1690 lines
46 KiB
C++
1690 lines
46 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* endstops.cpp - A singleton object to manage endstops
|
|
*/
|
|
|
|
#include "endstops.h"
|
|
#include "stepper.h"
|
|
|
|
#include "../sd/cardreader.h"
|
|
#include "temperature.h"
|
|
#include "../lcd/marlinui.h"
|
|
|
|
#define DEBUG_OUT BOTH(USE_SENSORLESS, DEBUG_LEVELING_FEATURE)
|
|
#include "../core/debug_out.h"
|
|
|
|
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
|
#include HAL_PATH(../HAL, endstop_interrupts.h)
|
|
#endif
|
|
|
|
#if BOTH(SD_ABORT_ON_ENDSTOP_HIT, SDSUPPORT)
|
|
#include "printcounter.h" // for print_job_timer
|
|
#endif
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
#include "../feature/bltouch.h"
|
|
#endif
|
|
|
|
#if ENABLED(JOYSTICK)
|
|
#include "../feature/joystick.h"
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
#include "probe.h"
|
|
#endif
|
|
|
|
Endstops endstops;
|
|
|
|
// private:
|
|
|
|
bool Endstops::enabled, Endstops::enabled_globally; // Initialized by settings.load()
|
|
|
|
volatile Endstops::endstop_mask_t Endstops::hit_state;
|
|
Endstops::endstop_mask_t Endstops::live_state = 0;
|
|
|
|
#if ENDSTOP_NOISE_THRESHOLD
|
|
Endstops::endstop_mask_t Endstops::validated_live_state;
|
|
uint8_t Endstops::endstop_poll_count;
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
volatile bool Endstops::z_probe_enabled = false;
|
|
#endif
|
|
|
|
// Initialized by settings.load()
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
float Endstops::x2_endstop_adj;
|
|
#endif
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
float Endstops::y2_endstop_adj;
|
|
#endif
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
float Endstops::z2_endstop_adj;
|
|
#if NUM_Z_STEPPERS >= 3
|
|
float Endstops::z3_endstop_adj;
|
|
#if NUM_Z_STEPPERS >= 4
|
|
float Endstops::z4_endstop_adj;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(SPI_ENDSTOPS)
|
|
Endstops::tmc_spi_homing_t Endstops::tmc_spi_homing; // = 0
|
|
#endif
|
|
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
|
|
millis_t sg_guard_period; // = 0
|
|
#endif
|
|
|
|
/**
|
|
* Class and Instance Methods
|
|
*/
|
|
|
|
void Endstops::init() {
|
|
|
|
#if HAS_X_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_XMIN)
|
|
SET_INPUT_PULLUP(X_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_XMIN)
|
|
SET_INPUT_PULLDOWN(X_MIN_PIN);
|
|
#else
|
|
SET_INPUT(X_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_X2_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_XMIN)
|
|
SET_INPUT_PULLUP(X2_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_XMIN)
|
|
SET_INPUT_PULLDOWN(X2_MIN_PIN);
|
|
#else
|
|
SET_INPUT(X2_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Y_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_YMIN)
|
|
SET_INPUT_PULLUP(Y_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_YMIN)
|
|
SET_INPUT_PULLDOWN(Y_MIN_PIN);
|
|
#else
|
|
SET_INPUT(Y_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Y2_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_YMIN)
|
|
SET_INPUT_PULLUP(Y2_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_YMIN)
|
|
SET_INPUT_PULLDOWN(Y2_MIN_PIN);
|
|
#else
|
|
SET_INPUT(Y2_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
|
SET_INPUT_PULLUP(Z_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMIN)
|
|
SET_INPUT_PULLDOWN(Z_MIN_PIN);
|
|
#else
|
|
SET_INPUT(Z_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z2_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
|
SET_INPUT_PULLUP(Z2_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMIN)
|
|
SET_INPUT_PULLDOWN(Z2_MIN_PIN);
|
|
#else
|
|
SET_INPUT(Z2_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z3_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
|
SET_INPUT_PULLUP(Z3_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMIN)
|
|
SET_INPUT_PULLDOWN(Z3_MIN_PIN);
|
|
#else
|
|
SET_INPUT(Z3_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z4_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_ZMIN)
|
|
SET_INPUT_PULLUP(Z4_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMIN)
|
|
SET_INPUT_PULLDOWN(Z4_MIN_PIN);
|
|
#else
|
|
SET_INPUT(Z4_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_X_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_XMAX)
|
|
SET_INPUT_PULLUP(X_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_XMAX)
|
|
SET_INPUT_PULLDOWN(X_MAX_PIN);
|
|
#else
|
|
SET_INPUT(X_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_X2_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_XMAX)
|
|
SET_INPUT_PULLUP(X2_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_XMAX)
|
|
SET_INPUT_PULLDOWN(X2_MAX_PIN);
|
|
#else
|
|
SET_INPUT(X2_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Y_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_YMAX)
|
|
SET_INPUT_PULLUP(Y_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_YMAX)
|
|
SET_INPUT_PULLDOWN(Y_MAX_PIN);
|
|
#else
|
|
SET_INPUT(Y_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Y2_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_YMAX)
|
|
SET_INPUT_PULLUP(Y2_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_YMAX)
|
|
SET_INPUT_PULLDOWN(Y2_MAX_PIN);
|
|
#else
|
|
SET_INPUT(Y2_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
|
SET_INPUT_PULLUP(Z_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMAX)
|
|
SET_INPUT_PULLDOWN(Z_MAX_PIN);
|
|
#else
|
|
SET_INPUT(Z_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z2_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
|
SET_INPUT_PULLUP(Z2_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMAX)
|
|
SET_INPUT_PULLDOWN(Z2_MAX_PIN);
|
|
#else
|
|
SET_INPUT(Z2_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z3_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
|
SET_INPUT_PULLUP(Z3_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMAX)
|
|
SET_INPUT_PULLDOWN(Z3_MAX_PIN);
|
|
#else
|
|
SET_INPUT(Z3_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z4_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_ZMAX)
|
|
SET_INPUT_PULLUP(Z4_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMAX)
|
|
SET_INPUT_PULLDOWN(Z4_MAX_PIN);
