format documents

Signed-off-by: Thomas Schmid <tom@lfence.de>
This commit is contained in:
Thomas 2022-06-19 13:05:58 +02:00
parent 3d13f0f49a
commit 6b60c82e3e
8 changed files with 110 additions and 80 deletions

View File

@ -1,7 +1,8 @@
#pragma once
template<class T>
struct Biquad {
template <class T>
struct Biquad
{
T b0;
T b1;
T b2;
@ -13,16 +14,18 @@ struct Biquad {
T yn2;
Biquad() = default;
Biquad(T a1, T a2, T b0, T b1, T b2) : b0(b0), b1(b1), b2(b2), a1(a1), a2(a2) {};
Biquad(T a0, T a1, T a2, T b0, T b1, T b2) {
this->a1 = a1/a0;
this->a2 = a2/a0;
this->b0 = b0/a0;
this->b1 = b1/a0;
this->b2 = b2/a0;
Biquad(T a1, T a2, T b0, T b1, T b2) : b0(b0), b1(b1), b2(b2), a1(a1), a2(a2){};
Biquad(T a0, T a1, T a2, T b0, T b1, T b2)
{
this->a1 = a1 / a0;
this->a2 = a2 / a0;
this->b0 = b0 / a0;
this->b1 = b1 / a0;
this->b2 = b2 / a0;
}
T update(T x) {
T update(T x)
{
T y = this->b0 * x + this->b1 * this->xn1 + this->b2 * this->xn2 - this->yn1 * this->a1 - this->yn2 * this->a2;
this->xn2 = this->xn1;

View File

@ -1,15 +1,17 @@
#pragma once
template<class T>
struct DcCancelation {
template <class T>
struct DcCancelation
{
T x_n1;
T y_n1;
T R;
DcCancelation(T R) : R(R) {};
DcCancelation(T R) : R(R){};
T update(T x) {
T y = x-this->x_n1 + this->R * this->y_n1;
T update(T x)
{
T y = x - this->x_n1 + this->R * this->y_n1;
this->x_n1 = x;
this->y_n1 = y;

View File

@ -1,13 +1,14 @@
#pragma once
template<class T>
struct Pt1 {
template <class T>
struct Pt1
{
T y_n1;
T K;
T T1;
/* PT1: y = y_(n-1) + (Ku - y_(n-1)) * dt/T1 */
Pt1(T K, T T1) : T1(T1), K(K) {};
Pt1(T K, T T1) : T1(T1), K(K){};
T update(T u, T dt)
{

