Firmware2/Marlin/src/feature/joystick.cpp
2022-06-05 23:11:31 -05:00

184 lines
6.0 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* joystick.cpp - joystick input / jogging
*/
#include "../inc/MarlinConfigPre.h"
#if ENABLED(JOYSTICK)
#include "joystick.h"
#include "../inc/MarlinConfig.h" // for pins
#include "../module/planner.h"
Joystick joystick;
#if ENABLED(EXTENSIBLE_UI)
#include "../lcd/extui/ui_api.h"
#endif
#if HAS_JOY_ADC_X
temp_info_t Joystick::x; // = { 0 }
#if ENABLED(INVERT_JOY_X)
#define JOY_X(N) (16383 - (N))
#else
#define JOY_X(N) (N)
#endif
#endif
#if HAS_JOY_ADC_Y
temp_info_t Joystick::y; // = { 0 }
#if ENABLED(INVERT_JOY_Y)
#define JOY_Y(N) (16383 - (N))
#else
#define JOY_Y(N) (N)
#endif
#endif
#if HAS_JOY_ADC_Z
temp_info_t Joystick::z; // = { 0 }
#if ENABLED(INVERT_JOY_Z)
#define JOY_Z(N) (16383 - (N))
#else
#define JOY_Z(N) (N)
#endif
#endif
#if ENABLED(JOYSTICK_DEBUG)
void Joystick::report() {
SERIAL_ECHOPGM("Joystick");
#if HAS_JOY_ADC_X
SERIAL_ECHOPGM_P(SP_X_STR, JOY_X(x.getraw()));
#endif
#if HAS_JOY_ADC_Y
SERIAL_ECHOPGM_P(SP_Y_STR, JOY_Y(y.getraw()));
#endif
#if HAS_JOY_ADC_Z
SERIAL_ECHOPGM_P(SP_Z_STR, JOY_Z(z.getraw()));
#endif
#if HAS_JOY_ADC_EN
SERIAL_ECHO_TERNARY(READ(JOY_EN_PIN), " EN=", "HIGH (dis", "LOW (en", "abled)");
#endif
SERIAL_EOL();
}
#endif
#if HAS_JOY_ADC_X || HAS_JOY_ADC_Y || HAS_JOY_ADC_Z
void Joystick::calculate(xyz_float_t &norm_jog) {
// Do nothing if enable pin (active-low) is not LOW
#if HAS_JOY_ADC_EN
if (READ(JOY_EN_PIN)) return;
#endif
auto _normalize_joy = [](float &axis_jog, const raw_adc_t raw, const raw_adc_t (&joy_limits)[4]) {
if (WITHIN(raw, joy_limits[0], joy_limits[3])) {
// within limits, check deadzone
if (raw > joy_limits[2])
axis_jog = (raw - joy_limits[2]) / float(joy_limits[3] - joy_limits[2]);
else if (raw < joy_limits[1])
axis_jog = int16_t(raw - joy_limits[1]) / float(joy_limits[1] - joy_limits[0]); // negative value
// Map normal to jog value via quadratic relationship
axis_jog = SIGN(axis_jog) * sq(axis_jog);
}
};
#if HAS_JOY_ADC_X
static constexpr raw_adc_t joy_x_limits[4] = JOY_X_LIMITS;
_normalize_joy(norm_jog.x, JOY_X(x.getraw()), joy_x_limits);
#endif
#if HAS_JOY_ADC_Y
static constexpr raw_adc_t joy_y_limits[4] = JOY_Y_LIMITS;
_normalize_joy(norm_jog.y, JOY_Y(y.getraw()), joy_y_limits);
#endif
#if HAS_JOY_ADC_Z
static constexpr raw_adc_t joy_z_limits[4] = JOY_Z_LIMITS;
_normalize_joy(norm_jog.z, JOY_Z(z.getraw()), joy_z_limits);
#endif
}
#endif
#if ENABLED(POLL_JOG)
void Joystick::inject_jog_moves() {
// Recursion barrier
static bool injecting_now; // = false;
if (injecting_now) return;
#if ENABLED(NO_MOTION_BEFORE_HOMING)
if (TERN0(HAS_JOY_ADC_X, axis_should_home(X_AXIS)) || TERN0(HAS_JOY_ADC_Y, axis_should_home(Y_AXIS)) || TERN0(HAS_JOY_ADC_Z, axis_should_home(Z_AXIS)))
return;
#endif
static constexpr int QUEUE_DEPTH = 5; // Insert up to this many movements
static constexpr float target_lag = 0.25f, // Aim for 1/4 second lag
seg_time = target_lag / QUEUE_DEPTH; // 0.05 seconds, short segments inserted every 1/20th of a second
static constexpr millis_t timer_limit_ms = millis_t(seg_time * 500); // 25 ms minimum delay between insertions
// The planner can merge/collapse small moves, so the movement queue is unreliable to control the lag
static millis_t next_run = 0;
if (PENDING(millis(), next_run)) return;
next_run = millis() + timer_limit_ms;
// Only inject a command if the planner has fewer than 5 moves and there are no unparsed commands
if (planner.movesplanned() >= QUEUE_DEPTH || queue.has_commands_queued())
return;
// Normalized jog values are 0 for no movement and -1 or +1 for as max feedrate (nonlinear relationship)
// Jog are initialized to zero and handling input can update values but doesn't have to
// You could use a two-axis joystick and a one-axis keypad and they might work together
xyz_float_t norm_jog{0};
// Use ADC values and defined limits. The active zone is normalized: -1..0 (dead) 0..1
#if HAS_JOY_ADC_X || HAS_JOY_ADC_Y || HAS_JOY_ADC_Z
joystick.calculate(norm_jog);
#endif
// Other non-joystick poll-based jogging could be implemented here
// with "jogging" encapsulated as a more general class.
TERN_(EXTENSIBLE_UI, ExtUI::_joystick_update(norm_jog));
// norm_jog values of [-1 .. 1] maps linearly to [-feedrate .. feedrate]
xyz_float_t move_dist{0};
float hypot2 = 0;
LOOP_NUM_AXES(i) if (norm_jog[i]) {
move_dist[i] = seg_time * norm_jog[i] * TERN(EXTENSIBLE_UI, manual_feedrate_mm_s, planner.settings.max_feedrate_mm_s)[i];
hypot2 += sq(move_dist[i]);
}
if (!UNEAR_ZERO(hypot2)) {
current_position += move_dist;
apply_motion_limits(current_position);
const float length = sqrt(hypot2);
injecting_now = true;
planner.buffer_line(current_position, length / seg_time, active_extruder, length);
injecting_now = false;
}
}
#endif // POLL_JOG
#endif // JOYSTICK