|
|
#else
|
|
SET_INPUT(Z4_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_I_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_IMIN)
|
|
SET_INPUT_PULLUP(I_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_IMIN)
|
|
SET_INPUT_PULLDOWN(I_MIN_PIN);
|
|
#else
|
|
SET_INPUT(I_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_I_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_IMAX)
|
|
SET_INPUT_PULLUP(I_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_IMAX)
|
|
SET_INPUT_PULLDOWN(I_MAX_PIN);
|
|
#else
|
|
SET_INPUT(I_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_J_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_JMIN)
|
|
SET_INPUT_PULLUP(J_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_IMIN)
|
|
SET_INPUT_PULLDOWN(J_MIN_PIN);
|
|
#else
|
|
SET_INPUT(J_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_J_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_JMAX)
|
|
SET_INPUT_PULLUP(J_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_JMAX)
|
|
SET_INPUT_PULLDOWN(J_MAX_PIN);
|
|
#else
|
|
SET_INPUT(J_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_K_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_KMIN)
|
|
SET_INPUT_PULLUP(K_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_KMIN)
|
|
SET_INPUT_PULLDOWN(K_MIN_PIN);
|
|
#else
|
|
SET_INPUT(K_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_K_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_KMAX)
|
|
SET_INPUT_PULLUP(K_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_KMIN)
|
|
SET_INPUT_PULLDOWN(K_MAX_PIN);
|
|
#else
|
|
SET_INPUT(K_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_U_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_UMIN)
|
|
SET_INPUT_PULLUP(U_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_UMIN)
|
|
SET_INPUT_PULLDOWN(U_MIN_PIN);
|
|
#else
|
|
SET_INPUT(U_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_U_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_UMAX)
|
|
SET_INPUT_PULLUP(U_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_UMIN)
|
|
SET_INPUT_PULLDOWN(U_MAX_PIN);
|
|
#else
|
|
SET_INPUT(U_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_V_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_VMIN)
|
|
SET_INPUT_PULLUP(V_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_VMIN)
|
|
SET_INPUT_PULLDOWN(V_MIN_PIN);
|
|
#else
|
|
SET_INPUT(V_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_V_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_VMAX)
|
|
SET_INPUT_PULLUP(V_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_VMIN)
|
|
SET_INPUT_PULLDOWN(V_MAX_PIN);
|
|
#else
|
|
SET_INPUT(V_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_W_MIN
|
|
#if ENABLED(ENDSTOPPULLUP_WMIN)
|
|
SET_INPUT_PULLUP(W_MIN_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_WMIN)
|
|
SET_INPUT_PULLDOWN(W_MIN_PIN);
|
|
#else
|
|
SET_INPUT(W_MIN_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_W_MAX
|
|
#if ENABLED(ENDSTOPPULLUP_WMAX)
|
|
SET_INPUT_PULLUP(W_MAX_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_WMIN)
|
|
SET_INPUT_PULLDOWN(W_MAX_PIN);
|
|
#else
|
|
SET_INPUT(W_MAX_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if PIN_EXISTS(CALIBRATION)
|
|
#if ENABLED(CALIBRATION_PIN_PULLUP)
|
|
SET_INPUT_PULLUP(CALIBRATION_PIN);
|
|
#elif ENABLED(CALIBRATION_PIN_PULLDOWN)
|
|
SET_INPUT_PULLDOWN(CALIBRATION_PIN);
|
|
#else
|
|
SET_INPUT(CALIBRATION_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if USES_Z_MIN_PROBE_PIN
|
|
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
|
|
SET_INPUT_PULLUP(Z_MIN_PROBE_PIN);
|
|
#elif ENABLED(ENDSTOPPULLDOWN_ZMIN_PROBE)
|
|
SET_INPUT_PULLDOWN(Z_MIN_PROBE_PIN);
|
|
#else
|
|
SET_INPUT(Z_MIN_PROBE_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(PROBE_ACTIVATION_SWITCH)
|
|
SET_INPUT(PROBE_ACTIVATION_SWITCH_PIN);
|
|
#endif
|
|
|
|
TERN_(PROBE_TARE, probe.tare());
|
|
|
|
TERN_(ENDSTOP_INTERRUPTS_FEATURE, setup_endstop_interrupts());
|
|
|
|
// Enable endstops
|
|
enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
|
|
|
|
} // Endstops::init
|
|
|
|
// Called at ~1kHz from Temperature ISR: Poll endstop state if required
|
|
void Endstops::poll() {
|
|
|
|
TERN_(PINS_DEBUGGING, run_monitor()); // Report changes in endstop status
|
|
|
|
#if DISABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
|
update();
|
|
#elif ENDSTOP_NOISE_THRESHOLD
|
|
if (endstop_poll_count) update();
|
|
#endif
|
|
}
|
|
|
|
void Endstops::enable_globally(const bool onoff) {
|
|
enabled_globally = enabled = onoff;
|
|
resync();
|
|
}
|
|
|
|
// Enable / disable endstop checking
|
|
void Endstops::enable(const bool onoff) {
|
|
enabled = onoff;
|
|
resync();
|
|
}
|
|
|
|
// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
|
|
void Endstops::not_homing() {
|
|
enabled = enabled_globally;
|
|
}
|
|
|
|
#if ENABLED(VALIDATE_HOMING_ENDSTOPS)
|
|
// If the last move failed to trigger an endstop, call kill
|
|
void Endstops::validate_homing_move() {
|
|
if (trigger_state()) hit_on_purpose();
|
|
else kill(GET_TEXT_F(MSG_KILL_HOMING_FAILED));
|
|
}
|
|
#endif
|
|
|
|
// Enable / disable endstop z-probe checking
|
|
#if HAS_BED_PROBE
|
|
void Endstops::enable_z_probe(const bool onoff) {
|
|
z_probe_enabled = onoff;
|
|
#if PIN_EXISTS(PROBE_ENABLE)
|
|
WRITE(PROBE_ENABLE_PIN, onoff);
|
|
#endif
|
|
resync();
|
|
}
|
|
#endif
|
|
|
|
// Get the stable endstop states when enabled
|
|
void Endstops::resync() {
|
|
if (!abort_enabled()) return; // If endstops/probes are disabled the loop below can hang
|
|
|
|
// Wait for Temperature ISR to run at least once (runs at 1kHz)
|
|
TERN(ENDSTOP_INTERRUPTS_FEATURE, update(), safe_delay(2));
|
|
while (TERN0(ENDSTOP_NOISE_THRESHOLD, endstop_poll_count)) safe_delay(1);
|
|
}
|
|
|
|
#if ENABLED(PINS_DEBUGGING)
|
|
void Endstops::run_monitor() {
|
|
if (!monitor_flag) return;
|
|
static uint8_t monitor_count = 16; // offset this check from the others
|
|
monitor_count += _BV(1); // 15 Hz
|
|
monitor_count &= 0x7F;
|
|
if (!monitor_count) monitor(); // report changes in endstop status
|
|
}
|
|
#endif
|
|
|
|
void Endstops::event_handler() {
|
|