View File

@ -1,16 +1,19 @@
#include "zauberstab.h"
#include <algorithm>
#include "biquad.h"
#include "pt1.h"
#include "zauberstab.h"
#undef NUM_LEDS
#define NUM_LEDS 45
#define SAMPLING_FREQUENCY_BP 40 // number of energy chunks per second
#define SAMPLING_FREQUENCY_CONTROL 1 // check number of times per second if the current band pass is the best one
#define Q 20. // quality factor of band pass filters
#define SAMPLING_FREQUENCY_BP 40 // number of energy chunks per second
#define SAMPLING_FREQUENCY_CONTROL \
1 // check number of times per second if the current band pass is the best
// one
#define Q 20. // quality factor of band pass filters
#define PI 3.1415926535897932384626433832795
#define n_BP 30 //number of band pass filters
#define n_BP 30 // number of band pass filters
static unsigned long sampling_period_bp = 1000000L / SAMPLING_FREQUENCY_BP;
static unsigned long sampling_period_control = 1000000L / SAMPLING_FREQUENCY_CONTROL;
@ -34,7 +37,7 @@ static float y_fil[n_BP];
static float angle;
static float angle2;
//static double energy_fil = 800.;
// static double energy_fil = 800.;
static float pos_target = NUM_LEDS / 2;
static float pos_target_filtered = NUM_LEDS / 2;
@ -45,7 +48,8 @@ static int candidate = 15;
static int rounds = 0;
static int n_samples = 0;
static int get_value(int pos, float pos0)
static int
get_value(int pos, float pos0)
{
if (abs(pos0 - pos) > 5)
{
@ -57,7 +61,8 @@ static int get_value(int pos, float pos0)
}
}
static void set_filter()
static void
set_filter()
{
for (int i = 0; i < n_BP; i++)
{
@ -81,8 +86,8 @@ void setup()
Serial.begin(250000);
set_filter();
initial_time = micros();
}
void loop()
{
float sample = get_sample();
@ -93,7 +98,7 @@ void loop()
{
n_samples = 0;
last_us_bp += sampling_period_bp;
//energy_fil += (energy - energy_fil) * 0.01;
// energy_fil += (energy - energy_fil) * 0.01;
for (int i = 0; i < n_BP; i++)
{
@ -104,12 +109,14 @@ void loop()
yy3[i] = yy2[i];
yy2[i] = yy1[i];
yy1[i] = y[i];
y_fil[i] = y_filter.update(std::abs(y[i]), 0.005f); //linie der scheitelpunkte
//y_fil[i] += (abs(y[i]) - y_fil[i]) * 0.005; //linie der scheitelpunkte
y_fil[i] = y_filter.update(std::abs(y[i]),
0.005f); // linie der scheitelpunkte
// y_fil[i] += (abs(y[i]) - y_fil[i]) * 0.005; //linie der
// scheitelpunkte
}
float delays = constrain(SAMPLING_FREQUENCY_BP * 0.25 / (1.75 + active * (2.4 - 1.75) / n_BP), 4., 6.);
float delays = constrain(SAMPLING_FREQUENCY_BP * 0.25 / (1.75 + active * (2.4 - 1.75) / n_BP),
4., 6.);
float delayed = 0;
if (delays > 5)
@ -136,7 +143,8 @@ void loop()
if (pos_target > pos_target_filtered)
{
pos_target_filtered = pos_filter.update(pos_target, 0.35f); }
pos_target_filtered = pos_filter.update(pos_target, 0.35f);
}
else
{
pos_filter.y_n1 = pos_target;
@ -148,12 +156,11 @@ void loop()
for (int i = 0; i < NUM_LEDS; i++)
{
leds[i].g = get_value(i, pos_target_filtered);
leds[i].r = get_value(i, pos_target_filtered+2);
leds[i].b = get_value(i, pos_target_filtered-2);
leds[i].r = get_value(i, pos_target_filtered + 2);
leds[i].b = get_value(i, pos_target_filtered - 2);
//leds[i].setRGB(brightness_red, brightness_green, brightness_blue);
//leds[i].setHSV(160, (rounds == 6) ? 0xFF : 0, brightness);
// leds[i].setRGB(brightness_red, brightness_green, brightness_blue);
// leds[i].setHSV(160, (rounds == 6) ? 0xFF : 0, brightness);
}
FastLED.show();
}

View File

@ -17,46 +17,54 @@ void fft(std::complex<float> *samples, std::complex<float> *output, uint32_t N)
{
uint8_t log2n = (uint8_t)std::log2(N) + 0.5f;
std::complex<float> I(0.0, 1.0);
if (N == 1) {
if (N == 1)
{
output[0] = samples[0];
return;
}
//shuffle array
for (int i = 0; i < N; i++) {
// shuffle array
for (int i = 0; i < N; i++)
{
output[i] = samples[bitReverse(i, log2n)];
}
for(int s = 1; s <= log2n; s++) {
uint32_t m = 1 << s; // 2^s
std::complex<float> wm = std::exp(-2.0f*(float)M_PI*I/(std::complex<float>)m);
for (int k = 0; k < N; k += m) {
for (int s = 1; s <= log2n; s++)
{
uint32_t m = 1 << s; // 2^s
std::complex<float> wm = std::exp(-2.0f * (float)M_PI * I / (std::complex<float>)m);
for (int k = 0; k < N; k += m)
{
std::complex<float> w = 1.f;
for (int j = 0; j < m/2; j++) {
std::complex<float> t = w * output[k+j+m/2];
std::complex<float> u = output[k+j];
output[k+j] = u+t;
output[k+j+m/2] = u-t;
w = w*wm;
for (int j = 0; j < m / 2; j++)
{
std::complex<float> t = w * output[k + j + m / 2];
std::complex<float> u = output[k + j];
output[k + j] = u + t;
output[k + j + m / 2] = u - t;
w = w * wm;
}
}
}
}
void rfft(std::complex<float> *input, std::complex<float> *output, uint32_t N){
void rfft(std::complex<float> *input, std::complex<float> *output, uint32_t N)
{
std::complex<float> I(0.0, 1.0);
for(int i = 0; i< N/2; i++){
input[i] = input[i] + I * input[i + N/2];
for (int i = 0; i < N / 2; i++)
{
input[i] = input[i] + I * input[i + N / 2];
}
fft(input, output, N/2);
for(int i = 0; i < N/2; i++){
output[i] = (output[i] + std::conj(output[(N/2) - i]))/2.f;
fft(input, output, N / 2);
for (int i = 0; i < N / 2; i++)
{
output[i] = (output[i] + std::conj(output[(N / 2) - i])) / 2.f;
}
for(int i = N/2; i < N; i++) {
output[i] = -I * (output[i] - std::conj(output[(N/2) - i]))/2.f;
for (int i = N / 2; i < N; i++)
{
output[i] = -I * (output[i] - std::conj(output[(N / 2) - i])) / 2.f;
}
}

