_LEVELING
|
|
if (mbl_was_active) {
|
|
current_position[X_AXIS] = mbl.get_x(0);
|
|
current_position[Y_AXIS] = mbl.get_y(0);
|
|
set_destination_to_current();
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
line_to_destination();
|
|
st_synchronize();
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
sync_plan_position();
|
|
mbl.active = 1;
|
|
}
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
feedmultiply = saved_feedmultiply;
|
|
refresh_cmd_timeout();
|
|
endstops_hit_on_purpose(); // clear endstop hit flags
|
|
}
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
|
|
enum MeshLevelingState { MeshReport, MeshStart, MeshNext };
|
|
|
|
/**
|
|
* G29: Mesh-based Z-Probe, probes a grid and produces a
|
|
* mesh to compensate for variable bed height
|
|
*
|
|
* Parameters With MESH_BED_LEVELING:
|
|
*
|
|
* S0 Produce a mesh report
|
|
* S1 Start probing mesh points
|
|
* S2 Probe the next mesh point
|
|
*
|
|
*/
|
|
inline void gcode_G29() {
|
|
|
|
static int probe_point = -1;
|
|
MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
|
|
if (state < 0 || state > 2) {
|
|
SERIAL_PROTOCOLLNPGM("S out of range (0-2).");
|
|
return;
|
|
}
|
|
|
|
switch(state) {
|
|
case MeshReport:
|
|
if (mbl.active) {
|
|
SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
|
|
SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
|
|
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
|
|
break;
|
|
|
|
case MeshStart:
|
|
mbl.reset();
|
|
probe_point = 0;
|
|
enquecommands_P(PSTR("G28\nG29 S2"));
|
|
break;
|
|
|
|
case MeshNext:
|
|
if (probe_point < 0) {
|
|
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
|
|
return;
|
|
}
|
|
int ix, iy;
|
|
if (probe_point == 0) {
|
|
// Set Z to a positive value before recording the first Z.
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
sync_plan_position();
|
|
}
|
|
else {
|
|
// For others, save the Z of the previous point, then raise Z again.
|
|
ix = (probe_point - 1) % MESH_NUM_X_POINTS;
|
|
iy = (probe_point - 1) / MESH_NUM_X_POINTS;
|
|
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
|
|
mbl.set_z(ix, iy, current_position[Z_AXIS]);
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
|
st_synchronize();
|
|
}
|
|
// Is there another point to sample? Move there.
|
|
if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
|
|
ix = probe_point % MESH_NUM_X_POINTS;
|
|
iy = probe_point / MESH_NUM_X_POINTS;
|
|
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
|
|
current_position[X_AXIS] = mbl.get_x(ix);
|
|
current_position[Y_AXIS] = mbl.get_y(iy);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
|
st_synchronize();
|
|
probe_point++;
|
|
}
|
|
else {
|
|
// After recording the last point, activate the mbl and home
|
|
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
|
|
probe_point = -1;
|
|
mbl.active = 1;
|
|
enquecommands_P(PSTR("G28"));
|
|
}
|
|
|
|
} // switch(state)
|
|
}
|
|
|
|
#elif defined(ENABLE_AUTO_BED_LEVELING)
|
|
|
|
/**
|
|
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
|
|
* Will fail if the printer has not been homed with G28.
|
|
*
|
|
* Enhanced G29 Auto Bed Leveling Probe Routine
|
|
*
|
|
* Parameters With AUTO_BED_LEVELING_GRID:
|
|
*
|
|
* P Set the size of the grid that will be probed (P x P points).
|
|
* Not supported by non-linear delta printer bed leveling.
|
|
* Example: "G29 P4"
|
|
*
|
|
* S Set the XY travel speed between probe points (in mm/min)
|
|
*
|
|
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
|
|
* or clean the rotation Matrix. Useful to check the topology
|
|
* after a first run of G29.
|
|
*
|
|
* V Set the verbose level (0-4). Example: "G29 V3"
|
|
*
|
|
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
|
* This is useful for manual bed leveling and finding flaws in the bed (to
|
|
* assist with part placement).
|
|
* Not supported by non-linear delta printer bed leveling.
|
|
*
|
|
* F Set the Front limit of the probing grid
|
|
* B Set the Back limit of the probing grid
|
|
* L Set the Left limit of the probing grid
|
|
* R Set the Right limit of the probing grid
|
|
*
|
|
* Global Parameters:
|
|
*
|
|
* E/e By default G29 will engages the probe, test the bed, then disengage.
|
|
* Include "E" to engage/disengage the probe for each sample.
|
|
* There's no extra effect if you have a fixed probe.
|
|
* Usage: "G29 E" or "G29 e"
|
|
*
|
|
*/
|
|
inline void gcode_G29() {
|
|
|
|
// Don't allow auto-leveling without homing first
|
|
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
|
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
|
|
return;
|
|
}
|
|
|
|
int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
|
|
if (verbose_level < 0 || verbose_level > 4) {
|
|
SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
|
|
return;
|
|
}
|
|
|
|
bool dryrun = code_seen('D') || code_seen('d'),
|
|
deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
#ifndef DELTA
|
|
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
|
|
#endif
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
|
|
if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
|
|
}
|
|
|
|
int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
|
|
#ifndef DELTA
|
|
if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
|
|
if (auto_bed_leveling_grid_points < 2) {
|
|
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
|
|
|
|
int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
|
|
right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
|
|
front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
|
|
back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
|
|
|
|
bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
|
|
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
|
|
right_out_r = right_probe_bed_position > MAX_PROBE_X,
|
|
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
|
front_out_f = front_probe_bed_position < MIN_PROBE_Y,
|
|
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
|
|
back_out_b = back_probe_bed_position > MAX_PROBE_Y,
|
|
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
|
|
|
|
if (left_out || right_out || front_out || back_out) {
|
|
if (left_out) {
|
|
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
|
|
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
|
|
}
|
|
if (right_out) {
|
|
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
|
|
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
if (front_out) {
|
|
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
|
|
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
|
|
}
|
|
if (back_out) {
|
|
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
|
|
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
dock_sled(false); // engage (un-dock) the probe
|
|
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
|
|
deploy_z_probe();
|
|
#endif
|
|
|
|
st_synchronize();
|
|
|
|
if (!dryrun) {
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
#ifdef DELTA
|
|
reset_bed_level();
|
|
#else //!DELTA
|
|
//vector_3 corrected_position = plan_get_position_mm();
|
|
//corrected_position.debug("position before G29");
|
|
vector_3 uncorrected_position = plan_get_position();
|
|
//uncorrected_position.debug("position during G29");
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
sync_plan_position();
|
|
#endif // !DELTA
|
|
}
|
|
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
// probe at the points of a lattice grid
|
|
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
|
|
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
|
|
|
#ifdef DELTA
|
|
delta_grid_spacing[0] = xGridSpacing;
|
|
delta_grid_spacing[1] = yGridSpacing;
|
|
float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
|
|
#else // !DELTA
|
|
// solve the plane equation ax + by + d = z
|
|
// A is the matrix with rows [x y 1] for all the probed points
|
|
// B is the vector of the Z positions
|
|
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
|
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
|
|
|
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
|
eqnBVector[abl2], // "B" vector of Z points
|
|
mean = 0.0;
|
|
#endif // !DELTA
|
|
|
|
int probePointCounter = 0;
|
|
bool zig = true;
|
|
|
|
for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
|
|
double yProbe = front_probe_bed_position + yGridSpacing * yCount;
|
|
int xStart, xStop, xInc;
|
|
|
|
if (zig) {
|
|
xStart = 0;
|
|
xStop = auto_bed_leveling_grid_points;
|
|
xInc = 1;
|
|
}
|
|
else {
|
|
xStart = auto_bed_leveling_grid_points - 1;
|
|
xStop = -1;
|
|
xInc = -1;
|
|
}
|
|
|
|
#ifndef DELTA
|
|
// If do_topography_map is set then don't zig-zag. Just scan in one direction.
|
|
// This gets the probe points in more readable order.
|
|
if (!do_topography_map) zig = !zig;
|
|
#endif
|
|
|
|
for (int xCount = xStart; xCount != xStop; xCount += xInc) {
|
|
double xProbe = left_probe_bed_position + xGridSpacing * xCount;
|
|
|
|
// raise extruder
|
|
float measured_z,
|
|
z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
|
|
|
|
#ifdef DELTA
|
|
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
|
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
|
|
if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
|
|
#endif //DELTA
|
|
|
|
ProbeAction act;
|
|
if (deploy_probe_for_each_reading) // G29 E - Stow between probes
|
|
act = ProbeDeployAndStow;
|
|
else if (yCount == 0 && xCount == 0)
|
|
act = ProbeDeploy;
|
|
else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
|
|
act = ProbeStow;
|
|
else
|
|
act = ProbeStay;
|
|
|
|
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
|
|
|
|
#ifndef DELTA
|
|
mean += measured_z;
|
|
|
|
eqnBVector[probePointCounter] = measured_z;
|
|
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
|
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
|
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
|
#else
|
|
bed_level[xCount][yCount] = measured_z + z_offset;
|
|
#endif
|
|
|
|
probePointCounter++;
|
|
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
|
|
} //xProbe
|
|
} //yProbe
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
#ifdef DELTA
|
|
|
|
if (!dryrun) extrapolate_unprobed_bed_level();
|
|
print_bed_level();
|
|
|
|
#else // !DELTA
|
|
|
|
// solve lsq problem
|
|
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
|
|
|
mean /= abl2;
|
|
|
|
if (verbose_level) {
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
|
SERIAL_EOL;
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
SERIAL_PROTOCOL_F(mean, 8);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
// Show the Topography map if enabled
|
|
if (do_topography_map) {
|
|
|
|
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
|
SERIAL_PROTOCOLPGM("+-----------+\n");
|
|
SERIAL_PROTOCOLPGM("|...Back....|\n");
|
|
SERIAL_PROTOCOLPGM("|Left..Right|\n");
|
|
SERIAL_PROTOCOLPGM("|...Front...|\n");
|
|
SERIAL_PROTOCOLPGM("+-----------+\n");
|
|
|
|
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
|
|
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
|
|
int ind = yy * auto_bed_leveling_grid_points + xx;
|
|
float diff = eqnBVector[ind] - mean;
|
|
if (diff >= 0.0)
|
|
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
|
else
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
} // xx
|
|
SERIAL_EOL;
|
|
} // yy
|
|
SERIAL_EOL;
|
|
|
|
} //do_topography_map
|
|
|
|
|
|
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
free(plane_equation_coefficients);
|
|
|
|
#endif //!DELTA
|
|
|
|
#else // !AUTO_BED_LEVELING_GRID
|
|
|
|
// Actions for each probe
|
|
ProbeAction p1, p2, p3;
|
|
if (deploy_probe_for_each_reading)
|
|
p1 = p2 = p3 = ProbeDeployAndStow;
|
|
else
|
|
p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
|
|
|
|
// Probe at 3 arbitrary points
|
|
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
|
|
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
|
|
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
|
|
clean_up_after_endstop_move();
|
|
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
|
|
#endif // !AUTO_BED_LEVELING_GRID
|
|
|
|
#ifndef DELTA
|
|
if (verbose_level > 0)
|
|
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
|
|
|
if (!dryrun) {
|
|
// Correct the Z height difference from z-probe position and hotend tip position.
|
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
// When the bed is uneven, this height must be corrected.