static endstop_mask_t prev_hit_state; // = 0
|
|
if (hit_state == prev_hit_state) return;
|
|
prev_hit_state = hit_state;
|
|
if (hit_state) {
|
|
#if HAS_STATUS_MESSAGE
|
|
char NUM_AXIS_LIST(chrX = ' ', chrY = ' ', chrZ = ' ', chrI = ' ', chrJ = ' ', chrK = ' ', chrU = ' ', chrV = ' ', chrW = ' '),
|
|
chrP = ' ';
|
|
#define _SET_STOP_CHAR(A,C) (chr## A = C)
|
|
#else
|
|
#define _SET_STOP_CHAR(A,C) NOOP
|
|
#endif
|
|
|
|
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
|
|
SERIAL_ECHOPGM(" " STRINGIFY(A) ":", planner.triggered_position_mm(_AXIS(A))); _SET_STOP_CHAR(A,C); }while(0)
|
|
|
|
#define _ENDSTOP_HIT_TEST(A,C) \
|
|
if (TERN0(HAS_##A##_MIN, TEST(hit_state, A##_MIN)) || TERN0(HAS_##A##_MAX, TEST(hit_state, A##_MAX))) \
|
|
_ENDSTOP_HIT_ECHO(A,C)
|
|
|
|
#define ENDSTOP_HIT_TEST_X() _ENDSTOP_HIT_TEST(X,'X')
|
|
#define ENDSTOP_HIT_TEST_Y() _ENDSTOP_HIT_TEST(Y,'Y')
|
|
#define ENDSTOP_HIT_TEST_Z() _ENDSTOP_HIT_TEST(Z,'Z')
|
|
#define ENDSTOP_HIT_TEST_I() _ENDSTOP_HIT_TEST(I,'I')
|
|
#define ENDSTOP_HIT_TEST_J() _ENDSTOP_HIT_TEST(J,'J')
|
|
#define ENDSTOP_HIT_TEST_K() _ENDSTOP_HIT_TEST(K,'K')
|
|
#define ENDSTOP_HIT_TEST_U() _ENDSTOP_HIT_TEST(U,'U')
|
|
#define ENDSTOP_HIT_TEST_V() _ENDSTOP_HIT_TEST(V,'V')
|
|
#define ENDSTOP_HIT_TEST_W() _ENDSTOP_HIT_TEST(W,'W')
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM(STR_ENDSTOPS_HIT);
|
|
NUM_AXIS_CODE(
|
|
ENDSTOP_HIT_TEST_X(),
|
|
ENDSTOP_HIT_TEST_Y(),
|
|
ENDSTOP_HIT_TEST_Z(),
|
|
_ENDSTOP_HIT_TEST(I,'I'),
|
|
_ENDSTOP_HIT_TEST(J,'J'),
|
|
_ENDSTOP_HIT_TEST(K,'K'),
|
|
_ENDSTOP_HIT_TEST(U,'U'),
|
|
_ENDSTOP_HIT_TEST(V,'V'),
|
|
_ENDSTOP_HIT_TEST(W,'W')
|
|
);
|
|
|
|
#if USES_Z_MIN_PROBE_PIN
|
|
#define P_AXIS Z_AXIS
|
|
if (TEST(hit_state, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
|
|
#endif
|
|
SERIAL_EOL();
|
|
|
|
TERN_(HAS_STATUS_MESSAGE,
|
|
ui.status_printf(0,
|
|
F(S_FMT GANG_N_1(NUM_AXES, " %c") " %c"),
|
|
GET_TEXT(MSG_LCD_ENDSTOPS),
|
|
NUM_AXIS_LIST(chrX, chrY, chrZ, chrI, chrJ, chrK, chrU, chrV, chrW), chrP
|
|
)
|
|
);
|
|
|
|
#if BOTH(SD_ABORT_ON_ENDSTOP_HIT, SDSUPPORT)
|
|
if (planner.abort_on_endstop_hit) {
|
|
card.abortFilePrintNow();
|
|
quickstop_stepper();
|
|
thermalManager.disable_all_heaters();
|
|
print_job_timer.stop();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#pragma GCC diagnostic push
|
|
#if GCC_VERSION <= 50000
|
|
#pragma GCC diagnostic ignored "-Wunused-function"
|
|
#endif
|
|
|
|
static void print_es_state(const bool is_hit, FSTR_P const flabel=nullptr) {
|
|
if (flabel) SERIAL_ECHOF(flabel);
|
|
SERIAL_ECHOPGM(": ");
|
|
SERIAL_ECHOLNF(is_hit ? F(STR_ENDSTOP_HIT) : F(STR_ENDSTOP_OPEN));
|
|
}
|
|
|
|
#pragma GCC diagnostic pop
|
|
|
|
void __O2 Endstops::report_states() {
|
|
TERN_(BLTOUCH, bltouch._set_SW_mode());
|
|
SERIAL_ECHOLNPGM(STR_M119_REPORT);
|
|
#define ES_REPORT(S) print_es_state(READ(S##_PIN) != S##_ENDSTOP_INVERTING, F(STR_##S))
|
|
#if HAS_X_MIN
|
|
ES_REPORT(X_MIN);
|
|
#endif
|
|
#if HAS_X2_MIN
|
|
ES_REPORT(X2_MIN);
|
|
#endif
|
|
#if HAS_X_MAX
|
|
ES_REPORT(X_MAX);
|
|
#endif
|
|
#if HAS_X2_MAX
|
|
ES_REPORT(X2_MAX);
|
|
#endif
|
|
#if HAS_Y_MIN
|
|
ES_REPORT(Y_MIN);
|
|
#endif
|
|
#if HAS_Y2_MIN
|
|
ES_REPORT(Y2_MIN);
|
|
#endif
|
|
#if HAS_Y_MAX
|
|
ES_REPORT(Y_MAX);
|
|
#endif
|
|
#if HAS_Y2_MAX
|
|
ES_REPORT(Y2_MAX);
|
|
#endif
|
|
#if HAS_Z_MIN
|
|
ES_REPORT(Z_MIN);
|
|
#endif
|
|
#if HAS_Z2_MIN
|
|
ES_REPORT(Z2_MIN);
|
|
#endif
|
|
#if HAS_Z3_MIN
|
|
ES_REPORT(Z3_MIN);
|
|
#endif
|
|
#if HAS_Z4_MIN
|
|
ES_REPORT(Z4_MIN);
|
|
#endif
|
|
#if HAS_Z_MAX
|
|
ES_REPORT(Z_MAX);
|
|
#endif
|
|
#if HAS_Z2_MAX
|
|
ES_REPORT(Z2_MAX);
|
|
#endif
|
|
#if HAS_Z3_MAX
|
|
ES_REPORT(Z3_MAX);
|
|
#endif
|
|
#if HAS_Z4_MAX
|
|
ES_REPORT(Z4_MAX);
|
|
#endif
|
|
#if HAS_I_MIN
|
|
ES_REPORT(I_MIN);
|
|
#endif
|
|
#if HAS_I_MAX
|
|
ES_REPORT(I_MAX);
|
|
#endif
|
|
#if HAS_J_MIN
|
|
ES_REPORT(J_MIN);
|
|
#endif
|
|
#if HAS_J_MAX
|
|
ES_REPORT(J_MAX);
|
|
#endif
|
|
#if HAS_K_MIN
|
|
ES_REPORT(K_MIN);
|
|
#endif
|
|
#if HAS_K_MAX
|
|
ES_REPORT(K_MAX);
|
|
#endif
|
|
#if HAS_U_MIN
|
|
ES_REPORT(U_MIN);
|
|
#endif
|
|
#if HAS_U_MAX
|
|
ES_REPORT(U_MAX);
|
|
#endif
|
|
#if HAS_V_MIN
|
|
ES_REPORT(V_MIN);
|
|
#endif
|
|
#if HAS_V_MAX
|
|
ES_REPORT(V_MAX);
|
|
#endif
|
|
#if HAS_W_MIN
|
|
ES_REPORT(W_MIN);
|
|
#endif
|
|
#if HAS_W_MAX
|
|
ES_REPORT(W_MAX);
|
|
#endif
|
|
#if ENABLED(PROBE_ACTIVATION_SWITCH)
|
|
print_es_state(probe_switch_activated(), F(STR_PROBE_EN));
|
|
#endif
|
|
#if USES_Z_MIN_PROBE_PIN
|
|
print_es_state(PROBE_TRIGGERED(), F(STR_Z_PROBE));
|
|
#endif
|
|
#if MULTI_FILAMENT_SENSOR
|
|
#define _CASE_RUNOUT(N) case N: pin = FIL_RUNOUT##N##_PIN; state = FIL_RUNOUT##N##_STATE; break;
|
|
LOOP_S_LE_N(i, 1, NUM_RUNOUT_SENSORS) {
|
|
pin_t pin;
|
|
uint8_t state;
|
|
switch (i) {
|
|
default: continue;
|
|
REPEAT_1(NUM_RUNOUT_SENSORS, _CASE_RUNOUT)
|
|
}
|
|
SERIAL_ECHOPGM(STR_FILAMENT);
|
|
if (i > 1) SERIAL_CHAR(' ', '0' + i);
|
|
print_es_state(extDigitalRead(pin) != state);
|
|
}
|
|
#undef _CASE_RUNOUT
|
|
#elif HAS_FILAMENT_SENSOR
|
|
print_es_state(READ(FIL_RUNOUT1_PIN) != FIL_RUNOUT1_STATE, F(STR_FILAMENT));
|
|
#endif
|
|
|
|
TERN_(BLTOUCH, bltouch._reset_SW_mode());
|
|
TERN_(JOYSTICK_DEBUG, joystick.report());
|
|
|
|
} // Endstops::report_states
|
|
|
|
#if HAS_DELTA_SENSORLESS_PROBING
|
|
#define __ENDSTOP(AXIS, ...) AXIS ##_MAX
|
|
#define _ENDSTOP_PIN(AXIS, ...) AXIS ##_MAX_PIN
|
|
#define _ENDSTOP_INVERTING(AXIS, ...) AXIS ##_MAX_ENDSTOP_INVERTING
|
|
#else
|
|
#define __ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
|
|
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
|
|
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
|
|
#endif
|
|
#define _ENDSTOP(AXIS, MINMAX) __ENDSTOP(AXIS, MINMAX)
|
|
|
|
/**
|
|
* Called from interrupt context by the Endstop ISR or Stepper ISR!
|
|
* Read endstops to get their current states, register hits for all
|
|
* axes moving in the direction of their endstops, and abort moves.
|
|
*/
|
|
void Endstops::update() {
|
|
|
|
#if !ENDSTOP_NOISE_THRESHOLD // If not debouncing...
|
|
if (!abort_enabled()) return; // ...and not enabled, exit.