View File

@ -5,17 +5,20 @@ DcCancelation<float> dc_blocker{0.95};
CRGB leds[NUM_LEDS];
static int16_t mic_offset = 0;
static uint16_t read_mic() {
static uint16_t read_mic()
{
return analogRead(MIC_PIN);
}
int zauberstab_init() {
int zauberstab_init()
{
FastLED.addLeds<WS2812, LED_PIN, GRB>(leds, NUM_LEDS);
//FastLED.setMaxPowerInVoltsAndMilliamps(5, 300);
// FastLED.setMaxPowerInVoltsAndMilliamps(5, 300);
return 0;
}
float get_sample() {
float get_sample()
{
float sample = read_mic();
sample = dc_blocker.update(sample);
return sample;

View File

@ -1,9 +1,10 @@
#include "zauberstab.h"
void setup() {
void setup()
{
zauberstab_init();
}
void loop() {
void loop()
{
}

View File

@ -1,9 +1,9 @@
#include "zauberstab.h"
#include "pt1.h"
#include "zauberstab.h"
unsigned long last_sample_time;
static int sample_counter = 0;
unsigned int top_led_pos = 0;
unsigned int top_led_pos = 0;
float rms_avg = 0;
float vu_filt = 0.0f;
float vu_filt_slow = 0.0f;
@ -19,37 +19,42 @@ void setup()
FastLED.setBrightness(100);
}
void loop() {
if (micros()-last_sample_time >= 500){
void loop()
{
if (micros() - last_sample_time >= 500)
{
last_sample_time = micros();
int32_t sample = get_sample();
float in = sample*sample;
float in = sample * sample;
sample_counter++;
rms_avg += (in - rms_avg)/(sample_counter + 1);
rms_avg += (in - rms_avg) / (sample_counter + 1);
}
EVERY_N_MILLIS(10){
EVERY_N_MILLIS(10)
{
float vu = 20 * log10f(rms_avg);
vu_filt = vu_pt1_fast.update(vu, 0.01f);
vu_filt_slow = vu_pt1_slow.update(vu_filt, 0.01f);
//Serial.println(vu);
// Serial.println(vu);
int max_led = vu_filt;
int top_led = vu_filt_slow;
max_led = max_led > 0xFF ? 0xFF : max_led;
if (top_led < max_led){
if (top_led < max_led)
{
vu_pt1_slow.y_n1 = vu_filt;
top_led = max_led;
}
fill_solid(leds, NUM_LEDS, CRGB::Black);
for(int i = 0; i < max_led; i++) {
for (int i = 0; i < max_led; i++)
{
int idx = map(i, 0, NUM_LEDS, 0, 0xFF);
leds[i] = ColorFromPalette(RainbowColors_p, idx);
}
leds[top_led] = CRGB::White;
FastLED.show();