|
|
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
|
z_tmp = current_position[Z_AXIS],
|
|
real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
sync_plan_position();
|
|
}
|
|
#endif // !DELTA
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
|
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
|
|
stow_z_probe();
|
|
#endif
|
|
|
|
#ifdef Z_PROBE_END_SCRIPT
|
|
enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
|
|
st_synchronize();
|
|
#endif
|
|
}
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
inline void gcode_G30() {
|
|
deploy_z_probe(); // Engage Z Servo endstop if available
|
|
st_synchronize();
|
|
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
run_z_probe();
|
|
SERIAL_PROTOCOLPGM(MSG_BED);
|
|
SERIAL_PROTOCOLPGM(" X: ");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
|
|
SERIAL_EOL;
|
|
|
|
clean_up_after_endstop_move();
|
|
stow_z_probe(); // Retract Z Servo endstop if available
|
|
}
|
|
|
|
#endif //!Z_PROBE_SLED
|
|
|
|
#endif //ENABLE_AUTO_BED_LEVELING
|
|
|
|
/**
|
|
* G92: Set current position to given X Y Z E
|
|
*/
|
|
inline void gcode_G92() {
|
|
if (!code_seen(axis_codes[E_AXIS]))
|
|
st_synchronize();
|
|
|
|
bool didXYZ = false;
|
|
for (int i = 0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
float v = current_position[i] = code_value();
|
|
if (i == E_AXIS)
|
|
plan_set_e_position(v);
|
|
else
|
|
didXYZ = true;
|
|
}
|
|
}
|
|
if (didXYZ) sync_plan_position();
|
|
}
|
|
|
|
#ifdef ULTIPANEL
|
|
|
|
/**
|
|
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
* M1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
*/
|
|
inline void gcode_M0_M1() {
|
|
char *src = strchr_pointer + 2;
|
|
|
|
unsigned long codenum = 0;
|
|
bool hasP = false, hasS = false;
|
|
if (code_seen('P')) {
|
|
codenum = code_value_short(); // milliseconds to wait
|
|
hasP = codenum > 0;
|
|
}
|
|
if (code_seen('S')) {
|
|
codenum = code_value_short() * 1000UL; // seconds to wait
|
|
hasS = codenum > 0;
|
|
}
|
|
char* starpos = strchr(src, '*');
|
|
if (starpos != NULL) *(starpos) = '\0';
|
|
while (*src == ' ') ++src;
|
|
if (!hasP && !hasS && *src != '\0')
|
|
lcd_setstatus(src, true);
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_USERWAIT);
|
|
#if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
|
|
dontExpireStatus();
|
|
#endif
|
|
}
|
|
|
|
lcd_ignore_click();
|
|
st_synchronize();
|
|
refresh_cmd_timeout();
|
|
if (codenum > 0) {
|
|
codenum += previous_millis_cmd; // keep track of when we started waiting
|
|
while(millis() < codenum && !lcd_clicked()) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
lcd_ignore_click(false);
|
|
}
|
|
else {
|
|
if (!lcd_detected()) return;
|
|
while (!lcd_clicked()) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
}
|
|
if (IS_SD_PRINTING)
|
|
LCD_MESSAGEPGM(MSG_RESUMING);
|
|
else
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
/**
|
|
* M17: Enable power on all stepper motors
|
|
*/
|
|
inline void gcode_M17() {
|
|
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
|
enable_all_steppers();
|
|
}
|
|
|
|
#ifdef SDSUPPORT
|
|
|
|
/**
|
|
* M20: List SD card to serial output
|
|
*/
|
|
inline void gcode_M20() {
|
|
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
|
card.ls();
|
|
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
|
}
|
|
|
|
/**
|
|
* M21: Init SD Card
|
|
*/
|
|
inline void gcode_M21() {
|
|
card.initsd();
|
|
}
|
|
|
|
/**
|
|
* M22: Release SD Card
|
|
*/
|
|
inline void gcode_M22() {
|
|
card.release();
|
|
}
|
|
|
|
/**
|
|
* M23: Select a file
|
|
*/
|
|
inline void gcode_M23() {
|
|
char* codepos = strchr_pointer + 4;
|
|
char* starpos = strchr(codepos, '*');
|
|
if (starpos) *starpos = '\0';
|
|
card.openFile(codepos, true);
|
|
}
|
|
|
|
/**
|
|
* M24: Start SD Print
|
|
*/
|
|
inline void gcode_M24() {
|
|
card.startFileprint();
|
|
starttime = millis();
|
|
}
|
|
|
|
/**
|
|
* M25: Pause SD Print
|
|
*/
|
|
inline void gcode_M25() {
|
|
card.pauseSDPrint();
|
|
}
|
|
|
|
/**
|
|
* M26: Set SD Card file index
|
|
*/
|
|
inline void gcode_M26() {
|
|
if (card.cardOK && code_seen('S'))
|
|
card.setIndex(code_value_short());
|
|
}
|
|
|
|
/**
|
|
* M27: Get SD Card status
|
|
*/
|
|
inline void gcode_M27() {
|
|
card.getStatus();
|
|
}
|
|
|
|
/**
|
|
* M28: Start SD Write
|
|
*/
|
|
inline void gcode_M28() {
|
|
char* codepos = strchr_pointer + 4;
|
|
char* starpos = strchr(codepos, '*');
|
|
if (starpos) {
|
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
strchr_pointer = strchr(npos, ' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.openFile(codepos, false);
|
|
}
|
|
|
|
/**
|
|
* M29: Stop SD Write
|
|
* Processed in write to file routine above
|
|
*/
|
|
inline void gcode_M29() {
|
|
// card.saving = false;
|
|
}
|
|
|
|
/**
|
|
* M30 <filename>: Delete SD Card file
|
|
*/
|
|
inline void gcode_M30() {
|
|
if (card.cardOK) {
|
|
card.closefile();
|
|
char* starpos = strchr(strchr_pointer + 4, '*');
|
|
if (starpos) {
|
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
strchr_pointer = strchr(npos, ' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.removeFile(strchr_pointer + 4);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* M31: Get the time since the start of SD Print (or last M109)
|
|
*/
|
|
inline void gcode_M31() {
|
|
stoptime = millis();
|
|
unsigned long t = (stoptime - starttime) / 1000;
|
|
int min = t / 60, sec = t % 60;
|
|
char time[30];
|
|
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time);
|
|
autotempShutdown();
|
|
}
|
|
|
|
#ifdef SDSUPPORT
|
|
|
|
/**
|
|
* M32: Select file and start SD Print
|
|
*/
|
|
inline void gcode_M32() {
|
|
if (card.sdprinting)
|
|
st_synchronize();
|
|
|
|
char* codepos = strchr_pointer + 4;
|
|
|
|
char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
|
|
if (! namestartpos)
|
|
namestartpos = codepos; //default name position, 4 letters after the M
|
|
else
|
|
namestartpos++; //to skip the '!'
|
|
|
|
char* starpos = strchr(codepos, '*');
|
|
if (starpos) *(starpos) = '\0';
|
|
|
|
bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
|
|
|
|
if (card.cardOK) {
|
|
card.openFile(namestartpos, true, !call_procedure);
|
|
|
|
if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
|
|
card.setIndex(code_value_short());
|
|
|
|
card.startFileprint();
|
|
if (!call_procedure)
|
|
starttime = millis(); //procedure calls count as normal print time.
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M928: Start SD Write
|
|
*/
|
|
inline void gcode_M928() {
|
|
char* starpos = strchr(strchr_pointer + 5, '*');
|
|
if (starpos) {
|
|
char* npos = strchr(cmdbuffer[bufindr], 'N');
|
|
strchr_pointer = strchr(npos, ' ') + 1;
|
|
*(starpos) = '\0';
|
|
}
|
|
card.openLogFile(strchr_pointer + 5);
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* M42: Change pin status via GCode
|
|
*/
|
|
inline void gcode_M42() {
|
|
if (code_seen('S')) {
|
|
int pin_status = code_value_short(),
|
|
pin_number = LED_PIN;
|
|
|
|
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
|
pin_number = code_value_short();
|
|
|
|
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
|
|
if (sensitive_pins[i] == pin_number) {
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if HAS_FAN
|
|
if (pin_number == FAN_PIN) fanSpeed = pin_status;
|
|
#endif
|
|
|
|
if (pin_number > -1) {
|
|
pinMode(pin_number, OUTPUT);
|
|
digitalWrite(pin_number, pin_status);
|
|
analogWrite(pin_number, pin_status);
|
|
}
|
|
} // code_seen('S')
|
|
}
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
|
|
|
// This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
|
|
#ifdef Z_PROBE_ENDSTOP
|
|
#if !HAS_Z_PROBE
|
|
#error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
|
|
#endif
|
|
#elif !HAS_Z_MIN
|
|
#error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
|
|
#endif
|
|
|
|
/**
|
|
* M48: Z-Probe repeatability measurement function.
|
|
*
|
|
* Usage:
|
|
* M48 <n#> <X#> <Y#> <V#> <E> <L#>
|
|
* P = Number of sampled points (4-50, default 10)
|
|
* X = Sample X position
|
|
* Y = Sample Y position
|
|
* V = Verbose level (0-4, default=1)
|
|
* E = Engage probe for each reading
|
|
* L = Number of legs of movement before probe
|
|
*
|
|
* This function assumes the bed has been homed. Specifically, that a G28 command
|
|
* as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
|
|
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
* regenerated.
|
|
*
|
|
* The number of samples will default to 10 if not specified. You can use upper or lower case
|
|
* letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
|
|
* N for its communication protocol and will get horribly confused if you send it a capital N.
|
|
*/
|
|
inline void gcode_M48() {
|
|
|
|
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
|
|
int verbose_level = 1, n_samples = 10, n_legs = 0;
|
|
|
|
if (code_seen('V') || code_seen('v')) {
|
|
verbose_level = code_value_short();
|
|
if (verbose_level < 0 || verbose_level > 4 ) {
|
|
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (verbose_level > 0)
|
|
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
|
|
|
|
if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
|
|
n_samples = code_value_short();
|
|
if (n_samples < 4 || n_samples > 50) {
|
|
SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
double X_probe_location, Y_probe_location,
|
|
X_current = X_probe_location = st_get_position_mm(X_AXIS),
|
|
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
|
|
Z_current = st_get_position_mm(Z_AXIS),
|
|
Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
|
|
ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
|
|
|
|
if (code_seen('X') || code_seen('x')) {
|
|
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
|
|
SERIAL_PROTOCOLPGM("?X position out of range.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (code_seen('Y') || code_seen('y')) {
|
|
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
|
|
SERIAL_PROTOCOLPGM("?Y position out of range.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (code_seen('L') || code_seen('l')) {
|
|
n_legs = code_value_short();
|
|
if (n_legs == 1) n_legs = 2;
|
|
if (n_legs < 0 || n_legs > 15) {
|
|
SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Do all the preliminary setup work. First raise the probe.
|
|
//
|
|
|
|
st_synchronize();
|
|
plan_bed_level_matrix.set_to_identity();
|
|
plan_buffer_line(X_current, Y_current, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[Z_AXIS] / 60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
|
|
//
|
|
// Now get everything to the specified probe point So we can safely do a probe to
|
|
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
|
|
// use that as a starting point for each probe.
|
|
//
|
|
if (verbose_level > 2)
|
|
SERIAL_PROTOCOL("Positioning the probe...\n");
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[X_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
|
|
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
|
|
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
|
|
|
|
//
|
|
// OK, do the inital probe to get us close to the bed.