|
|
#endif
|
|
|
|
// Macros to update / copy the live_state
|
|
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT_TO(live_state, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
|
|
#define COPY_LIVE_STATE(SRC_BIT, DST_BIT) SET_BIT_TO(live_state, DST_BIT, TEST(live_state, SRC_BIT))
|
|
|
|
#if ENABLED(G38_PROBE_TARGET) && NONE(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX)
|
|
#define HAS_G38_PROBE 1
|
|
// For G38 moves check the probe's pin for ALL movement
|
|
if (G38_move) UPDATE_ENDSTOP_BIT(Z, TERN(USES_Z_MIN_PROBE_PIN, MIN_PROBE, MIN));
|
|
#endif
|
|
|
|
// With Dual X, endstops are only checked in the homing direction for the active extruder
|
|
#define X_MIN_TEST() TERN1(DUAL_X_CARRIAGE, TERN0(X_HOME_TO_MIN, stepper.last_moved_extruder == 0) || TERN0(X2_HOME_TO_MIN, stepper.last_moved_extruder != 0))
|
|
#define X_MAX_TEST() TERN1(DUAL_X_CARRIAGE, TERN0(X_HOME_TO_MAX, stepper.last_moved_extruder == 0) || TERN0(X2_HOME_TO_MAX, stepper.last_moved_extruder != 0))
|
|
|
|
// Use HEAD for core axes, AXIS for others
|
|
#if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX)
|
|
#define X_AXIS_HEAD X_HEAD
|
|
#else
|
|
#define X_AXIS_HEAD X_AXIS
|
|
#endif
|
|
#if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX)
|
|
#define Y_AXIS_HEAD Y_HEAD
|
|
#else
|
|
#define Y_AXIS_HEAD Y_AXIS
|
|
#endif
|
|
#if CORE_IS_XZ || CORE_IS_YZ
|
|
#define Z_AXIS_HEAD Z_HEAD
|
|
#else
|
|
#define Z_AXIS_HEAD Z_AXIS
|
|
#endif
|
|
|
|
#define I_AXIS_HEAD I_AXIS
|
|
#define J_AXIS_HEAD J_AXIS
|
|
#define K_AXIS_HEAD K_AXIS
|
|
#define U_AXIS_HEAD U_AXIS
|
|
#define V_AXIS_HEAD V_AXIS
|
|
#define W_AXIS_HEAD W_AXIS
|
|
|
|
/**
|
|
* Check and update endstops
|
|
*/
|
|
#if HAS_X_MIN && !X_SPI_SENSORLESS
|
|
UPDATE_ENDSTOP_BIT(X, MIN);
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
#if HAS_X2_MIN
|
|
UPDATE_ENDSTOP_BIT(X2, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(X_MIN, X2_MIN);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_X_MAX && !X_SPI_SENSORLESS
|
|
UPDATE_ENDSTOP_BIT(X, MAX);
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
#if HAS_X2_MAX
|
|
UPDATE_ENDSTOP_BIT(X2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(X_MAX, X2_MAX);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Y_MIN && !Y_SPI_SENSORLESS
|
|
UPDATE_ENDSTOP_BIT(Y, MIN);
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
#if HAS_Y2_MIN
|
|
UPDATE_ENDSTOP_BIT(Y2, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(Y_MIN, Y2_MIN);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Y_MAX && !Y_SPI_SENSORLESS
|
|
UPDATE_ENDSTOP_BIT(Y, MAX);
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
#if HAS_Y2_MAX
|
|
UPDATE_ENDSTOP_BIT(Y2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(Y_MAX, Y2_MAX);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_Z_MIN && NONE(Z_SPI_SENSORLESS, Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
|
UPDATE_ENDSTOP_BIT(Z, MIN);
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
#if HAS_Z2_MIN
|
|
UPDATE_ENDSTOP_BIT(Z2, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(Z_MIN, Z2_MIN);
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 3
|
|
#if HAS_Z3_MIN
|
|
UPDATE_ENDSTOP_BIT(Z3, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(Z_MIN, Z3_MIN);
|
|
#endif
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 4
|
|
#if HAS_Z4_MIN
|
|
UPDATE_ENDSTOP_BIT(Z4, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(Z_MIN, Z4_MIN);
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
// When closing the gap check the enabled probe
|
|
if (probe_switch_activated())
|
|
UPDATE_ENDSTOP_BIT(Z, TERN(USES_Z_MIN_PROBE_PIN, MIN_PROBE, MIN));
|
|
#endif
|
|
|
|
#if HAS_Z_MAX && !Z_SPI_SENSORLESS
|
|
// Check both Z dual endstops
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(Z, MAX);
|
|
#if HAS_Z2_MAX
|
|
UPDATE_ENDSTOP_BIT(Z2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(Z_MAX, Z2_MAX);
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 3
|
|
#if HAS_Z3_MAX
|
|
UPDATE_ENDSTOP_BIT(Z3, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(Z_MAX, Z3_MAX);
|
|
#endif
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 4
|
|
#if HAS_Z4_MAX
|
|
UPDATE_ENDSTOP_BIT(Z4, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(Z_MAX, Z4_MAX);
|
|
#endif
|
|
#endif
|
|
#elif TERN1(USES_Z_MIN_PROBE_PIN, Z_MAX_PIN != Z_MIN_PROBE_PIN)
|
|
// If this pin isn't the bed probe it's the Z endstop
|
|
UPDATE_ENDSTOP_BIT(Z, MAX);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_I_MIN && !I_SPI_SENSORLESS
|
|
#if ENABLED(I_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(I, MIN);
|
|
#if HAS_I2_MIN
|
|
UPDATE_ENDSTOP_BIT(I2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(I_MIN, I2_MIN);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(I, MIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_I_MAX && !I_SPI_SENSORLESS
|
|
#if ENABLED(I_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(I, MAX);
|
|
#if HAS_I2_MAX
|
|
UPDATE_ENDSTOP_BIT(I2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(I_MAX, I2_MAX);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(I, MAX);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_J_MIN && !J_SPI_SENSORLESS
|
|
#if ENABLED(J_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(J, MIN);
|
|
#if HAS_J2_MIN
|
|
UPDATE_ENDSTOP_BIT(J2, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(J_MIN, J2_MIN);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(J, MIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_J_MAX && !J_SPI_SENSORLESS
|
|
#if ENABLED(J_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(J, MAX);
|
|
#if HAS_J2_MAX
|
|
UPDATE_ENDSTOP_BIT(J2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(J_MAX, J2_MAX);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(J, MAX);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_K_MIN && !K_SPI_SENSORLESS
|
|
#if ENABLED(K_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(K, MIN);
|
|
#if HAS_K2_MIN
|
|
UPDATE_ENDSTOP_BIT(K2, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(K_MIN, K2_MIN);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(K, MIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_K_MAX && !K_SPI_SENSORLESS
|
|
#if ENABLED(K_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(K, MAX);
|
|
#if HAS_K2_MAX
|
|
UPDATE_ENDSTOP_BIT(K2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(K_MAX, K2_MAX);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(K, MAX);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_U_MIN && !U_SPI_SENSORLESS
|
|
#if ENABLED(U_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(U, MIN);
|
|
#if HAS_U2_MIN
|
|
UPDATE_ENDSTOP_BIT(U2, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(U_MIN, U2_MIN);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(U, MIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_U_MAX && !U_SPI_SENSORLESS
|
|
#if ENABLED(U_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(U, MAX);
|
|
#if HAS_U2_MAX
|
|
UPDATE_ENDSTOP_BIT(U2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(U_MAX, U2_MAX);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(U, MAX);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_V_MIN && !V_SPI_SENSORLESS
|
|
#if ENABLED(V_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(V, MIN);
|
|
#if HAS_V2_MIN
|
|
UPDATE_ENDSTOP_BIT(V2, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(V_MIN, V2_MIN);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(V, MIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_V_MAX && !V_SPI_SENSORLESS
|
|
#if ENABLED(O_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(V, MAX);
|
|
#if HAS_V2_MAX
|
|
UPDATE_ENDSTOP_BIT(V2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(V_MAX, V2_MAX);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(V, MAX);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_W_MIN && !W_SPI_SENSORLESS
|
|
#if ENABLED(W_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(W, MIN);
|
|
#if HAS_W2_MIN
|
|
UPDATE_ENDSTOP_BIT(W2, MIN);
|
|
#else
|
|
COPY_LIVE_STATE(W_MIN, W2_MIN);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(W, MIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_W_MAX && !W_SPI_SENSORLESS
|
|
#if ENABLED(W_DUAL_ENDSTOPS)
|
|
UPDATE_ENDSTOP_BIT(W, MAX);
|
|
#if HAS_W2_MAX
|
|
UPDATE_ENDSTOP_BIT(W2, MAX);
|
|
#else
|
|
COPY_LIVE_STATE(W_MAX, W2_MAX);
|
|
#endif
|
|
#else
|
|
UPDATE_ENDSTOP_BIT(W, MAX);
|
|
#endif
|
|
#endif
|
|
|
|
#if ENDSTOP_NOISE_THRESHOLD
|
|
|
|
/**
|
|
* Filtering out noise on endstops requires a delayed decision. Let's assume, due to noise,
|
|
* that 50% of endstop signal samples are good and 50% are bad (assuming normal distribution
|
|
* of random noise). Then the first sample has a 50% chance to be good or bad. The 2nd sample
|
|
* also has a 50% chance to be good or bad. The chances of 2 samples both being bad becomes
|
|
* 50% of 50%, or 25%. That was the previous implementation of Marlin endstop handling. It
|
|
* reduces chances of bad readings in half, at the cost of 1 extra sample period, but chances
|
|
* still exist. The only way to reduce them further is to increase the number of samples.
