#include "zauberstab.h" #include "app.h" #define SAMPLING_FREQUENCY_BP 40 // number of energy chunks per second #define SAMPLING_FREQUENCY_CONTROL 1 // check number of times per second if the current band pass is the best one #define Q 20. // quality factor of band pass filters #define PI 3.1415926535897932384626433832795 #define n_BP 30 //number of band pass filters static unsigned long sampling_period_bp = 1000000L / SAMPLING_FREQUENCY_BP; static unsigned long sampling_period_control = 1000000L / SAMPLING_FREQUENCY_CONTROL; static double energy = 0; static unsigned long last_us_bp = 0L; static unsigned long last_us_control = 0L; static float a0[n_BP]; static float a1[n_BP]; static float a2[n_BP]; static float b0[n_BP]; //static float b1[n_BP]; static float b2[n_BP]; static float a[n_BP]; static float w0[n_BP]; static float yy1[n_BP]; static float yy2[n_BP]; static float yy3[n_BP]; static float yy4[n_BP]; static float yy5[n_BP]; static float yy6[n_BP]; static float u1[n_BP]; static float u2[n_BP]; static float y[n_BP]; static float y_fil[n_BP]; static float angle; static float angle2; static double energy_fil = 800.; static float pos_target = NUM_LEDS / 2; static float pos_target_filtered = NUM_LEDS / 2; static float microphone_offset = 675; static long initial_time; static int active = 15; static int candidate = 15; static int rounds = 0; static int get_value(int pos, float pos0) { if (abs(pos0 - pos) > 20) { return 0; } else { return (40 - abs(pos0 - pos) * 2); } } static void set_filter() { for (int i = 0; i < n_BP; i++) { float frequency = 1.75 + i * (2.4 - 1.75) / n_BP; w0[i] = 2. * PI * frequency / SAMPLING_FREQUENCY_BP; a[i] = sin(w0[i] / (2. * Q)); b0[i] = a[i]; //b1[i] = 0; b2[i] = -a[i]; a0[i] = 1. + a[i]; a1[i] = -2. * cos(w0[i]); a2[i] = 1. - a[i]; } } static void abeat_setup() { zauberstab_init(); Serial.begin(115200); set_filter(); initial_time = micros(); } static void abeat_loop() { int sample = int(analogRead(MIC_PIN) - microphone_offset); energy += abs(sample) * abs(sample); if (micros() - last_us_bp > sampling_period_bp) { Serial.println(sample); microphone_offset += (analogRead(MIC_PIN) - microphone_offset) * 0.001; //Serial.println(microphone_offset); last_us_bp += sampling_period_bp; energy_fil += (energy - energy_fil) * 0.01; //Serial.println(energy); for (int i = 0; i < n_BP; i++) { y[i] = (b0[i] / a0[i]) * energy + 0. + (b2[i] / a0[i]) * u2[i] - (a1[i] / a0[i]) * yy1[i] - (a2[i] / a0[i]) * yy2[i]; u2[i] = u1[i]; u1[i] = energy; yy6[i] = yy5[i]; yy5[i] = yy4[i]; yy4[i] = yy3[i]; yy3[i] = yy2[i]; yy2[i] = yy1[i]; yy1[i] = y[i]; y_fil[i] += (abs(y[i]) - y_fil[i]) * 0.005; //linie der scheitelpunkte } float delays = constrain(SAMPLING_FREQUENCY_BP * 0.25 / (1.75 + active * (2.4 - 1.75) / n_BP), 4., 6.); float delayed = 0; if (delays > 5) { delayed = yy5[active] * (1 - delays + 5) + yy6[active] * (delays - 5); } else { delayed = yy4[active] * (1 - delays + 4) + yy5[active] * (delays - 4); } angle = atan2(delayed, y[active]); if (PI < abs(angle - angle2) && abs(angle - angle2) < 3 * PI) { angle2 = angle + 2 * PI; } else { angle2 = angle; } pos_target = map(angle2, -PI, 3 * PI, -0.3 * NUM_LEDS, NUM_LEDS * 1.5); if (pos_target > pos_target_filtered) { pos_target_filtered += (pos_target - pos_target_filtered) * 0.35; } else { pos_target_filtered = pos_target; } // Serial.print(y_fil[active]); // Serial.print(","); // Serial.println(y[active]); energy = 0; for (int i = 0; i < NUM_LEDS; i++) { int brightness = get_value(i, pos_target_filtered); //leds[i].setRGB(brightness, brightness, brightness); //leds[i].setHSV(160, (rounds == 6) ? 0xFF : 0, brightness); leds[i] = CRGB::White; } FastLED.show(); } if (micros() - last_us_control > sampling_period_control) { last_us_control += sampling_period_control; int argmax = -1; float valuemax = 0; for (int i = 0; i < n_BP; i++) { if (y_fil[i] > valuemax) { valuemax = y_fil[i]; argmax = i; } } if (argmax > -1) { if (argmax == candidate) { rounds++; } else { rounds = 0; candidate = argmax; } if (rounds > 6) { rounds = 0; active = candidate; } } } }