|
|
// Then retrace the right amount and use that in subsequent probes
|
|
//
|
|
|
|
deploy_z_probe();
|
|
|
|
setup_for_endstop_move();
|
|
run_z_probe();
|
|
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
|
|
|
|
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
|
|
ext_position,
|
|
homing_feedrate[X_AXIS]/60,
|
|
active_extruder);
|
|
st_synchronize();
|
|
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
|
|
|
|
if (deploy_probe_for_each_reading) stow_z_probe();
|
|
|
|
for (uint16_t n=0; n < n_samples; n++) {
|
|
|
|
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
|
|
|
if (n_legs) {
|
|
unsigned long ms = millis();
|
|
double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
|
|
theta = RADIANS(ms % 360L);
|
|
float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
|
|
|
|
//SERIAL_ECHOPAIR("starting radius: ",radius);
|
|
//SERIAL_ECHOPAIR(" theta: ",theta);
|
|
//SERIAL_ECHOPAIR(" direction: ",dir);
|
|
//SERIAL_EOL;
|
|
|
|
for (int l = 0; l < n_legs - 1; l++) {
|
|
ms = millis();
|
|
theta += RADIANS(dir * (ms % 20L));
|
|
radius += (ms % 10L) - 5L;
|
|
if (radius < 0.0) radius = -radius;
|
|
|
|
X_current = X_probe_location + cos(theta) * radius;
|
|
Y_current = Y_probe_location + sin(theta) * radius;
|
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
|
|
if (verbose_level > 3) {
|
|
SERIAL_ECHOPAIR("x: ", X_current);
|
|
SERIAL_ECHOPAIR("y: ", Y_current);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
do_blocking_move_to(X_current, Y_current, Z_current);
|
|
|
|
} // n_legs loop
|
|
|
|
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
|
|
|
|
} // n_legs
|
|
|
|
if (deploy_probe_for_each_reading) {
|
|
deploy_z_probe();
|
|
delay(1000);
|
|
}
|
|
|
|
setup_for_endstop_move();
|
|
run_z_probe();
|
|
|
|
sample_set[n] = current_position[Z_AXIS];
|
|
|
|
//
|
|
// Get the current mean for the data points we have so far
|
|
//
|
|
sum = 0.0;
|
|
for (int j = 0; j <= n; j++) sum += sample_set[j];
|
|
mean = sum / (n + 1);
|
|
|
|
//
|
|
// Now, use that mean to calculate the standard deviation for the
|
|
// data points we have so far
|
|
//
|
|
sum = 0.0;
|
|
for (int j = 0; j <= n; j++) {
|
|
float ss = sample_set[j] - mean;
|
|
sum += ss * ss;
|
|
}
|
|
sigma = sqrt(sum / (n + 1));
|
|
|
|
if (verbose_level > 1) {
|
|
SERIAL_PROTOCOL(n+1);
|
|
SERIAL_PROTOCOLPGM(" of ");
|
|
SERIAL_PROTOCOL(n_samples);
|
|
SERIAL_PROTOCOLPGM(" z: ");
|
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM(" mean: ");
|
|
SERIAL_PROTOCOL_F(mean,6);
|
|
SERIAL_PROTOCOLPGM(" sigma: ");
|
|
SERIAL_PROTOCOL_F(sigma,6);
|
|
}
|
|
}
|
|
|
|
if (verbose_level > 0) SERIAL_EOL;
|
|
|
|
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
|
|
st_synchronize();
|
|
|
|
if (deploy_probe_for_each_reading) {
|
|
stow_z_probe();
|
|
delay(1000);
|
|
}
|
|
}
|
|
|
|
if (!deploy_probe_for_each_reading) {
|
|
stow_z_probe();
|
|
delay(1000);
|
|
}
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
// enable_endstops(true);
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
SERIAL_EOL; SERIAL_EOL;
|
|
}
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
|
|
|
|
/**
|
|
* M104: Set hot end temperature
|
|
*/
|
|
inline void gcode_M104() {
|
|
if (setTargetedHotend(104)) return;
|
|
|
|
if (code_seen('S')) {
|
|
float temp = code_value();
|
|
setTargetHotend(temp, target_extruder);
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
|
|
#endif
|
|
setWatch();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M105: Read hot end and bed temperature
|
|
*/
|
|
inline void gcode_M105() {
|
|
if (setTargetedHotend(105)) return;
|
|
|
|
#if HAS_TEMP_0 || HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM("ok");
|
|
#if HAS_TEMP_0
|
|
SERIAL_PROTOCOLPGM(" T:");
|
|
SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
|
|
#endif
|
|
#if HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetBed(), 1);
|
|
#endif
|
|
for (int8_t e = 0; e < EXTRUDERS; ++e) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(e);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL_F(degHotend(e), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
|
|
}
|
|
#else // !HAS_TEMP_0 && !HAS_TEMP_BED
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
#ifdef EXTRUDER_WATTS
|
|
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
|
|
SERIAL_PROTOCOLCHAR('W');
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM(" B@:");
|
|
#ifdef BED_WATTS
|
|
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
|
|
SERIAL_PROTOCOLCHAR('W');
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
#endif
|
|
|
|
#ifdef SHOW_TEMP_ADC_VALUES
|
|
#if HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(" ADC B:");
|
|
SERIAL_PROTOCOL_F(degBed(),1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
|
|
#endif
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
|
|
}
|
|
#endif
|
|
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#if HAS_FAN
|
|
|
|
/**
|
|
* M106: Set Fan Speed
|
|
*/
|
|
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
|
|
|
|
/**
|
|
* M107: Fan Off
|
|
*/
|
|
inline void gcode_M107() { fanSpeed = 0; }
|
|
|
|
#endif // HAS_FAN
|
|
|
|
/**
|
|
* M109: Wait for extruder(s) to reach temperature
|
|
*/
|
|
inline void gcode_M109() {
|
|
if (setTargetedHotend(109)) return;
|
|
|
|
LCD_MESSAGEPGM(MSG_HEATING);
|
|
|
|
CooldownNoWait = code_seen('S');
|
|
if (CooldownNoWait || code_seen('R')) {
|
|
float temp = code_value();
|
|
setTargetHotend(temp, target_extruder);
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
|
|
#endif
|
|
}
|
|
|
|
#ifdef AUTOTEMP
|
|
autotemp_enabled = code_seen('F');
|
|
if (autotemp_enabled) autotemp_factor = code_value();
|
|
if (code_seen('S')) autotemp_min = code_value();
|
|
if (code_seen('B')) autotemp_max = code_value();
|
|
#endif
|
|
|
|
setWatch();
|
|
|
|
unsigned long timetemp = millis();
|
|
|
|
/* See if we are heating up or cooling down */
|
|
target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
|
|
|
|
cancel_heatup = false;
|
|
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
long residencyStart = -1;
|
|
/* continue to loop until we have reached the target temp
|
|
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
|
while((!cancel_heatup)&&((residencyStart == -1) ||
|
|
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
|
|
#else
|
|
while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(CooldownNoWait==false)) )
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
|
|
{ // while loop
|
|
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)target_extruder);
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residencyStart > -1) {
|
|
timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
|
|
SERIAL_PROTOCOLLN( timetemp );
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("?");
|
|
}
|
|
#else
|
|
SERIAL_EOL;
|
|
#endif
|
|
timetemp = millis();
|
|
}
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
#ifdef TEMP_RESIDENCY_TIME
|
|
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
|
// or when current temp falls outside the hysteresis after target temp was reached
|
|
if ((residencyStart == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
|
|
(residencyStart == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
|
|
(residencyStart > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
|
|
{
|
|
residencyStart = millis();
|
|
}
|
|
#endif //TEMP_RESIDENCY_TIME
|
|
}
|
|
|
|
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
|
refresh_cmd_timeout();
|
|
starttime = previous_millis_cmd;
|
|
}
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
/**
|
|
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
*/
|
|
inline void gcode_M190() {
|
|
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
CooldownNoWait = code_seen('S');
|
|
if (CooldownNoWait || code_seen('R'))
|
|
setTargetBed(code_value());
|
|
|
|
unsigned long timetemp = millis();
|
|
|
|
cancel_heatup = false;
|
|
target_direction = isHeatingBed(); // true if heating, false if cooling
|
|
|
|
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
|
|
unsigned long ms = millis();
|
|
if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
|
|
timetemp = ms;
|
|
float tt = degHotend(active_extruder);
|
|
SERIAL_PROTOCOLPGM("T:");
|
|
SERIAL_PROTOCOL(tt);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL((int)active_extruder);
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
|
SERIAL_EOL;
|
|
}
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
LCD_MESSAGEPGM(MSG_BED_DONE);
|
|
refresh_cmd_timeout();
|
|
}
|
|
|
|
#endif // HAS_TEMP_BED
|
|
|
|
/**
|
|
* M112: Emergency Stop
|
|
*/
|
|
inline void gcode_M112() {
|
|
kill();
|
|
}
|
|
|
|
#ifdef BARICUDA
|
|
|
|
#if HAS_HEATER_1
|
|
/**
|
|
* M126: Heater 1 valve open
|
|
*/
|
|
inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
|
/**
|
|
* M127: Heater 1 valve close
|
|
*/
|
|
inline void gcode_M127() { ValvePressure = 0; }
|
|
#endif
|
|
|
|
#if HAS_HEATER_2
|
|
/**
|
|
* M128: Heater 2 valve open
|
|
*/
|
|
inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
|
/**
|
|
* M129: Heater 2 valve close
|
|
*/
|
|
inline void gcode_M129() { EtoPPressure = 0; }
|
|
#endif
|
|
|
|
#endif //BARICUDA
|
|
|
|
/**
|
|
* M140: Set bed temperature
|
|
*/
|
|
inline void gcode_M140() {
|
|
if (code_seen('S')) setTargetBed(code_value());
|
|
}
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
/**
|
|
* M80: Turn on Power Supply
|
|
*/
|
|
inline void gcode_M80() {
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
|
|
|
|
// If you have a switch on suicide pin, this is useful
|
|
// if you want to start another print with suicide feature after
|
|
// a print without suicide...
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
|
|
#ifdef ULTIPANEL
|
|
powersupply = true;
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
lcd_update();
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_POWER_SWITCH
|
|
|
|
/**
|
|
* M81: Turn off Power, including Power Supply, if there is one.