|
|
* To reduce the chance to 1% (1/128th) requires 7 samples (adding 7ms of delay).
|
|
*/
|
|
static endstop_mask_t old_live_state;
|
|
if (old_live_state != live_state) {
|
|
endstop_poll_count = ENDSTOP_NOISE_THRESHOLD;
|
|
old_live_state = live_state;
|
|
}
|
|
else if (endstop_poll_count && !--endstop_poll_count)
|
|
validated_live_state = live_state;
|
|
|
|
if (!abort_enabled()) return;
|
|
|
|
#endif
|
|
|
|
// Test the current status of an endstop
|
|
#define TEST_ENDSTOP(ENDSTOP) (TEST(state(), ENDSTOP))
|
|
|
|
// Record endstop was hit
|
|
#define _ENDSTOP_HIT(AXIS, MINMAX) SBI(hit_state, _ENDSTOP(AXIS, MINMAX))
|
|
|
|
// Call the endstop triggered routine for single endstops
|
|
#define PROCESS_ENDSTOP(AXIS, MINMAX) do { \
|
|
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX))) { \
|
|
_ENDSTOP_HIT(AXIS, MINMAX); \
|
|
planner.endstop_triggered(_AXIS(AXIS)); \
|
|
} \
|
|
}while(0)
|
|
|
|
// Core Sensorless Homing needs to test an Extra Pin
|
|
#define CORE_DIAG(QQ,A,MM) (CORE_IS_##QQ && A##_SENSORLESS && !A##_SPI_SENSORLESS && HAS_##A##_##MM)
|
|
#define PROCESS_CORE_ENDSTOP(A1,M1,A2,M2) do { \
|
|
if (TEST_ENDSTOP(_ENDSTOP(A1,M1))) { \
|
|
_ENDSTOP_HIT(A2,M2); \
|
|
planner.endstop_triggered(_AXIS(A2)); \
|
|
} \
|
|
}while(0)
|
|
|
|
// Call the endstop triggered routine for dual endstops
|
|
#define PROCESS_DUAL_ENDSTOP(A, MINMAX) do { \
|
|
const byte dual_hit = TEST_ENDSTOP(_ENDSTOP(A, MINMAX)) | (TEST_ENDSTOP(_ENDSTOP(A##2, MINMAX)) << 1); \
|
|
if (dual_hit) { \
|
|
_ENDSTOP_HIT(A, MINMAX); \
|
|
/* if not performing home or if both endstops were triggered during homing... */ \
|
|
if (!stepper.separate_multi_axis || dual_hit == 0b11) \
|
|
planner.endstop_triggered(_AXIS(A)); \
|
|
} \
|
|
}while(0)
|
|
|
|
#define PROCESS_TRIPLE_ENDSTOP(A, MINMAX) do { \
|
|
const byte triple_hit = TEST_ENDSTOP(_ENDSTOP(A, MINMAX)) | (TEST_ENDSTOP(_ENDSTOP(A##2, MINMAX)) << 1) | (TEST_ENDSTOP(_ENDSTOP(A##3, MINMAX)) << 2); \
|
|
if (triple_hit) { \
|
|
_ENDSTOP_HIT(A, MINMAX); \
|
|
/* if not performing home or if both endstops were triggered during homing... */ \
|
|
if (!stepper.separate_multi_axis || triple_hit == 0b111) \
|
|
planner.endstop_triggered(_AXIS(A)); \
|
|
} \
|
|
}while(0)
|
|
|
|
#define PROCESS_QUAD_ENDSTOP(A, MINMAX) do { \
|
|
const byte quad_hit = TEST_ENDSTOP(_ENDSTOP(A, MINMAX)) | (TEST_ENDSTOP(_ENDSTOP(A##2, MINMAX)) << 1) | (TEST_ENDSTOP(_ENDSTOP(A##3, MINMAX)) << 2) | (TEST_ENDSTOP(_ENDSTOP(A##4, MINMAX)) << 3); \
|
|
if (quad_hit) { \
|
|
_ENDSTOP_HIT(A, MINMAX); \
|
|
/* if not performing home or if both endstops were triggered during homing... */ \
|
|
if (!stepper.separate_multi_axis || quad_hit == 0b1111) \
|
|
planner.endstop_triggered(_AXIS(A)); \
|
|
} \
|
|
}while(0)
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
#define PROCESS_ENDSTOP_X(MINMAX) PROCESS_DUAL_ENDSTOP(X, MINMAX)
|
|
#else
|
|
#define PROCESS_ENDSTOP_X(MINMAX) if (X_##MINMAX##_TEST()) PROCESS_ENDSTOP(X, MINMAX)
|
|
#endif
|
|
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
#define PROCESS_ENDSTOP_Y(MINMAX) PROCESS_DUAL_ENDSTOP(Y, MINMAX)
|
|
#else
|
|
#define PROCESS_ENDSTOP_Y(MINMAX) PROCESS_ENDSTOP(Y, MINMAX)
|
|
#endif
|
|
|
|
#if DISABLED(Z_MULTI_ENDSTOPS)
|
|
#define PROCESS_ENDSTOP_Z(MINMAX) PROCESS_ENDSTOP(Z, MINMAX)
|
|
#elif NUM_Z_STEPPERS == 4
|
|
#define PROCESS_ENDSTOP_Z(MINMAX) PROCESS_QUAD_ENDSTOP(Z, MINMAX)
|
|
#elif NUM_Z_STEPPERS == 3
|
|
#define PROCESS_ENDSTOP_Z(MINMAX) PROCESS_TRIPLE_ENDSTOP(Z, MINMAX)
|
|
#else
|
|
#define PROCESS_ENDSTOP_Z(MINMAX) PROCESS_DUAL_ENDSTOP(Z, MINMAX)
|
|
#endif
|
|
|
|
#if HAS_G38_PROBE // TODO (DerAndere): Add support for HAS_I_AXIS
|
|
#define _G38_OPEN_STATE TERN(G38_PROBE_AWAY, (G38_move >= 4), LOW)
|
|
// For G38 moves check the probe's pin for ALL movement
|
|
if (G38_move && TEST_ENDSTOP(_ENDSTOP(Z, TERN(USES_Z_MIN_PROBE_PIN, MIN_PROBE, MIN))) != _G38_OPEN_STATE) {
|
|
if (stepper.axis_is_moving(X_AXIS)) { _ENDSTOP_HIT(X, TERN(X_HOME_TO_MIN, MIN, MAX)); planner.endstop_triggered(X_AXIS); }
|
|
#if HAS_Y_AXIS
|
|
else if (stepper.axis_is_moving(Y_AXIS)) { _ENDSTOP_HIT(Y, TERN(Y_HOME_TO_MIN, MIN, MAX)); planner.endstop_triggered(Y_AXIS); }
|
|
#endif
|
|
#if HAS_Z_AXIS
|
|
else if (stepper.axis_is_moving(Z_AXIS)) { _ENDSTOP_HIT(Z, TERN(Z_HOME_TO_MIN, MIN, MAX)); planner.endstop_triggered(Z_AXIS); }
|
|
#endif
|
|
G38_did_trigger = true;
|
|
}
|
|
#endif
|
|
|
|
// Signal, after validation, if an endstop limit is pressed or not
|
|
|
|
if (stepper.axis_is_moving(X_AXIS)) {
|
|
if (stepper.motor_direction(X_AXIS_HEAD)) { // -direction
|
|
#if HAS_X_MIN || (X_SPI_SENSORLESS && X_HOME_TO_MIN)
|
|
PROCESS_ENDSTOP_X(MIN);
|
|
#if CORE_DIAG(XY, Y, MIN)
|
|
PROCESS_CORE_ENDSTOP(Y,MIN,X,MIN);
|
|
#elif CORE_DIAG(XY, Y, MAX)
|
|
PROCESS_CORE_ENDSTOP(Y,MAX,X,MIN);
|
|
#elif CORE_DIAG(XZ, Z, MIN)
|
|
PROCESS_CORE_ENDSTOP(Z,MIN,X,MIN);
|
|
#elif CORE_DIAG(XZ, Z, MAX)
