#include //lichterkette: PWM 2 //mikrofon: A1 #define LED_PIN 2 #define NUM_LEDS 240 #define SAMPLING_FREQUENCY_BP 40 // number of energy chunks per second #define SAMPLING_FREQUENCY_CONTROL 1 // check number of times per second if the current band pass is the best one #define Q 20. // quality factor of band pass filters #define PI 3.1415926535897932384626433832795 #define n_BP 20 //number of band pass filters CRGB leds[NUM_LEDS]; unsigned long sampling_period_bp = 1000000L/SAMPLING_FREQUENCY_BP; unsigned long sampling_period_control = 1000000L/SAMPLING_FREQUENCY_CONTROL; double energy = 0; unsigned long last_us_bp = 0L; unsigned long last_us_control = 0L; float a0[n_BP]; float a1[n_BP]; float a2[n_BP]; float b0[n_BP]; //float b1[n_BP]; float b2[n_BP]; float a[n_BP]; float w0[n_BP]; float yy1[n_BP]; float yy2[n_BP]; float yy3[n_BP]; float yy4[n_BP]; float yy5[n_BP]; float yy6[n_BP]; float u1[n_BP]; float u2[n_BP]; float y[n_BP]; float y_fil[n_BP]; float angle; float angle2; double energy_fil = 800.; float pos_target = NUM_LEDS/2; float pos_target_filtered = NUM_LEDS/2; int microphone_offset; long initial_time; int active = 15; int candidate = 15; int rounds = 0; void setup() { //Serial.begin(115200); FastLED.addLeds(leds, NUM_LEDS); FastLED.setMaxPowerInVoltsAndMilliamps(5, 350); for(int i = 0; i < NUM_LEDS; i++) { int brightness = get_value(i, pos_target_filtered); leds[i].setRGB(brightness, brightness, brightness); } FastLED.show(); long sumsamples = 0; for(int j = 1; j<1000; j++) { int sample = analogRead(1); sumsamples += sample; delay(1); if(j==500) { sumsamples = 0; } } microphone_offset = sumsamples/500; set_filter(); initial_time = micros(); } void set_filter() { for(int i = 0; i < n_BP; i++) { float frequency = 1.75+i*0.033; w0[i] = 2.*PI*frequency/SAMPLING_FREQUENCY_BP; a[i] = sin(w0[i]/(2.*Q)); b0[i] = a[i]; //b1[i] = 0; b2[i] = -a[i]; a0[i] = 1.+a[i]; a1[i] = -2.*cos(w0[i]); a2[i] = 1.-a[i]; } } int get_value(int pos, float pos0) { if (abs(pos0-pos) > 7) { return 0; } else { return (255-abs(pos0-pos)*35); } } void loop() { int sample = int(analogRead(1) - microphone_offset); energy += abs(sample)*abs(sample); if (micros() - last_us_bp > sampling_period_bp) { last_us_bp += sampling_period_bp; energy_fil += (energy - energy_fil) * 0.01; //Serial.println(energy); for(int i = 0; i < n_BP; i++) { y[i] = (b0[i]/a0[i])*energy + 0. + (b2[i]/a0[i])*u2[i] - (a1[i]/a0[i])*yy1[i] - (a2[i]/a0[i])*yy2[i]; u2[i] = u1[i]; u1[i] = energy; yy6[i] = yy5[i]; yy5[i] = yy4[i]; yy4[i] = yy3[i]; yy3[i] = yy2[i]; yy2[i] = yy1[i]; yy1[i] = y[i]; y_fil[i] += (abs(y[i]) - y_fil[i]) * 0.005; //linie der scheitelpunkte } float delays = constrain( SAMPLING_FREQUENCY_BP * 0.25/(1.75+active*0.033) , 4., 6.); float delayed = 0; if (delays > 5) {delayed = yy5[active]*(1-delays+5) + yy6[active]*(delays-5); } else {delayed = yy4[active]*(1-delays+4) + yy5[active]*(delays-4); } angle = atan2(delayed , y[active]); if (PI < abs(angle - angle2) && abs(angle - angle2) < 3*PI) { angle2 = angle + 2*PI; } else { angle2 = angle; } pos_target = map(angle2, -PI, 3*PI, -0.1*NUM_LEDS, NUM_LEDS*1.1); if (pos_target > pos_target_filtered) { pos_target_filtered += (pos_target - pos_target_filtered)*0.5; } else { pos_target_filtered = pos_target; } energy = 0; for(int i = 0; i < NUM_LEDS; i++) { int brightness = get_value(i, pos_target_filtered); leds[i].setRGB(brightness, brightness, brightness); } FastLED.show(); } if (micros() - last_us_control > sampling_period_control) { last_us_control += sampling_period_control; int argmax = -1; float valuemax = 0; for(int i = 0; i < n_BP; i++) { if(y_fil[i] > valuemax) { valuemax = y_fil[i]; argmax = i; } } if(argmax > -1) { if(argmax == candidate) { rounds ++; } else { rounds = 0; candidate = argmax; } if(rounds > 5) { rounds = 0; active = candidate; } } } }