|
|
*
|
|
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
|
|
*/
|
|
inline void gcode_M81() {
|
|
disable_heater();
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
finishAndDisableSteppers();
|
|
fanSpeed = 0;
|
|
delay(1000); // Wait 1 second before switching off
|
|
#if HAS_SUICIDE
|
|
st_synchronize();
|
|
suicide();
|
|
#elif HAS_POWER_SWITCH
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#endif
|
|
#ifdef ULTIPANEL
|
|
#if HAS_POWER_SWITCH
|
|
powersupply = false;
|
|
#endif
|
|
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
|
lcd_update();
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* M82: Set E codes absolute (default)
|
|
*/
|
|
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
|
|
|
|
/**
|
|
* M82: Set E codes relative while in Absolute Coordinates (G90) mode
|
|
*/
|
|
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
|
|
|
|
/**
|
|
* M18, M84: Disable all stepper motors
|
|
*/
|
|
inline void gcode_M18_M84() {
|
|
if (code_seen('S')) {
|
|
stepper_inactive_time = code_value() * 1000;
|
|
}
|
|
else {
|
|
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
|
|
if (all_axis) {
|
|
st_synchronize();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
finishAndDisableSteppers();
|
|
}
|
|
else {
|
|
st_synchronize();
|
|
if (code_seen('X')) disable_x();
|
|
if (code_seen('Y')) disable_y();
|
|
if (code_seen('Z')) disable_z();
|
|
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
if (code_seen('E')) {
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
*/
|
|
inline void gcode_M85() {
|
|
if (code_seen('S')) max_inactive_time = code_value() * 1000;
|
|
}
|
|
|
|
/**
|
|
* M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
*/
|
|
inline void gcode_M92() {
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
if (i == E_AXIS) {
|
|
float value = code_value();
|
|
if (value < 20.0) {
|
|
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
max_e_jerk *= factor;
|
|
max_feedrate[i] *= factor;
|
|
axis_steps_per_sqr_second[i] *= factor;
|
|
}
|
|
axis_steps_per_unit[i] = value;
|
|
}
|
|
else {
|
|
axis_steps_per_unit[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M114: Output current position to serial port
|
|
*/
|
|
inline void gcode_M114() {
|
|
SERIAL_PROTOCOLPGM("X:");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
|
|
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
|
|
|
|
SERIAL_EOL;
|
|
|
|
#ifdef SCARA
|
|
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
|
SERIAL_PROTOCOL(delta[Y_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
|
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
|
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
|
|
SERIAL_EOL; SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M115: Capabilities string
|
|
*/
|
|
inline void gcode_M115() {
|
|
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
|
|
}
|
|
|
|
/**
|
|
* M117: Set LCD Status Message
|
|
*/
|
|
inline void gcode_M117() {
|
|
char* codepos = strchr_pointer + 5;
|
|
char* starpos = strchr(codepos, '*');
|
|
if (starpos) *starpos = '\0';
|
|
lcd_setstatus(codepos);
|
|
}
|
|
|
|
/**
|
|
* M119: Output endstop states to serial output
|
|
*/
|
|
inline void gcode_M119() {
|
|
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
|
|
#if HAS_X_MIN
|
|
SERIAL_PROTOCOLPGM(MSG_X_MIN);
|
|
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if HAS_X_MAX
|
|
SERIAL_PROTOCOLPGM(MSG_X_MAX);
|
|
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if HAS_Y_MIN
|
|
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
|
|
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if HAS_Y_MAX
|
|
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
|
|
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if HAS_Z_MIN
|
|
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
|
|
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if HAS_Z_MAX
|
|
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
|
|
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if HAS_Z2_MAX
|
|
SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
|
|
SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
#if HAS_Z_PROBE
|
|
SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
|
|
SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M120: Enable endstops
|
|
*/
|
|
inline void gcode_M120() { enable_endstops(false); }
|
|
|
|
/**
|
|
* M121: Disable endstops
|
|
*/
|
|
inline void gcode_M121() { enable_endstops(true); }
|
|
|
|
#ifdef BLINKM
|
|
|
|
/**
|
|
* M150: Set Status LED Color - Use R-U-B for R-G-B
|
|
*/
|
|
inline void gcode_M150() {
|
|
SendColors(
|
|
code_seen('R') ? (byte)code_value_short() : 0,
|
|
code_seen('U') ? (byte)code_value_short() : 0,
|
|
code_seen('B') ? (byte)code_value_short() : 0
|
|
);
|
|
}
|
|
|
|
#endif // BLINKM
|
|
|
|
/**
|
|
* M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
* T<extruder>
|
|
* D<millimeters>
|
|
*/
|
|
inline void gcode_M200() {
|
|
int tmp_extruder = active_extruder;
|
|
if (code_seen('T')) {
|
|
tmp_extruder = code_value_short();
|
|
if (tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (code_seen('D')) {
|
|
float diameter = code_value();
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
// for all extruders
|
|
volumetric_enabled = (diameter != 0.0);
|
|
if (volumetric_enabled) {
|
|
filament_size[tmp_extruder] = diameter;
|
|
// make sure all extruders have some sane value for the filament size
|
|
for (int i=0; i<EXTRUDERS; i++)
|
|
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
}
|
|
}
|
|
else {
|
|
//reserved for setting filament diameter via UFID or filament measuring device
|
|
return;
|
|
}
|
|
calculate_volumetric_multipliers();
|
|
}
|
|
|
|
/**
|
|
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
*/
|
|
inline void gcode_M201() {
|
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
max_acceleration_units_per_sq_second[i] = code_value();
|
|
}
|
|
}
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
reset_acceleration_rates();
|
|
}
|
|
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
inline void gcode_M202() {
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
*/
|
|
inline void gcode_M203() {
|
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
max_feedrate[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
|
|
*
|
|
* P = Printing moves
|
|
* R = Retract only (no X, Y, Z) moves
|
|
* T = Travel (non printing) moves
|
|
*
|
|
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
*/
|
|
inline void gcode_M204() {
|
|
if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
|
|
acceleration = code_value();
|
|
travel_acceleration = acceleration;
|
|
SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
|
|
SERIAL_EOL;
|
|
}
|
|
if (code_seen('P')) {
|
|
acceleration = code_value();
|
|
SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
|
|
SERIAL_EOL;
|
|
}
|
|
if (code_seen('R')) {
|
|
retract_acceleration = code_value();
|
|
SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
|
|
SERIAL_EOL;
|
|
}
|
|
if (code_seen('T')) {
|
|
travel_acceleration = code_value();
|
|
SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* M205: Set Advanced Settings
|
|
*
|
|
* S = Min Feed Rate (mm/s)
|
|
* T = Min Travel Feed Rate (mm/s)
|
|
* B = Min Segment Time (µs)
|
|
* X = Max XY Jerk (mm/s/s)
|
|
* Z = Max Z Jerk (mm/s/s)
|
|
* E = Max E Jerk (mm/s/s)
|
|
*/
|
|
inline void gcode_M205() {
|
|
if (code_seen('S')) minimumfeedrate = code_value();
|
|
if (code_seen('T')) mintravelfeedrate = code_value();
|
|
if (code_seen('B')) minsegmenttime = code_value();
|
|
if (code_seen('X')) max_xy_jerk = code_value();
|
|
if (code_seen('Z')) max_z_jerk = code_value();
|
|
if (code_seen('E')) max_e_jerk = code_value();
|
|
}
|
|
|
|
/**
|
|
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
|
*/
|
|
inline void gcode_M206() {
|
|
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
home_offset[i] = code_value();
|
|
}
|
|
}
|
|
#ifdef SCARA
|
|
if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
|
|
if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
|
|
#endif
|
|
}
|
|
|
|
#ifdef DELTA
|
|
/**
|
|
* M665: Set delta configurations
|
|
*
|
|
* L = diagonal rod
|
|
* R = delta radius
|
|
* S = segments per second
|
|
*/
|
|
inline void gcode_M665() {
|
|
if (code_seen('L')) delta_diagonal_rod = code_value();
|
|
if (code_seen('R')) delta_radius = code_value();
|
|
if (code_seen('S')) delta_segments_per_second = code_value();
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
}
|
|
/**
|
|
* M666: Set delta endstop adjustment
|
|
*/
|
|
inline void gcode_M666() {
|
|
for (int8_t i = 0; i < 3; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
endstop_adj[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
#elif defined(Z_DUAL_ENDSTOPS)
|
|
/**
|
|
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
|
|
*/
|
|
inline void gcode_M666() {
|
|
if (code_seen('Z')) z_endstop_adj = code_value();
|
|
SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
/**
|
|
* M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
*/
|
|
inline void gcode_M207() {
|
|
if (code_seen('S')) retract_length = code_value();
|
|
if (code_seen('F')) retract_feedrate = code_value() / 60;
|
|
if (code_seen('Z')) retract_zlift = code_value();
|
|
}
|
|
|
|
/**
|
|
* M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
*/
|
|
inline void gcode_M208() {
|
|
if (code_seen('S')) retract_recover_length = code_value();
|
|
if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
|
|
}
|
|
|
|
/**
|
|
* M209: Enable automatic retract (M209 S1)
|
|
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
*/
|
|
inline void gcode_M209() {
|
|
if (code_seen('S')) {
|
|
int t = code_value_short();
|
|
switch(t) {
|
|
case 0:
|
|
autoretract_enabled = false;
|
|
break;
|
|
case 1:
|
|
autoretract_enabled = true;
|
|
break;
|
|
default:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(cmdbuffer[bufindr]);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
return;
|
|
}
|
|
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
|
|
}
|
|
}
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
/**
|
|
* M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
*/
|
|
inline void gcode_M218() {
|
|
if (setTargetedHotend(218)) return;
|
|
|
|
if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
|
|
if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
|
|
#endif
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
for (int e = 0; e < EXTRUDERS; e++) {
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][e]);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
|
|
#ifdef DUAL_X_CARRIAGE
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
|
|
#endif
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // EXTRUDERS > 1
|
|
|
|
/**
|
|
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
|
*/
|
|
inline void gcode_M220() {
|
|
if (code_seen('S')) feedmultiply = code_value();
|
|
}
|
|
|
|
/**
|
|
* M221: Set extrusion percentage (M221 T0 S95)
|
|
*/
|
|
inline void gcode_M221() {
|
|
if (code_seen('S')) {
|
|
int sval = code_value();
|
|
if (code_seen('T')) {
|
|
if (setTargetedHotend(221)) return;
|
|
extruder_multiply[target_extruder] = sval;
|
|
}
|
|
else {
|
|
extruder_multiply[active_extruder] = sval;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
|
*/
|
|
inline void gcode_M226() {
|
|
if (code_seen('P')) {
|
|
int pin_number = code_value();
|
|
|
|
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
|
|
|
|
if (pin_state >= -1 && pin_state <= 1) {
|
|
|
|
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
|
|
if (sensitive_pins[i] == pin_number) {
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pin_number > -1) {
|
|
int target = LOW;
|
|
|
|
st_synchronize();
|
|
|
|
pinMode(pin_number, INPUT);
|
|
|
|
switch(pin_state){
|
|
case 1:
|
|
target = HIGH;
|
|
break;
|
|
|
|
case 0:
|
|
target = LOW;
|
|
break;
|
|
|
|
case -1:
|
|
target = !digitalRead(pin_number);
|
|
break;
|
|
}
|
|
|
|
while(digitalRead(pin_number) != target) {
|
|
manage_heater();
|
|
manage_inactivity();
|
|
lcd_update();
|
|
}
|
|
|
|
} // pin_number > -1
|
|
} // pin_state -1 0 1
|
|
} // code_seen('P')
|
|
}
|
|
|
|
#if NUM_SERVOS > 0
|
|
|
|
/**
|
|
* M280: Set servo position absolute. P: servo index, S: angle or microseconds
|
|
*/
|
|
inline void gcode_M280() {
|
|
int servo_index = code_seen('P') ? code_value() : -1;
|
|
int servo_position = 0;
|
|
if (code_seen('S')) {
|
|
servo_position = code_value();
|
|
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
|
|
#if SERVO_LEVELING
|
|
servos[servo_index].attach(0);
|
|
#endif
|
|
servos[servo_index].write(servo_position);
|
|
#if SERVO_LEVELING
|
|
delay(PROBE_SERVO_DEACTIVATION_DELAY);
|
|
servos[servo_index].detach();
|
|
#endif
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO("Servo ");
|
|
SERIAL_ECHO(servo_index);
|
|
SERIAL_ECHOLN(" out of range");
|
|
}
|
|
}
|
|
else if (servo_index >= 0) {
|
|
SERIAL_PROTOCOL(MSG_OK);
|
|
SERIAL_PROTOCOL(" Servo ");
|
|
SERIAL_PROTOCOL(servo_index);
|
|
SERIAL_PROTOCOL(": ");
|
|
SERIAL_PROTOCOL(servos[servo_index].read());
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
#endif // NUM_SERVOS > 0
|
|
|
|
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
|
|
|
|
/**
|
|
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
|
*/
|
|
inline void gcode_M300() {
|
|
int beepS = code_seen('S') ? code_value() : 110;
|
|
int beepP = code_seen('P') ? code_value() : 1000;
|
|
if (beepS > 0) {
|
|
#if BEEPER > 0
|
|
tone(BEEPER, beepS);
|
|
delay(beepP);
|
|
noTone(BEEPER);
|
|
#elif defined(ULTRALCD)
|
|
lcd_buzz(beepS, beepP);
|
|
#elif defined(LCD_USE_I2C_BUZZER)
|
|
lcd_buzz(beepP, beepS);
|
|
#endif
|
|
}
|
|
else {
|
|
delay(beepP);
|
|
}
|
|
}
|
|
|
|
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
/**
|
|
* M301: Set PID parameters P I D (and optionally C)
|
|
*/
|
|
inline void gcode_M301() {
|
|
|
|