|
|
PROCESS_CORE_ENDSTOP(Z,MAX,X,MIN);
|
|
#endif
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_X_MAX || (X_SPI_SENSORLESS && X_HOME_TO_MAX)
|
|
PROCESS_ENDSTOP_X(MAX);
|
|
#if CORE_DIAG(XY, Y, MIN)
|
|
PROCESS_CORE_ENDSTOP(Y,MIN,X,MAX);
|
|
#elif CORE_DIAG(XY, Y, MAX)
|
|
PROCESS_CORE_ENDSTOP(Y,MAX,X,MAX);
|
|
#elif CORE_DIAG(XZ, Z, MIN)
|
|
PROCESS_CORE_ENDSTOP(Z,MIN,X,MAX);
|
|
#elif CORE_DIAG(XZ, Z, MAX)
|
|
PROCESS_CORE_ENDSTOP(Z,MAX,X,MAX);
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if HAS_Y_AXIS
|
|
if (stepper.axis_is_moving(Y_AXIS)) {
|
|
if (stepper.motor_direction(Y_AXIS_HEAD)) { // -direction
|
|
#if HAS_Y_MIN || (Y_SPI_SENSORLESS && Y_HOME_TO_MIN)
|
|
PROCESS_ENDSTOP_Y(MIN);
|
|
#if CORE_DIAG(XY, X, MIN)
|
|
PROCESS_CORE_ENDSTOP(X,MIN,Y,MIN);
|
|
#elif CORE_DIAG(XY, X, MAX)
|
|
PROCESS_CORE_ENDSTOP(X,MAX,Y,MIN);
|
|
#elif CORE_DIAG(YZ, Z, MIN)
|
|
PROCESS_CORE_ENDSTOP(Z,MIN,Y,MIN);
|
|
#elif CORE_DIAG(YZ, Z, MAX)
|
|
PROCESS_CORE_ENDSTOP(Z,MAX,Y,MIN);
|
|
#endif
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_Y_MAX || (Y_SPI_SENSORLESS && Y_HOME_TO_MAX)
|
|
PROCESS_ENDSTOP_Y(MAX);
|
|
#if CORE_DIAG(XY, X, MIN)
|
|
PROCESS_CORE_ENDSTOP(X,MIN,Y,MAX);
|
|
#elif CORE_DIAG(XY, X, MAX)
|
|
PROCESS_CORE_ENDSTOP(X,MAX,Y,MAX);
|
|
#elif CORE_DIAG(YZ, Z, MIN)
|
|
PROCESS_CORE_ENDSTOP(Z,MIN,Y,MAX);
|
|
#elif CORE_DIAG(YZ, Z, MAX)
|
|
PROCESS_CORE_ENDSTOP(Z,MAX,Y,MAX);
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HAS_Z_AXIS
|
|
if (stepper.axis_is_moving(Z_AXIS)) {
|
|
if (stepper.motor_direction(Z_AXIS_HEAD)) { // Z -direction. Gantry down, bed up.
|
|
|
|
#if HAS_Z_MIN || (Z_SPI_SENSORLESS && Z_HOME_TO_MIN)
|
|
if ( TERN1(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN, z_probe_enabled)
|
|
&& TERN1(USES_Z_MIN_PROBE_PIN, !z_probe_enabled)
|
|
) PROCESS_ENDSTOP_Z(MIN);
|
|
#if CORE_DIAG(XZ, X, MIN)
|
|
PROCESS_CORE_ENDSTOP(X,MIN,Z,MIN);
|
|
#elif CORE_DIAG(XZ, X, MAX)
|
|
PROCESS_CORE_ENDSTOP(X,MAX,Z,MIN);
|
|
#elif CORE_DIAG(YZ, Y, MIN)
|
|
PROCESS_CORE_ENDSTOP(Y,MIN,Z,MIN);
|
|
#elif CORE_DIAG(YZ, Y, MAX)
|
|
PROCESS_CORE_ENDSTOP(Y,MAX,Z,MIN);
|
|
#endif
|
|
#endif
|
|
|
|
// When closing the gap check the enabled probe
|
|
#if USES_Z_MIN_PROBE_PIN
|
|
if (z_probe_enabled) PROCESS_ENDSTOP(Z, MIN_PROBE);
|
|
#endif
|
|
}
|
|
else { // Z +direction. Gantry up, bed down.
|
|
#if HAS_Z_MAX || (Z_SPI_SENSORLESS && Z_HOME_TO_MAX)
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
PROCESS_ENDSTOP_Z(MAX);
|
|
#elif TERN1(USES_Z_MIN_PROBE_PIN, Z_MAX_PIN != Z_MIN_PROBE_PIN) // No probe or probe is Z_MIN || Probe is not Z_MAX
|
|
PROCESS_ENDSTOP(Z, MAX);
|
|
#endif
|
|
#if CORE_DIAG(XZ, X, MIN)
|
|
PROCESS_CORE_ENDSTOP(X,MIN,Z,MAX);
|
|
#elif CORE_DIAG(XZ, X, MAX)
|
|
PROCESS_CORE_ENDSTOP(X,MAX,Z,MAX);
|
|
#elif CORE_DIAG(YZ, Y, MIN)
|
|
PROCESS_CORE_ENDSTOP(Y,MIN,Z,MAX);
|
|
#elif CORE_DIAG(YZ, Y, MAX)
|
|
PROCESS_CORE_ENDSTOP(Y,MAX,Z,MAX);
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HAS_I_AXIS
|
|
if (stepper.axis_is_moving(I_AXIS)) {
|
|
if (stepper.motor_direction(I_AXIS_HEAD)) { // -direction
|
|
#if HAS_I_MIN || (I_SPI_SENSORLESS && I_HOME_TO_MIN)
|
|
PROCESS_ENDSTOP(I, MIN);
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_I_MAX || (I_SPI_SENSORLESS && I_HOME_TO_MAX)
|
|
PROCESS_ENDSTOP(I, MAX);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HAS_J_AXIS
|
|
if (stepper.axis_is_moving(J_AXIS)) {
|
|
if (stepper.motor_direction(J_AXIS_HEAD)) { // -direction
|
|
#if HAS_J_MIN || (J_SPI_SENSORLESS && J_HOME_TO_MIN)
|
|
PROCESS_ENDSTOP(J, MIN);
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_J_MAX || (J_SPI_SENSORLESS && J_HOME_TO_MAX)
|
|
PROCESS_ENDSTOP(J, MAX);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HAS_K_AXIS
|
|
if (stepper.axis_is_moving(K_AXIS)) {
|
|
if (stepper.motor_direction(K_AXIS_HEAD)) { // -direction
|
|
#if HAS_K_MIN || (K_SPI_SENSORLESS && K_HOME_TO_MIN)
|
|
PROCESS_ENDSTOP(K, MIN);
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_K_MAX || (K_SPI_SENSORLESS && K_HOME_TO_MAX)
|
|
PROCESS_ENDSTOP(K, MAX);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HAS_U_AXIS
|
|
if (stepper.axis_is_moving(U_AXIS)) {
|
|
if (stepper.motor_direction(U_AXIS_HEAD)) { // -direction
|
|
#if HAS_U_MIN || (U_SPI_SENSORLESS && U_HOME_TO_MIN)
|
|
PROCESS_ENDSTOP(U, MIN);
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_U_MAX || (U_SPI_SENSORLESS && U_HOME_TO_MAX)
|
|
PROCESS_ENDSTOP(U, MAX);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HAS_V_AXIS
|
|
if (stepper.axis_is_moving(V_AXIS)) {
|
|
if (stepper.motor_direction(V_AXIS_HEAD)) { // -direction
|
|
#if HAS_V_MIN || (V_SPI_SENSORLESS && V_HOME_TO_MIN)
|
|
PROCESS_ENDSTOP(V, MIN);
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_V_MAX || (V_SPI_SENSORLESS && V_HOME_TO_MAX)
|
|
PROCESS_ENDSTOP(V, MAX);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if HAS_W_AXIS
|
|