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
|
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
|
int e = code_seen('E') ? code_value() : 0; // extruder being updated
|
|
|
|
if (e < EXTRUDERS) { // catch bad input value
|
|
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
|
|
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
|
|
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
|
|
#endif
|
|
|
|
updatePID();
|
|
SERIAL_PROTOCOL(MSG_OK);
|
|
#ifdef PID_PARAMS_PER_EXTRUDER
|
|
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
|
|
SERIAL_PROTOCOL(e);
|
|
#endif // PID_PARAMS_PER_EXTRUDER
|
|
SERIAL_PROTOCOL(" p:");
|
|
SERIAL_PROTOCOL(PID_PARAM(Kp, e));
|
|
SERIAL_PROTOCOL(" i:");
|
|
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
|
|
SERIAL_PROTOCOL(" d:");
|
|
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
SERIAL_PROTOCOL(" c:");
|
|
//Kc does not have scaling applied above, or in resetting defaults
|
|
SERIAL_PROTOCOL(PID_PARAM(Kc, e));
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
}
|
|
|
|
#endif // PIDTEMP
|
|
|
|
#ifdef PIDTEMPBED
|
|
|
|
inline void gcode_M304() {
|
|
if (code_seen('P')) bedKp = code_value();
|
|
if (code_seen('I')) bedKi = scalePID_i(code_value());
|
|
if (code_seen('D')) bedKd = scalePID_d(code_value());
|
|
|
|
updatePID();
|
|
SERIAL_PROTOCOL(MSG_OK);
|
|
SERIAL_PROTOCOL(" p:");
|
|
SERIAL_PROTOCOL(bedKp);
|
|
SERIAL_PROTOCOL(" i:");
|
|
SERIAL_PROTOCOL(unscalePID_i(bedKi));
|
|
SERIAL_PROTOCOL(" d:");
|
|
SERIAL_PROTOCOL(unscalePID_d(bedKd));
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
|
|
/**
|
|
* M240: Trigger a camera by emulating a Canon RC-1
|
|
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
|
*/
|
|
inline void gcode_M240() {
|
|
#ifdef CHDK
|
|
|
|
OUT_WRITE(CHDK, HIGH);
|
|
chdkHigh = millis();
|
|
chdkActive = true;
|
|
|
|
#elif HAS_PHOTOGRAPH
|
|
|
|
const uint8_t NUM_PULSES = 16;
|
|
const float PULSE_LENGTH = 0.01524;
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
delay(7.33);
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
|
|
#endif // !CHDK && HAS_PHOTOGRAPH
|
|
}
|
|
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#ifdef DOGLCD
|
|
|
|
/**
|
|
* M250: Read and optionally set the LCD contrast
|
|
*/
|
|
inline void gcode_M250() {
|
|
if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
|
|
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
SERIAL_PROTOCOL(lcd_contrast);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // DOGLCD
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
/**
|
|
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
*/
|
|
inline void gcode_M302() {
|
|
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
|
|
}
|
|
|
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
/**
|
|
* M303: PID relay autotune
|
|
* S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
* E<extruder> (-1 for the bed)
|
|
* C<cycles>
|
|
*/
|
|
inline void gcode_M303() {
|
|
int e = code_seen('E') ? code_value_short() : 0;
|
|
int c = code_seen('C') ? code_value_short() : 5;
|
|
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
|
|
PID_autotune(temp, e, c);
|
|
}
|
|
|
|
#ifdef SCARA
|
|
bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
|
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
if (! Stopped) {
|
|
//get_coordinates(); // For X Y Z E F
|
|
delta[X_AXIS] = delta_x;
|
|
delta[Y_AXIS] = delta_y;
|
|
calculate_SCARA_forward_Transform(delta);
|
|
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
|
|
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
|
|
prepare_move();
|
|
//ClearToSend();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M360() {
|
|
SERIAL_ECHOLN(" Cal: Theta 0 ");
|
|
return SCARA_move_to_cal(0, 120);
|
|
}
|
|
|
|
/**
|
|
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M361() {
|
|
SERIAL_ECHOLN(" Cal: Theta 90 ");
|
|
return SCARA_move_to_cal(90, 130);
|
|
}
|
|
|
|
/**
|
|
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M362() {
|
|
SERIAL_ECHOLN(" Cal: Psi 0 ");
|
|
return SCARA_move_to_cal(60, 180);
|
|
}
|
|
|
|
/**
|
|
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M363() {
|
|
SERIAL_ECHOLN(" Cal: Psi 90 ");
|
|
return SCARA_move_to_cal(50, 90);
|
|
}
|
|
|
|
/**
|
|
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
*/
|
|
inline bool gcode_M364() {
|
|
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
|
|
return SCARA_move_to_cal(45, 135);
|
|
}
|
|
|
|
/**
|
|
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
|
|
*/
|
|
inline void gcode_M365() {
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
axis_scaling[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // SCARA
|
|
|
|
#ifdef EXT_SOLENOID
|
|
|
|
void enable_solenoid(uint8_t num) {
|
|
switch(num) {
|
|
case 0:
|
|
OUT_WRITE(SOL0_PIN, HIGH);
|
|
break;
|
|
#if HAS_SOLENOID_1
|
|
case 1:
|
|
OUT_WRITE(SOL1_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_2
|
|
case 2:
|
|
OUT_WRITE(SOL2_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_3
|
|
case 3:
|
|
OUT_WRITE(SOL3_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
default:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
|
|
|
void disable_all_solenoids() {
|
|
OUT_WRITE(SOL0_PIN, LOW);
|
|
OUT_WRITE(SOL1_PIN, LOW);
|
|
OUT_WRITE(SOL2_PIN, LOW);
|
|
OUT_WRITE(SOL3_PIN, LOW);
|
|
}
|
|
|
|
/**
|
|
* M380: Enable solenoid on the active extruder
|
|
*/
|
|
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
|
|
|
/**
|
|
* M381: Disable all solenoids
|
|
*/
|
|
inline void gcode_M381() { disable_all_solenoids(); }
|
|
|
|
#endif // EXT_SOLENOID
|
|
|
|
/**
|
|
* M400: Finish all moves
|
|
*/
|
|
inline void gcode_M400() { st_synchronize(); }
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
|
|
|
|
/**
|
|
* M401: Engage Z Servo endstop if available
|
|
*/
|
|
inline void gcode_M401() { deploy_z_probe(); }
|
|
/**
|
|
* M402: Retract Z Servo endstop if enabled
|
|
*/
|
|
inline void gcode_M402() { stow_z_probe(); }
|
|
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
|
|
/**
|
|
* M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
|
|
*/
|
|
inline void gcode_M404() {
|
|
#if HAS_FILWIDTH
|
|
if (code_seen('W')) {
|
|
filament_width_nominal = code_value();
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M405: Turn on filament sensor for control
|
|
*/
|
|
inline void gcode_M405() {
|
|
if (code_seen('D')) meas_delay_cm = code_value();
|
|
if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
|
|
|
|
if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
|
|
int temp_ratio = widthFil_to_size_ratio();
|
|
|
|
for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
|
|
measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
|
|
|
|
delay_index1 = delay_index2 = 0;
|
|
}
|
|
|
|
filament_sensor = true;
|
|
|
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
//SERIAL_PROTOCOL(filament_width_meas);
|
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
//SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
|
|
}
|
|
|
|
/**
|
|
* M406: Turn off filament sensor for control
|
|
*/
|
|
inline void gcode_M406() { filament_sensor = false; }
|
|
|
|
/**
|
|
* M407: Get measured filament diameter on serial output
|
|
*/
|
|
inline void gcode_M407() {
|
|
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_meas);
|
|
}
|
|
|
|
#endif // FILAMENT_SENSOR
|
|
|
|
/**
|
|
* M500: Store settings in EEPROM
|
|
*/
|
|
inline void gcode_M500() {
|
|
Config_StoreSettings();
|
|
}
|
|
|
|
/**
|
|
* M501: Read settings from EEPROM
|
|
*/
|
|
inline void gcode_M501() {
|
|
Config_RetrieveSettings();
|
|
}
|
|
|
|
/**
|
|
* M502: Revert to default settings
|
|
*/
|
|
inline void gcode_M502() {
|
|
Config_ResetDefault();
|
|
}
|
|
|
|
/**
|
|
* M503: print settings currently in memory
|
|
*/
|
|
inline void gcode_M503() {
|
|
Config_PrintSettings(code_seen('S') && code_value() == 0);
|
|
}
|
|
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
/**
|
|
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
|
*/
|
|
inline void gcode_M540() {
|
|
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
|
|
}
|
|
|
|
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
inline void gcode_SET_Z_PROBE_OFFSET() {
|
|
float value;
|
|
if (code_seen('Z')) {
|
|
value = code_value();
|
|
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
|
|
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
|
|
SERIAL_EOL;
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
|
|
SERIAL_ECHOPGM(MSG_Z_MIN);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
|
SERIAL_ECHOPGM(MSG_Z_MAX);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
|
|
SERIAL_ECHO(-zprobe_zoffset);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
#ifdef FILAMENTCHANGEENABLE
|
|
|
|
/**
|
|
* M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
*/
|
|
inline void gcode_M600() {
|
|
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
|
|
for (int i=0; i<NUM_AXIS; i++)
|
|
target[i] = lastpos[i] = current_position[i];
|
|
|
|
#define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
|
|
#ifdef DELTA
|
|
#define RUNPLAN calculate_delta(target); BASICPLAN
|
|
#else
|
|
#define RUNPLAN BASICPLAN
|
|
#endif
|
|
|
|
//retract by E
|
|
if (code_seen('E')) target[E_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
|
else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//lift Z
|
|
if (code_seen('Z')) target[Z_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_ZADD
|
|
else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//move xy
|
|
if (code_seen('X')) target[X_AXIS] = code_value();
|
|
#ifdef FILAMENTCHANGE_XPOS
|
|
else target[X_AXIS] = FILAMENTCHANGE_XPOS;
|
|
#endif
|
|
|
|
if (code_seen('Y')) target[Y_AXIS] = code_value();
|
|
#ifdef FILAMENTCHANGE_YPOS
|
|
else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
if (code_seen('L')) target[E_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//finish moves
|
|
st_synchronize();
|
|
//disable extruder steppers so filament can be removed
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
delay(100);
|
|
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
|
uint8_t cnt = 0;
|
|
while (!lcd_clicked()) {
|
|
cnt++;
|
|
manage_heater();
|
|
manage_inactivity(true);
|
|
lcd_update();
|
|
if (cnt == 0) {
|
|
#if BEEPER > 0
|
|
OUT_WRITE(BEEPER,HIGH);
|
|
delay(3);
|
|
WRITE(BEEPER,LOW);
|
|
delay(3);
|
|
#else
|
|
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
|
|
lcd_buzz(1000/6, 100);
|
|
#else
|
|
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
|
|
#endif
|
|
#endif
|
|
}
|
|
} // while(!lcd_clicked)
|
|
|
|
//return to normal
|
|
if (code_seen('L')) target[E_AXIS] -= code_value();
|
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
|
|
#endif
|
|
|
|
current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
|
plan_set_e_position(current_position[E_AXIS]);
|
|
|
|
RUNPLAN; //should do nothing
|
|
|
|
lcd_reset_alert_level();
|
|
|
|
#ifdef DELTA
|
|
calculate_delta(lastpos);
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
|
#else
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
|
|
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
|
#endif
|
|
|
|
#ifdef FILAMENT_RUNOUT_SENSOR
|
|
filrunoutEnqued = false;
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif // FILAMENTCHANGEENABLE
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* M605: Set dual x-carriage movement mode
|
|
*
|
|
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
|
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
|
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
|
* millimeters x-offset and an optional differential hotend temperature of
|
|
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
|
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
|
*
|
|
* Note: the X axis should be homed after changing dual x-carriage mode.
|
|
*/
|
|
inline void gcode_M605() {
|
|
st_synchronize();
|
|
if (code_seen('S')) dual_x_carriage_mode = code_value();
|
|
switch(dual_x_carriage_mode) {
|
|
case DXC_DUPLICATION_MODE:
|
|
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
|
|
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(duplicate_extruder_x_offset);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
|
break;
|
|
case DXC_FULL_CONTROL_MODE:
|
|
case DXC_AUTO_PARK_MODE:
|
|
break;
|
|
default:
|
|
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
break;
|
|
}
|
|
active_extruder_parked = false;
|
|
extruder_duplication_enabled = false;
|
|
delayed_move_time = 0;
|
|
}
|
|
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
|
*/
|
|
inline void gcode_M907() {
|
|
#if HAS_DIGIPOTSS
|
|
for (int i=0;i<NUM_AXIS;i++)
|
|
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
|
if (code_seen('B')) digipot_current(4, code_value());
|
|
if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
|
if (code_seen('X')) digipot_current(0, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_Z_PIN
|
|
if (code_seen('Z')) digipot_current(1, code_value());
|
|
#endif
|
|
#ifdef MOTOR_CURRENT_PWM_E_PIN
|
|
if (code_seen('E')) digipot_current(2, code_value());
|
|
#endif
|
|
#ifdef DIGIPOT_I2C
|
|
// this one uses actual amps in floating point
|
|
for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
|
|
#endif
|
|
}
|
|
|
|
#if HAS_DIGIPOTSS
|
|
|
|
/**
|
|
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
|
*/
|
|
inline void gcode_M908() {
|
|
digitalPotWrite(
|
|
code_seen('P') ? code_value() : 0,
|
|
code_seen('S') ? code_value() : 0
|
|
);
|
|
}
|
|
|
|
#endif // HAS_DIGIPOTSS
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
inline void gcode_M350() {
|
|
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
|
|
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
|
|
if(code_seen('B')) microstep_mode(4,code_value());
|
|
microstep_readings();
|
|
}
|
|
|
|
/**
|
|
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
|
* S# determines MS1 or MS2, X# sets the pin high/low.
|
|
*/
|
|
inline void gcode_M351() {
|
|
if (code_seen('S')) switch(code_value_short()) {
|
|
case 1:
|
|
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
|
|
if (code_seen('B')) microstep_ms(4, code_value(), -1);
|
|
break;
|
|
case 2:
|
|
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
|
|
if (code_seen('B')) microstep_ms(4, -1, code_value());
|
|
break;
|
|
}
|
|
microstep_readings();
|
|
}
|
|
|
|
#endif // HAS_MICROSTEPS
|
|
|
|
/**
|
|
* M999: Restart after being stopped
|
|
*/
|
|
inline void gcode_M999() {
|
|
Stopped = false;
|
|
lcd_reset_alert_level();
|
|
gcode_LastN = Stopped_gcode_LastN;
|
|
FlushSerialRequestResend();
|
|
}
|
|
|
|
inline void gcode_T() {
|
|
int tmp_extruder = code_value();
|
|
if (tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_CHAR('T');
|
|
SERIAL_ECHO(tmp_extruder);
|
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
else {
|
|
target_extruder = tmp_extruder;
|
|
|
|
#if EXTRUDERS > 1
|
|
bool make_move = false;
|
|
#endif
|
|
|
|
if (code_seen('F')) {
|
|
|
|
#if EXTRUDERS > 1
|
|
make_move = true;
|
|
#endif
|
|
|
|
next_feedrate = code_value();
|
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
|
}
|
|
#if EXTRUDERS > 1
|
|
if (tmp_extruder != active_extruder) {
|
|
// Save current position to return to after applying extruder offset
|
|
set_destination_to_current();
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
|
|
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
|
|
// Park old head: 1) raise 2) move to park position 3) lower
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
|
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
|
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
|
|
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
st_synchronize();
|
|
}
|
|
|
|
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
|
current_position[Y_AXIS] = current_position[Y_AXIS] -
|
|
extruder_offset[Y_AXIS][active_extruder] +
|
|
extruder_offset[Y_AXIS][tmp_extruder];
|
|
current_position[Z_AXIS] = current_position[Z_AXIS] -
|
|
extruder_offset[Z_AXIS][active_extruder] +
|
|
extruder_offset[Z_AXIS][tmp_extruder];
|
|
|
|
active_extruder = tmp_extruder;
|
|
|
|
// This function resets the max/min values - the current position may be overwritten below.
|
|
axis_is_at_home(X_AXIS);
|
|
|
|
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
|
|
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
inactive_extruder_x_pos = destination[X_AXIS];
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
|
if (active_extruder == 0 || active_extruder_parked)
|
|
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
else
|
|
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
|
inactive_extruder_x_pos = destination[X_AXIS];
|
|
extruder_duplication_enabled = false;
|
|
}
|
|
else {
|
|
// record raised toolhead position for use by unpark
|
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
|
active_extruder_parked = true;
|
|
delayed_move_time = 0;
|
|
}
|
|
#else // !DUAL_X_CARRIAGE
|
|
// Offset extruder (only by XY)
|
|
for (int i=X_AXIS; i<=Y_AXIS; i++)
|
|
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
|
|
// Set the new active extruder and position
|
|
active_extruder = tmp_extruder;
|
|
#endif // !DUAL_X_CARRIAGE
|
|
#ifdef DELTA
|
|
sync_plan_position_delta();
|
|
#else
|
|
sync_plan_position();
|
|
#endif
|
|
// Move to the old position if 'F' was in the parameters
|
|
if (make_move && !Stopped) prepare_move();
|
|
}
|
|
|
|
#ifdef EXT_SOLENOID
|
|
st_synchronize();
|
|
disable_all_solenoids();
|
|
enable_solenoid_on_active_extruder();
|
|
#endif // EXT_SOLENOID
|
|
|
|
#endif // EXTRUDERS > 1
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
|
|
SERIAL_PROTOCOLLN((int)active_extruder);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process Commands and dispatch them to handlers
|
|
* This is called from the main loop()
|
|
*/
|
|
void process_commands() {
|
|
if (code_seen('G')) {
|
|
|
|
int gCode = code_value_short();
|
|
|
|
switch(gCode) {
|
|
|
|
// G0, G1
|
|
case 0:
|
|
case 1:
|
|
gcode_G0_G1();
|
|
break;
|
|
|
|
// G2, G3
|
|
#ifndef SCARA
|
|
case 2: // G2 - CW ARC
|
|
case 3: // G3 - CCW ARC
|
|
gcode_G2_G3(gCode == 2);
|
|
break;
|
|
#endif
|
|
|
|
// G4 Dwell
|
|
case 4:
|
|
gcode_G4();
|
|
break;
|
|
|
|
#ifdef FWRETRACT
|
|
|
|
case 10: // G10: retract
|
|
case 11: // G11: retract_recover
|
|
gcode_G10_G11(gCode == 10);
|
|
break;
|
|
|
|
#endif //FWRETRACT
|
|
|
|
case 28: // G28: Home all axes, one at a time
|
|
gcode_G28();
|
|
break;
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
|
|
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
|
|
gcode_G29();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
case 30: // G30 Single Z Probe
|
|
gcode_G30();
|
|
break;
|
|
|
|
#else // Z_PROBE_SLED
|
|
|
|
case 31: // G31: dock the sled
|
|
case 32: // G32: undock the sled
|
|
dock_sled(gCode == 31);
|
|
break;
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
case 90: // G90
|
|
relative_mode = false;
|
|
break;
|
|
case 91: // G91
|
|
relative_mode = true;
|
|
break;
|
|
|
|
case 92: // G92
|
|
gcode_G92();
|
|
break;
|
|
}
|
|
}
|
|
|
|
else if (code_seen('M')) {
|
|
switch(code_value_short()) {
|
|
#ifdef ULTIPANEL
|
|
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
gcode_M0_M1();
|
|
break;
|
|
#endif // ULTIPANEL
|
|
|
|
case 17:
|
|
gcode_M17();
|
|
break;
|
|
|
|
#ifdef SDSUPPORT
|
|
|
|
case 20: // M20 - list SD card
|
|
gcode_M20(); break;
|
|
case 21: // M21 - init SD card
|
|
gcode_M21(); break;
|
|
case 22: //M22 - release SD card
|
|
gcode_M22(); break;
|
|
case 23: //M23 - Select file
|
|
gcode_M23(); break;
|
|
case 24: //M24 - Start SD print
|
|
gcode_M24(); break;
|
|
case 25: //M25 - Pause SD print
|
|
gcode_M25(); break;
|
|
case 26: //M26 - Set SD index
|
|
gcode_M26(); break;
|
|
case 27: //M27 - Get SD status
|
|
gcode_M27(); break;
|
|
case 28: //M28 - Start SD write
|
|
gcode_M28(); break;
|
|
case 29: //M29 - Stop SD write
|
|
gcode_M29(); break;
|
|
case 30: //M30 <filename> Delete File
|
|
gcode_M30(); break;
|
|
case 32: //M32 - Select file and start SD print
|
|
gcode_M32(); break;
|
|
case 928: //M928 - Start SD write
|
|
gcode_M928(); break;
|
|
|
|
#endif //SDSUPPORT
|
|
|
|
case 31: //M31 take time since the start of the SD print or an M109 command
|
|
gcode_M31();
|
|
break;
|
|
|
|
case 42: //M42 -Change pin status via gcode
|
|
gcode_M42();
|
|
break;
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
|
|
case 48: // M48 Z-Probe repeatability
|
|
gcode_M48();
|
|
break;
|
|
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
|
|
|
|
case 104: // M104
|
|
gcode_M104();
|
|
break;
|
|
|
|
case 112: // M112 Emergency Stop
|
|
gcode_M112();
|
|
break;
|
|
|
|
case 140: // M140 Set bed temp
|
|
gcode_M140();
|
|
break;
|
|
|
|
case 105: // M105 Read current temperature
|
|
gcode_M105();
|
|
return;
|
|
break;
|
|
|
|
case 109: // M109 Wait for temperature
|
|
gcode_M109();
|
|
break;
|
|
|
|
#if HAS_TEMP_BED
|
|
case 190: // M190 - Wait for bed heater to reach target.
|
|
gcode_M190();
|
|
break;
|
|
#endif // HAS_TEMP_BED
|
|
|
|
#if HAS_FAN
|
|
case 106: //M106 Fan On
|
|
gcode_M106();
|
|
break;
|
|
case 107: //M107 Fan Off
|
|
gcode_M107();
|
|
break;
|
|
#endif // HAS_FAN
|
|
|
|
#ifdef BARICUDA
|
|
// PWM for HEATER_1_PIN
|
|
#if HAS_HEATER_1
|
|
case 126: // M126 valve open
|
|
gcode_M126();
|
|
break;
|
|
case 127: // M127 valve closed
|
|
gcode_M127();
|
|
break;
|
|
#endif // HAS_HEATER_1
|
|
|
|
// PWM for HEATER_2_PIN
|
|
#if HAS_HEATER_2
|
|
case 128: // M128 valve open
|
|
gcode_M128();
|
|
break;
|
|
case 129: // M129 valve closed
|
|
gcode_M129();
|
|
break;
|
|
#endif // HAS_HEATER_2
|
|
#endif // BARICUDA
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
case 80: // M80 - Turn on Power Supply
|
|
gcode_M80();
|
|
break;
|
|
|
|
#endif // HAS_POWER_SWITCH
|
|
|
|
case 81: // M81 - Turn off Power, including Power Supply, if possible
|
|
gcode_M81();
|
|
break;
|
|
|
|
case 82:
|
|
gcode_M82();
|
|
break;
|
|
case 83:
|
|
gcode_M83();
|
|
break;
|
|
case 18: //compatibility
|
|
case 84: // M84
|
|
gcode_M18_M84();
|
|
break;
|
|
case 85: // M85
|
|
gcode_M85();
|
|
break;
|
|
case 92: // M92
|
|
gcode_M92();
|
|
break;
|
|
case 115: // M115
|
|
gcode_M115();
|
|
break;
|
|
case 117: // M117 display message
|
|
gcode_M117();
|
|
break;
|
|
case 114: // M114
|
|
gcode_M114();
|
|
break;
|
|
case 120: // M120
|
|
gcode_M120();
|
|
break;
|
|
case 121: // M121
|
|
gcode_M121();
|
|
break;
|
|
case 119: // M119
|
|
gcode_M119();
|
|
break;
|
|
//TODO: update for all axis, use for loop
|
|
|
|
#ifdef BLINKM
|
|
|
|
case 150: // M150
|
|
gcode_M150();
|
|
break;
|
|
|
|
#endif //BLINKM
|
|
|
|
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
gcode_M200();
|
|
break;
|
|
case 201: // M201
|
|
gcode_M201();
|
|
break;
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
case 202: // M202
|
|
gcode_M202();
|
|
break;
|
|
#endif
|
|
case 203: // M203 max feedrate mm/sec
|
|
gcode_M203();
|
|
break;
|
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
gcode_M204();
|
|
break;
|
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
gcode_M205();
|
|
break;
|
|
case 206: // M206 additional homing offset
|
|
gcode_M206();
|
|
break;
|
|
|
|
#ifdef DELTA
|
|
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
|
gcode_M665();
|
|
break;
|
|
#endif
|
|
|
|
#if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
|
|
case 666: // M666 set delta / dual endstop adjustment
|
|
gcode_M666();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef FWRETRACT
|
|
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
gcode_M207();
|
|
break;
|
|
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
gcode_M208();
|
|
break;
|
|
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
gcode_M209();
|
|
break;
|
|
#endif // FWRETRACT
|
|
|
|
#if EXTRUDERS > 1
|
|
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
gcode_M218();
|
|
break;
|
|
#endif
|
|
|
|
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
gcode_M220();
|
|
break;
|
|
|
|
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
|
gcode_M221();
|
|
break;
|
|
|
|
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
gcode_M226();
|
|
break;
|
|
|
|
#if NUM_SERVOS > 0
|
|
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
gcode_M280();
|
|
break;
|
|
#endif // NUM_SERVOS > 0
|
|
|
|
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
|
|
case 300: // M300 - Play beep tone
|
|
gcode_M300();
|
|
break;
|
|
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
|
|
|
|
#ifdef PIDTEMP
|
|
case 301: // M301
|
|
gcode_M301();
|
|
break;
|
|
#endif // PIDTEMP
|
|
|
|
#ifdef PIDTEMPBED
|
|
case 304: // M304
|
|
gcode_M304();
|
|
break;
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
gcode_M240();
|
|
break;
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#ifdef DOGLCD
|
|
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
gcode_M250();
|
|
break;
|
|
#endif // DOGLCD
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
gcode_M302();
|
|
break;
|
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
case 303: // M303 PID autotune
|
|
gcode_M303();
|
|
break;
|
|
|
|
#ifdef SCARA
|
|
case 360: // M360 SCARA Theta pos1
|
|
if (gcode_M360()) return;
|
|
break;
|
|
case 361: // M361 SCARA Theta pos2
|
|
if (gcode_M361()) return;
|
|
break;
|
|
case 362: // M362 SCARA Psi pos1
|
|
if (gcode_M362()) return;
|
|
break;
|
|
case 363: // M363 SCARA Psi pos2
|
|
if (gcode_M363()) return;
|
|
break;
|
|
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
|
|
if (gcode_M364()) return;
|
|
break;
|
|
case 365: // M365 Set SCARA scaling for X Y Z
|
|
gcode_M365();
|
|
break;
|
|
#endif // SCARA
|
|
|
|
case 400: // M400 finish all moves
|
|
gcode_M400();
|
|
break;
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
|
|
case 401:
|
|
gcode_M401();
|
|
break;
|
|
case 402:
|
|
gcode_M402();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
gcode_M404();
|
|
break;
|
|
case 405: //M405 Turn on filament sensor for control
|
|
gcode_M405();
|
|
break;
|
|
case 406: //M406 Turn off filament sensor for control
|
|
gcode_M406();
|
|
break;
|
|
case 407: //M407 Display measured filament diameter
|
|
gcode_M407();
|
|
break;
|
|
#endif // FILAMENT_SENSOR
|
|
|
|
case 500: // M500 Store settings in EEPROM
|
|
gcode_M500();
|
|
break;
|
|
case 501: // M501 Read settings from EEPROM
|
|
gcode_M501();
|
|
break;
|
|
case 502: // M502 Revert to default settings
|
|
gcode_M502();
|
|
break;
|
|
case 503: // M503 print settings currently in memory
|
|
gcode_M503();
|
|
break;
|
|
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
case 540:
|
|
gcode_M540();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
|
gcode_SET_Z_PROBE_OFFSET();
|
|
break;
|
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
#ifdef FILAMENTCHANGEENABLE
|
|
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
gcode_M600();
|
|
break;
|
|
#endif // FILAMENTCHANGEENABLE
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
case 605:
|
|
gcode_M605();
|
|
break;
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
gcode_M907();
|
|
break;
|
|
|
|
#if HAS_DIGIPOTSS
|
|
case 908: // M908 Control digital trimpot directly.