if (stepper.axis_is_moving(W_AXIS)) {
|
|
if (stepper.motor_direction(W_AXIS_HEAD)) { // -direction
|
|
#if HAS_W_MIN || (W_SPI_SENSORLESS && W_HOME_TO_MIN)
|
|
PROCESS_ENDSTOP(W, MIN);
|
|
#endif
|
|
}
|
|
else { // +direction
|
|
#if HAS_W_MAX || (W_SPI_SENSORLESS && W_HOME_TO_MAX)
|
|
PROCESS_ENDSTOP(W, MAX);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
} // Endstops::update()
|
|
|
|
#if ENABLED(SPI_ENDSTOPS)
|
|
|
|
// Called from idle() to read Trinamic stall states
|
|
bool Endstops::tmc_spi_homing_check() {
|
|
bool hit = false;
|
|
#if X_SPI_SENSORLESS
|
|
if (tmc_spi_homing.x && (stepperX.test_stall_status()
|
|
#if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) && Y_SPI_SENSORLESS
|
|
|| stepperY.test_stall_status()
|
|
#elif CORE_IS_XZ && Z_SPI_SENSORLESS
|
|
|| stepperZ.test_stall_status()
|
|
#endif
|
|
)) {
|
|
SBI(live_state, X_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
#if Y_SPI_SENSORLESS
|
|
if (tmc_spi_homing.y && (stepperY.test_stall_status()
|
|
#if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) && X_SPI_SENSORLESS
|
|
|| stepperX.test_stall_status()
|
|
#elif CORE_IS_YZ && Z_SPI_SENSORLESS
|
|
|| stepperZ.test_stall_status()
|
|
#endif
|
|
)) {
|
|
SBI(live_state, Y_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
#if Z_SPI_SENSORLESS
|
|
if (tmc_spi_homing.z && (stepperZ.test_stall_status()
|
|
#if CORE_IS_XZ && X_SPI_SENSORLESS
|
|
|| stepperX.test_stall_status()
|
|
#elif CORE_IS_YZ && Y_SPI_SENSORLESS
|
|
|| stepperY.test_stall_status()
|
|
#endif
|
|
)) {
|
|
SBI(live_state, Z_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
#if I_SPI_SENSORLESS
|
|
if (tmc_spi_homing.i && stepperI.test_stall_status()) {
|
|
SBI(live_state, I_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
#if J_SPI_SENSORLESS
|
|
if (tmc_spi_homing.j && stepperJ.test_stall_status()) {
|
|
SBI(live_state, J_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
#if K_SPI_SENSORLESS
|
|
if (tmc_spi_homing.k && stepperK.test_stall_status()) {
|
|
SBI(live_state, K_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
#if U_SPI_SENSORLESS
|
|
if (tmc_spi_homing.u && stepperU.test_stall_status()) {
|
|
SBI(live_state, U_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
#if V_SPI_SENSORLESS
|
|
if (tmc_spi_homing.v && stepperV.test_stall_status()) {
|
|
SBI(live_state, V_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
#if W_SPI_SENSORLESS
|
|
if (tmc_spi_homing.w && stepperW.test_stall_status()) {
|
|
SBI(live_state, W_ENDSTOP);
|
|
hit = true;
|
|
}
|
|
#endif
|
|
|
|
if (TERN0(ENDSTOP_INTERRUPTS_FEATURE, hit)) update();
|
|
|
|
return hit;
|
|
}
|
|
|
|
void Endstops::clear_endstop_state() {
|
|
TERN_(X_SPI_SENSORLESS, CBI(live_state, X_ENDSTOP));
|
|
TERN_(Y_SPI_SENSORLESS, CBI(live_state, Y_ENDSTOP));
|
|
TERN_(Z_SPI_SENSORLESS, CBI(live_state, Z_ENDSTOP));
|
|
TERN_(I_SPI_SENSORLESS, CBI(live_state, I_ENDSTOP));
|
|
TERN_(J_SPI_SENSORLESS, CBI(live_state, J_ENDSTOP));
|
|
TERN_(K_SPI_SENSORLESS, CBI(live_state, K_ENDSTOP));
|
|
TERN_(U_SPI_SENSORLESS, CBI(live_state, U_ENDSTOP));
|
|
TERN_(V_SPI_SENSORLESS, CBI(live_state, V_ENDSTOP));
|
|
TERN_(W_SPI_SENSORLESS, CBI(live_state, W_ENDSTOP));
|
|
}
|
|
|
|
#endif // SPI_ENDSTOPS
|
|
|
|
#if ENABLED(PINS_DEBUGGING)
|
|
|
|
bool Endstops::monitor_flag = false;
|
|
|
|
/**
|
|
* Monitor Endstops and Z Probe for changes
|
|
*
|
|
* If a change is detected then the LED is toggled and
|
|
* a message is sent out the serial port.
|
|
*
|
|
* Yes, we could miss a rapid back & forth change but
|
|
* that won't matter because this is all manual.
|
|
*/
|
|
void Endstops::monitor() {
|
|
|
|
static uint16_t old_live_state_local = 0;
|
|
static uint8_t local_LED_status = 0;
|
|
uint16_t live_state_local = 0;
|
|
|
|
#define ES_GET_STATE(S) if (READ(S##_PIN)) SBI(live_state_local, S)
|
|
|
|
#if HAS_X_MIN
|
|
ES_GET_STATE(X_MIN);
|
|
#endif
|
|
#if HAS_X_MAX
|
|
ES_GET_STATE(X_MAX);
|
|
#endif
|
|
#if HAS_Y_MIN
|
|
ES_GET_STATE(Y_MIN);
|
|
#endif
|
|
#if HAS_Y_MAX
|
|
ES_GET_STATE(Y_MAX);
|
|
#endif
|
|
#if HAS_Z_MIN
|
|
ES_GET_STATE(Z_MIN);
|
|
#endif
|
|
#if HAS_Z_MAX
|
|
ES_GET_STATE(Z_MAX);
|
|
#endif
|
|
#if HAS_Z_MIN_PROBE_PIN
|
|
ES_GET_STATE(Z_MIN_PROBE);
|
|
#endif
|
|
#if HAS_X2_MIN
|
|
ES_GET_STATE(X2_MIN);
|
|
#endif
|
|
#if HAS_X2_MAX
|
|
ES_GET_STATE(X2_MAX);
|
|
#endif
|
|
#if HAS_Y2_MIN
|
|
ES_GET_STATE(Y2_MIN);
|
|
#endif
|
|
#if HAS_Y2_MAX
|
|
ES_GET_STATE(Y2_MAX);
|
|
#endif
|
|
#if HAS_Z2_MIN
|
|
ES_GET_STATE(Z2_MIN);
|
|
#endif
|
|
#if HAS_Z2_MAX
|
|
ES_GET_STATE(Z2_MAX);
|
|
#endif
|
|
#if HAS_Z3_MIN
|
|
ES_GET_STATE(Z3_MIN);
|
|
#endif
|
|
#if HAS_Z3_MAX
|
|
ES_GET_STATE(Z3_MAX);
|
|
#endif
|
|
#if HAS_Z4_MIN
|
|
ES_GET_STATE(Z4_MIN);
|
|
#endif
|
|
#if HAS_Z4_MAX
|
|
ES_GET_STATE(Z4_MAX);
|
|
#endif
|
|
#if HAS_I_MAX
|
|
ES_GET_STATE(I_MAX);
|
|
#endif
|
|
#if HAS_I_MIN
|
|
ES_GET_STATE(I_MIN);
|
|
#endif
|
|
#if HAS_J_MAX