|
|
gcode_M908();
|
|
break;
|
|
#endif // HAS_DIGIPOTSS
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
gcode_M350();
|
|
break;
|
|
|
|
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
gcode_M351();
|
|
break;
|
|
|
|
#endif // HAS_MICROSTEPS
|
|
|
|
case 999: // M999: Restart after being Stopped
|
|
gcode_M999();
|
|
break;
|
|
}
|
|
}
|
|
|
|
else if (code_seen('T')) {
|
|
gcode_T();
|
|
}
|
|
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(cmdbuffer[bufindr]);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
}
|
|
|
|
ClearToSend();
|
|
}
|
|
|
|
void FlushSerialRequestResend() {
|
|
//char cmdbuffer[bufindr][100]="Resend:";
|
|
MYSERIAL.flush();
|
|
SERIAL_PROTOCOLPGM(MSG_RESEND);
|
|
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
ClearToSend();
|
|
}
|
|
|
|
void ClearToSend() {
|
|
refresh_cmd_timeout();
|
|
#ifdef SDSUPPORT
|
|
if (fromsd[bufindr]) return;
|
|
#endif
|
|
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
|
}
|
|
|
|
void get_coordinates() {
|
|
for (int i = 0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i]))
|
|
destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
|
else
|
|
destination[i] = current_position[i];
|
|
}
|
|
if (code_seen('F')) {
|
|
next_feedrate = code_value();
|
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
|
}
|
|
}
|
|
|
|
void get_arc_coordinates() {
|
|
#ifdef SF_ARC_FIX
|
|
bool relative_mode_backup = relative_mode;
|
|
relative_mode = true;
|
|
#endif
|
|
get_coordinates();
|
|
#ifdef SF_ARC_FIX
|
|
relative_mode = relative_mode_backup;
|
|
#endif
|
|
|
|
offset[0] = code_seen('I') ? code_value() : 0;
|
|
offset[1] = code_seen('J') ? code_value() : 0;
|
|
}
|
|
|
|
void clamp_to_software_endstops(float target[3])
|
|
{
|
|
if (min_software_endstops) {
|
|
if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
|
|
if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
|
|
|
|
float negative_z_offset = 0;
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
|
|
#endif
|
|
|
|
if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
|
|
}
|
|
|
|
if (max_software_endstops) {
|
|
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
|
|
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
|
|
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
|
|
}
|
|
}
|
|
|
|
#ifdef DELTA
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod) {
|
|
delta_tower1_x = -SIN_60 * radius; // front left tower
|
|
delta_tower1_y = -COS_60 * radius;
|
|
delta_tower2_x = SIN_60 * radius; // front right tower
|
|
delta_tower2_y = -COS_60 * radius;
|
|
delta_tower3_x = 0.0; // back middle tower
|
|
delta_tower3_y = radius;
|
|
delta_diagonal_rod_2 = sq(diagonal_rod);
|
|
}
|
|
|
|
void calculate_delta(float cartesian[3]) {
|
|
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
|
|
- sq(delta_tower1_x-cartesian[X_AXIS])
|
|
- sq(delta_tower1_y-cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
|
|
- sq(delta_tower2_x-cartesian[X_AXIS])
|
|
- sq(delta_tower2_y-cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
|
|
- sq(delta_tower3_x-cartesian[X_AXIS])
|
|
- sq(delta_tower3_y-cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
/*
|
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
*/
|
|
}
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
// Adjust print surface height by linear interpolation over the bed_level array.
|
|
void adjust_delta(float cartesian[3]) {
|
|
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
|
|
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
|
float h1 = 0.001 - half, h2 = half - 0.001,
|
|
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
|
|
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
|
|
int floor_x = floor(grid_x), floor_y = floor(grid_y);
|
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
|
|
z1 = bed_level[floor_x + half][floor_y + half],
|
|
z2 = bed_level[floor_x + half][floor_y + half + 1],
|
|
z3 = bed_level[floor_x + half + 1][floor_y + half],
|
|
z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
|
|
left = (1 - ratio_y) * z1 + ratio_y * z2,
|
|
right = (1 - ratio_y) * z3 + ratio_y * z4,
|
|
offset = (1 - ratio_x) * left + ratio_x * right;
|
|
|
|
delta[X_AXIS] += offset;
|
|
delta[Y_AXIS] += offset;
|
|
delta[Z_AXIS] += offset;
|
|
|
|
/*
|
|
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
|
|
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
|
|
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
|
|
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
|
|
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
|
|
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
|
|
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
|
|
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
|
|
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
|
|
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
|
|
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
|
|
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
|
|
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
|
|
*/
|
|
}
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
#endif // DELTA
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
|
|
#if !defined(MIN)
|
|
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
|
|
#endif // ! MIN
|
|
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
|
|
{
|
|
if (!mbl.active) {
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
int pix = mbl.select_x_index(current_position[X_AXIS]);
|
|
int piy = mbl.select_y_index(current_position[Y_AXIS]);
|
|
int ix = mbl.select_x_index(x);
|
|
int iy = mbl.select_y_index(y);
|
|
pix = MIN(pix, MESH_NUM_X_POINTS-2);
|
|
piy = MIN(piy, MESH_NUM_Y_POINTS-2);
|
|
ix = MIN(ix, MESH_NUM_X_POINTS-2);
|
|
iy = MIN(iy, MESH_NUM_Y_POINTS-2);
|
|
if (pix == ix && piy == iy) {
|
|
// Start and end on same mesh square
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
float nx, ny, ne, normalized_dist;
|
|
if (ix > pix && (x_splits) & BIT(ix)) {
|
|
nx = mbl.get_x(ix);
|
|
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
x_splits ^= BIT(ix);
|
|
} else if (ix < pix && (x_splits) & BIT(pix)) {
|
|
nx = mbl.get_x(pix);
|
|
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
x_splits ^= BIT(pix);
|
|
} else if (iy > piy && (y_splits) & BIT(iy)) {
|
|
ny = mbl.get_y(iy);
|
|
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
y_splits ^= BIT(iy);
|
|
} else if (iy < piy && (y_splits) & BIT(piy)) {
|
|
ny = mbl.get_y(piy);
|
|
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
y_splits ^= BIT(piy);
|
|
} else {
|
|
// Already split on a border
|
|
plan_buffer_line(x, y, z, e, feed_rate, extruder);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
// Do the split and look for more borders
|
|
destination[X_AXIS] = nx;
|
|
destination[Y_AXIS] = ny;
|
|
destination[E_AXIS] = ne;
|
|
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
|
|
destination[X_AXIS] = x;
|
|
destination[Y_AXIS] = y;
|
|
destination[E_AXIS] = e;
|
|
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
|
|
}
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
void prepare_move() {
|
|
clamp_to_software_endstops(destination);
|
|
refresh_cmd_timeout();
|
|
|
|
#ifdef SCARA //for now same as delta-code
|
|
|
|
float difference[NUM_AXIS];
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
|
|
|
|
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
|
|
sq(difference[Y_AXIS]) +
|
|
sq(difference[Z_AXIS]));
|
|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
|
if (cartesian_mm < 0.000001) { return; }
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
int steps = max(1, int(scara_segments_per_second * seconds));
|
|
|
|
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
|
|
for (int s = 1; s <= steps; s++) {
|
|
float fraction = float(s) / float(steps);
|
|
for(int8_t i = 0; i < NUM_AXIS; i++) {
|
|
destination[i] = current_position[i] + difference[i] * fraction;
|
|
}
|
|
|
|
calculate_delta(destination);
|
|
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
|
|
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
|
|
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
|
|
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
|
|
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
active_extruder);
|
|
}
|
|
|
|
#endif // SCARA
|
|
|
|
#ifdef DELTA
|
|
|
|
float difference[NUM_AXIS];
|
|
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
|
|
sq(difference[Y_AXIS]) +
|
|
sq(difference[Z_AXIS]));
|
|
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
|
|
if (cartesian_mm < 0.000001) return;
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
|
int steps = max(1, int(delta_segments_per_second * seconds));
|
|
|
|
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
|
|
for (int s = 1; s <= steps; s++) {
|
|
float fraction = float(s) / float(steps);
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
|
|
calculate_delta(destination);
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
adjust_delta(destination);
|
|
#endif
|
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
|
active_extruder);
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
if (active_extruder_parked) {
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
|
|
// move duplicate extruder into correct duplication position.
|
|
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS], max_feedrate[X_AXIS], 1);
|
|
sync_plan_position();
|
|
st_synchronize();
|
|
extruder_duplication_enabled = true;
|
|
active_extruder_parked = false;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
|
|
if (current_position[E_AXIS] == destination[E_AXIS]) {
|
|
// this is a travel move - skit it but keep track of current position (so that it can later
|
|
// be used as start of first non-travel move)
|
|
if (delayed_move_time != 0xFFFFFFFFUL) {
|
|
set_current_to_destination();
|
|
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
|
|
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
|
|
delayed_move_time = millis();
|
|
return;
|
|
}
|
|
}
|
|
delayed_move_time = 0;
|
|
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
|
|
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
|
|
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
|
|
active_extruder_parked = false;
|
|
}
|
|
}
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
#if !defined(DELTA) && !defined(SCARA)
|
|
// Do not use feedmultiply for E or Z only moves
|
|
if ( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
|
line_to_destination();
|
|
}
|
|
else {
|
|
#ifdef MESH_BED_LEVELING
|
|
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
|
return;
|
|
#else
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
|
|
#endif // MESH_BED_LEVELING
|
|
}
|
|
#endif // !(DELTA || SCARA)
|
|
|
|
set_current_to_destination();
|
|
}
|
|
|
|
void prepare_arc_move(char isclockwise) {
|
|
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
|
|
|
// Trace the arc
|
|
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
set_current_to_destination();
|
|
refresh_cmd_timeout();
|
|
}
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
|
|
unsigned long lastMotor = 0; // Last time a motor was turned on
|
|
unsigned long lastMotorCheck = 0; // Last time the state was checked
|
|
|
|
void controllerFan() {
|
|
uint32_t ms = millis();
|
|
if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
|
|
lastMotorCheck = ms;
|
|
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
|
|
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
|
|
#if EXTRUDERS > 1
|
|
|| E1_ENABLE_READ == E_ENABLE_ON
|
|
#if HAS_X2_ENABLE
|
|
|| X2_ENABLE_READ == X_ENABLE_ON
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
|| E2_ENABLE_READ == E_ENABLE_ON
|
|
#if EXTRUDERS > 3
|
|
|| E3_ENABLE_READ == E_ENABLE_ON
|
|
#endif
|
|
#endif
|
|
#endif
|
|
) {
|
|
lastMotor = ms; //... set time to NOW so the fan will turn on
|
|
}
|
|
uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
|
|
// allows digital or PWM fan output to be used (see M42 handling)
|
|
digitalWrite(CONTROLLERFAN_PIN, speed);
|
|
analogWrite(CONTROLLERFAN_PIN, speed);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SCARA
|
|
void calculate_SCARA_forward_Transform(float f_scara[3])
|
|
{
|
|
// Perform forward kinematics, and place results in delta[3]
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
float x_sin, x_cos, y_sin, y_cos;
|
|
|
|
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
|
|
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
|
|
|
|
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
|
|
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
|
|
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
|
|
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
|
|
|
|
// SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
|
|
// SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
|
|
// SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
|
|
// SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
|
|
|
|
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
|
|
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
|
|
|
|
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
|
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
}
|
|
|
|
void calculate_delta(float cartesian[3]){
|
|
//reverse kinematics.
|
|
// Perform reversed kinematics, and place results in delta[3]
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
float SCARA_pos[2];
|
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
|
|
|
|
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
|
|
#if (Linkage_1 == Linkage_2)
|
|
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
|
|
#else
|
|
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
|
|
#endif
|
|
|
|
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
|
|
|
|
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
|
|
SCARA_K2 = Linkage_2 * SCARA_S2;
|
|
|
|
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
|
|
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
|
|
|
|
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
|
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
|
delta[Z_AXIS] = cartesian[Z_AXIS];
|
|
|
|
/*
|
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
|
|
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
|
|
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
|
|
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
|
|
SERIAL_ECHOLN(" ");*/
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef TEMP_STAT_LEDS
|
|
static bool blue_led = false;
|
|
static bool red_led = false;
|
|
static uint32_t stat_update = 0;
|
|
|
|
void handle_status_leds(void) {
|
|
float max_temp = 0.0;
|
|
if(millis() > stat_update) {
|
|
stat_update += 500; // Update every 0.5s
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
max_temp = max(max_temp, degHotend(cur_extruder));
|
|
max_temp = max(max_temp, degTargetHotend(cur_extruder));
|
|
}
|
|
#if HAS_TEMP_BED
|
|
max_temp = max(max_temp, degTargetBed());
|
|
max_temp = max(max_temp, degBed());
|
|
#endif
|
|
if((max_temp > 55.0) && (red_led == false)) {
|
|
digitalWrite(STAT_LED_RED, 1);
|
|
digitalWrite(STAT_LED_BLUE, 0);
|
|
red_led = true;
|
|
blue_led = false;
|
|
}
|
|
if((max_temp < 54.0) && (blue_led == false)) {
|
|
digitalWrite(STAT_LED_RED, 0);
|
|
digitalWrite(STAT_LED_BLUE, 1);
|
|
red_led = false;
|
|
blue_led = true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void enable_all_steppers() {
|
|
enable_x();
|
|
enable_y();
|
|
enable_z();
|
|
enable_e0();
|
|
enable_e1();
|
|
enable_e2();
|
|
enable_e3();
|
|
}
|
|
|
|
void disable_all_steppers() {
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
|
|
/**
|
|
* Manage several activities:
|
|
* - Check for Filament Runout
|
|
* - Keep the command buffer full
|
|
* - Check for maximum inactive time between commands
|
|
* - Check for maximum inactive time between stepper commands
|
|
* - Check if pin CHDK needs to go LOW
|
|
* - Check for KILL button held down
|
|
* - Check for HOME button held down
|
|
* - Check if cooling fan needs to be switched on
|
|
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
|
*/
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
|
|
|
#if HAS_FILRUNOUT
|
|
if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
|
|
filrunout();
|
|
#endif
|
|
|
|
if (buflen < BUFSIZE - 1) get_command();
|
|
|
|
unsigned long ms = millis();
|
|
|
|
if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
|
|
|
|
if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
|
|
&& !ignore_stepper_queue && !blocks_queued())
|
|
disable_all_steppers();
|
|
|
|
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
|
|
if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
|
|
chdkActive = false;
|
|
WRITE(CHDK, LOW);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_KILL
|
|
|
|
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
// key kill key press
|
|
// -------------------------------------------------------------------------------
|
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
const int KILL_DELAY = 750;
|
|
if (!READ(KILL_PIN))
|
|
killCount++;
|
|
else if (killCount > 0)
|
|
killCount--;
|
|
|
|
// Exceeded threshold and we can confirm that it was not accidental
|
|
// KILL the machine
|
|
// ----------------------------------------------------------------
|
|
if (killCount >= KILL_DELAY) kill();
|
|
#endif
|
|
|
|
#if HAS_HOME
|
|
// Check to see if we have to home, use poor man's debouncer
|
|
// ---------------------------------------------------------
|
|
static int homeDebounceCount = 0; // poor man's debouncing count
|
|
const int HOME_DEBOUNCE_DELAY = 750;
|
|
if (!READ(HOME_PIN)) {
|
|
if (!homeDebounceCount) {
|
|
enquecommands_P(PSTR("G28"));
|
|
LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
|
|
}
|
|
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
|
homeDebounceCount++;
|
|
else
|
|
homeDebounceCount = 0;
|
|
}
|
|
#endif
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
|
|
#endif
|
|
|
|
#ifdef EXTRUDER_RUNOUT_PREVENT
|
|
if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
|
|
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
|
|
bool oldstatus;
|
|
switch(active_extruder) {
|
|
case 0:
|
|
oldstatus = E0_ENABLE_READ;
|
|
enable_e0();
|
|
break;
|
|
#if EXTRUDERS > 1
|
|
case 1:
|
|
oldstatus = E1_ENABLE_READ;
|
|
enable_e1();
|
|
break;
|
|
#if EXTRUDERS > 2
|
|
case 2:
|
|
oldstatus = E2_ENABLE_READ;
|
|
enable_e2();
|
|
break;
|
|
#if EXTRUDERS > 3
|
|
case 3:
|
|
oldstatus = E3_ENABLE_READ;
|
|
enable_e3();
|
|
break;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
|
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
|
destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
|
|
EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
|
|
current_position[E_AXIS] = oldepos;
|
|
destination[E_AXIS] = oldedes;
|
|
plan_set_e_position(oldepos);
|
|
previous_millis_cmd = ms; // refresh_cmd_timeout()
|
|
st_synchronize();
|
|
switch(active_extruder) {
|
|
case 0:
|
|
E0_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if EXTRUDERS > 1
|
|
case 1:
|
|
E1_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if EXTRUDERS > 2
|
|
case 2:
|
|
E2_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if EXTRUDERS > 3
|
|
case 3:
|
|
E3_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUAL_X_CARRIAGE
|
|
// handle delayed move timeout
|
|
if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
|
|
// travel moves have been received so enact them
|
|
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
|
|
set_destination_to_current();
|
|
prepare_move();
|
|
}
|
|
#endif
|
|
|
|
#ifdef TEMP_STAT_LEDS
|
|
handle_status_leds();
|
|
#endif
|
|
|
|
check_axes_activity();
|
|
}
|
|
|
|
void kill()
|
|
{
|
|
cli(); // Stop interrupts
|
|
disable_heater();
|
|
|
|
disable_all_steppers();
|
|
|
|
#if HAS_POWER_SWITCH
|
|
pinMode(PS_ON_PIN, INPUT);
|
|
#endif
|
|
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
|
|
LCD_ALERTMESSAGEPGM(MSG_KILLED);
|
|
|
|
// FMC small patch to update the LCD before ending
|
|
sei(); // enable interrupts
|
|
for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
|
|
cli(); // disable interrupts
|
|
suicide();
|
|
while(1) { /* Intentionally left empty */ } // Wait for reset
|
|
}
|
|
|
|
#ifdef FILAMENT_RUNOUT_SENSOR
|
|
void filrunout()
|
|
{
|
|
if filrunoutEnqued == false {
|
|
filrunoutEnqued = true;
|
|
enquecommand("M600");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void Stop()
|
|
{
|
|
disable_heater();
|
|
if(Stopped == false) {
|
|
Stopped = true;
|
|
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
}
|
|
}
|
|
|
|
bool IsStopped() { return Stopped; };
|
|
|
|
#ifdef FAST_PWM_FAN
|
|
void setPwmFrequency(uint8_t pin, int val)
|
|
{
|
|
val &= 0x07;
|
|
switch(digitalPinToTimer(pin))
|
|
{
|
|
|
|
#if defined(TCCR0A)
|
|
case TIMER0A:
|
|
case TIMER0B:
|
|
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
|
// TCCR0B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR1A)
|
|
case TIMER1A:
|
|
case TIMER1B:
|
|
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
// TCCR1B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR2)
|
|
case TIMER2:
|
|
case TIMER2:
|
|
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
TCCR2 |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR2A)
|
|
case TIMER2A:
|
|
case TIMER2B:
|
|
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
|
TCCR2B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR3A)
|
|
case TIMER3A:
|
|
case TIMER3B:
|
|
case TIMER3C:
|
|
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
|
TCCR3B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR4A)
|
|
case TIMER4A:
|
|
case TIMER4B:
|
|
case TIMER4C:
|
|
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
|
TCCR4B |= val;
|
|
break;
|
|
#endif
|
|
|
|
#if defined(TCCR5A)
|
|
case TIMER5A:
|
|
case TIMER5B:
|
|
case TIMER5C:
|
|
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
|
TCCR5B |= val;
|
|
break;
|
|
#endif
|
|
|
|
}
|
|
}
|
|
#endif //FAST_PWM_FAN
|
|
|
|
bool setTargetedHotend(int code){
|
|
target_extruder = active_extruder;
|
|
if (code_seen('T')) {
|
|
target_extruder = code_value_short();
|
|
if (target_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
switch(code){
|
|
case 104:
|
|
SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
|
|
break;
|
|
case 105:
|
|
SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
|
|
break;
|
|
case 109:
|
|
SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
|
|
break;
|
|
case 218:
|
|
SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
|
|
break;
|
|
case 221:
|
|
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
|
|
break;
|
|
}
|
|
SERIAL_ECHOLN(target_extruder);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
float calculate_volumetric_multiplier(float diameter) {
|
|
if (!volumetric_enabled || diameter == 0) return 1.0;
|
|
float d2 = diameter * 0.5;
|
|
return 1.0 / (M_PI * d2 * d2);
|
|
}
|
|
|
|
void calculate_volumetric_multipliers() {
|
|
for (int i=0; i<EXTRUDERS; i++)
|
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
|
}
|