|
|
ES_GET_STATE(J_MAX);
|
|
#endif
|
|
#if HAS_J_MIN
|
|
ES_GET_STATE(J_MIN);
|
|
#endif
|
|
#if HAS_K_MAX
|
|
ES_GET_STATE(K_MAX);
|
|
#endif
|
|
#if HAS_K_MIN
|
|
ES_GET_STATE(K_MIN);
|
|
#endif
|
|
#if HAS_U_MAX
|
|
ES_GET_STATE(U_MAX);
|
|
#endif
|
|
#if HAS_U_MIN
|
|
ES_GET_STATE(U_MIN);
|
|
#endif
|
|
#if HAS_V_MAX
|
|
ES_GET_STATE(V_MAX);
|
|
#endif
|
|
#if HAS_V_MIN
|
|
ES_GET_STATE(V_MIN);
|
|
#endif
|
|
#if HAS_W_MAX
|
|
ES_GET_STATE(W_MAX);
|
|
#endif
|
|
#if HAS_W_MIN
|
|
ES_GET_STATE(W_MIN);
|
|
#endif
|
|
|
|
uint16_t endstop_change = live_state_local ^ old_live_state_local;
|
|
#define ES_REPORT_CHANGE(S) if (TEST(endstop_change, S)) SERIAL_ECHOPGM(" " STRINGIFY(S) ":", TEST(live_state_local, S))
|
|
|
|
if (endstop_change) {
|
|
#if HAS_X_MIN
|
|
ES_REPORT_CHANGE(X_MIN);
|
|
#endif
|
|
#if HAS_X_MAX
|
|
ES_REPORT_CHANGE(X_MAX);
|
|
#endif
|
|
#if HAS_Y_MIN
|
|
ES_REPORT_CHANGE(Y_MIN);
|
|
#endif
|
|
#if HAS_Y_MAX
|
|
ES_REPORT_CHANGE(Y_MAX);
|
|
#endif
|
|
#if HAS_Z_MIN
|
|
ES_REPORT_CHANGE(Z_MIN);
|
|
#endif
|
|
#if HAS_Z_MAX
|
|
ES_REPORT_CHANGE(Z_MAX);
|
|
#endif
|
|
#if HAS_Z_MIN_PROBE_PIN
|
|
ES_REPORT_CHANGE(Z_MIN_PROBE);
|
|
#endif
|
|
#if HAS_X2_MIN
|
|
ES_REPORT_CHANGE(X2_MIN);
|
|
#endif
|
|
#if HAS_X2_MAX
|
|
ES_REPORT_CHANGE(X2_MAX);
|
|
#endif
|
|
#if HAS_Y2_MIN
|
|
ES_REPORT_CHANGE(Y2_MIN);
|
|
#endif
|
|
#if HAS_Y2_MAX
|
|
ES_REPORT_CHANGE(Y2_MAX);
|
|
#endif
|
|
#if HAS_Z2_MIN
|
|
ES_REPORT_CHANGE(Z2_MIN);
|
|
#endif
|
|
#if HAS_Z2_MAX
|
|
ES_REPORT_CHANGE(Z2_MAX);
|
|
#endif
|
|
#if HAS_Z3_MIN
|
|
ES_REPORT_CHANGE(Z3_MIN);
|
|
#endif
|
|
#if HAS_Z3_MAX
|
|
ES_REPORT_CHANGE(Z3_MAX);
|
|
#endif
|
|
#if HAS_Z4_MIN
|
|
ES_REPORT_CHANGE(Z4_MIN);
|
|
#endif
|
|
#if HAS_Z4_MAX
|
|
ES_REPORT_CHANGE(Z4_MAX);
|
|
#endif
|
|
#if HAS_I_MIN
|
|
ES_REPORT_CHANGE(I_MIN);
|
|
#endif
|
|
#if HAS_I_MAX
|
|
ES_REPORT_CHANGE(I_MAX);
|
|
#endif
|
|
#if HAS_J_MIN
|
|
ES_REPORT_CHANGE(J_MIN);
|
|
#endif
|
|
#if HAS_J_MAX
|
|
ES_REPORT_CHANGE(J_MAX);
|
|
#endif
|
|
#if HAS_K_MIN
|
|
ES_REPORT_CHANGE(K_MIN);
|
|
#endif
|
|
#if HAS_K_MAX
|
|
ES_REPORT_CHANGE(K_MAX);
|
|
#endif
|
|
#if HAS_U_MIN
|
|
ES_REPORT_CHANGE(U_MIN);
|
|
#endif
|
|
#if HAS_U_MAX
|
|
ES_REPORT_CHANGE(U_MAX);
|
|
#endif
|
|
#if HAS_V_MIN
|
|
ES_REPORT_CHANGE(V_MIN);
|
|
#endif
|
|
#if HAS_V_MAX
|
|
ES_REPORT_CHANGE(V_MAX);
|
|
#endif
|
|
#if HAS_W_MIN
|
|
ES_REPORT_CHANGE(W_MIN);
|
|
#endif
|
|
#if HAS_W_MAX
|
|
ES_REPORT_CHANGE(W_MAX);
|
|
#endif
|
|
|
|
SERIAL_ECHOLNPGM("\n");
|
|
hal.set_pwm_duty(pin_t(LED_PIN), local_LED_status);
|
|
local_LED_status ^= 255;
|
|
old_live_state_local = live_state_local;
|
|
}
|
|
}
|
|
|
|
#endif // PINS_DEBUGGING
|
|
|
|
#if USE_SENSORLESS
|
|
/**
|
|
* Change TMC driver currents to N##_CURRENT_HOME, saving the current configuration of each.
|
|
*/
|
|
void Endstops::set_homing_current(const bool onoff) {
|
|
#define HAS_CURRENT_HOME(N) (defined(N##_CURRENT_HOME) && N##_CURRENT_HOME != N##_CURRENT)
|
|
#define HAS_DELTA_X_CURRENT (ENABLED(DELTA) && HAS_CURRENT_HOME(X))
|
|
#define HAS_DELTA_Y_CURRENT (ENABLED(DELTA) && HAS_CURRENT_HOME(Y))
|
|
#if HAS_DELTA_X_CURRENT || HAS_DELTA_Y_CURRENT || HAS_CURRENT_HOME(Z)
|
|
#if HAS_DELTA_X_CURRENT
|
|
static int16_t saved_current_x;
|
|
#endif
|
|
#if HAS_DELTA_Y_CURRENT
|
|
static int16_t saved_current_y;
|
|
#endif
|
|
#if HAS_CURRENT_HOME(Z)
|
|
static int16_t saved_current_z;
|
|
#endif
|
|
auto debug_current_on = [](PGM_P const s, const int16_t a, const int16_t b) {
|
|
if (DEBUGGING(LEVELING)) { DEBUG_ECHOPGM_P(s); DEBUG_ECHOLNPGM(" current: ", a, " -> ", b); }
|
|
};
|
|
if (onoff) {
|
|
#if HAS_DELTA_X_CURRENT
|
|
saved_current_x = stepperX.getMilliamps();
|
|
stepperX.rms_current(X_CURRENT_HOME);
|
|
debug_current_on(PSTR("X"), saved_current_x, X_CURRENT_HOME);
|
|
#endif
|
|
#if HAS_DELTA_Y_CURRENT
|
|
saved_current_y = stepperY.getMilliamps();
|
|
stepperY.rms_current(Y_CURRENT_HOME);
|
|
debug_current_on(PSTR("Y"), saved_current_y, Y_CURRENT_HOME);
|
|
#endif
|
|
#if HAS_CURRENT_HOME(Z)
|
|
saved_current_z = stepperZ.getMilliamps();
|
|
stepperZ.rms_current(Z_CURRENT_HOME);
|
|
debug_current_on(PSTR("Z"), saved_current_z, Z_CURRENT_HOME);
|
|
#endif
|
|
}
|
|
else {
|
|
#if HAS_DELTA_X_CURRENT
|
|
stepperX.rms_current(saved_current_x);
|
|
debug_current_on(PSTR("X"), X_CURRENT_HOME, saved_current_x);
|
|
#endif
|
|
#if HAS_DELTA_Y_CURRENT
|
|
stepperY.rms_current(saved_current_y);
|
|
debug_current_on(PSTR("Y"), Y_CURRENT_HOME, saved_current_y);
|
|
#endif
|
|
#if HAS_CURRENT_HOME(Z)
|
|
stepperZ.rms_current(saved_current_z);
|
|
debug_current_on(PSTR("Z"), Z_CURRENT_HOME, saved_current_z);
|
|
#endif
|
|
}
|
|
|
|
TERN_(IMPROVE_HOMING_RELIABILITY, planner.enable_stall_prevention(onoff));
|
|
|
|
#if SENSORLESS_STALLGUARD_DELAY
|
|
safe_delay(SENSORLESS_STALLGUARD_DELAY); // Short delay needed to settle
|
|
#endif
|
|
|
|
#endif // XYZ
|
|
}
|
|
#endif
|