#include #include "app.h" #include "biquad.h" #include "pt1.h" #include "zauberstab.h" #undef NUM_LEDS #define NUM_LEDS 45 #define SAMPLING_FREQUENCY_BP 40 // number of energy chunks per second #define SAMPLING_FREQUENCY_CONTROL \ 1 // check number of times per second if the current band pass is the best // one #define Q 30. // quality factor of band pass filters #define PI 3.1415926535897932384626433832795 #define n_BP 40 // number of band pass filters static const unsigned long sampling_period_bp = 1000000L / SAMPLING_FREQUENCY_BP; static const unsigned long sampling_period_control = 1000000L / SAMPLING_FREQUENCY_CONTROL; static float energy = 0; static unsigned long last_us_bp = 0L; static unsigned long last_us_control = 0L; static Biquad bp_filters[n_BP]; static Pt1 y_filter[n_BP]; static Pt1 pos_filter{1.f, 1.f}; static float yy1[n_BP]; static float yy2[n_BP]; static float yy3[n_BP]; static float yy4[n_BP]; static float yy5[n_BP]; static float yy6[n_BP]; static float y[n_BP]; static float y_fil[n_BP]; static float angle; static float angle2; // static double energy_fil = 800.; static float pos_target = NUM_LEDS / 2; static float pos_target_filtered = NUM_LEDS / 2; static long initial_time; static int active = 15; static int rounds = 0; static int n_samples = 0; static int get_value(int pos, float pos0) { if (abs(pos0 - pos) > 5) { return 0; } else { return (30 - abs(pos0 - pos) * 6); } } static void set_filter() { for (int i = 0; i < n_BP; i++) { float frequency = 1.75 + i * (2.5 - 1.75) / n_BP; float a, a0, a1, a2, b0, b1, b2, w0; w0 = 2. * PI * frequency / SAMPLING_FREQUENCY_BP; a = sin(w0 / (2. * Q)); b0 = a; b1 = 0.f; b2 = -a; a0 = 1.f + a; a1 = -2.f * cos(w0); a2 = 1.f - a; bp_filters[i] = Biquad{a0, a1, a2, b0, b1, b2}; y_filter[i] = Pt1{1.f, 1.f}; } } void BeatDetectApp::init() { set_filter(); initial_time = micros(); pos_target = NUM_LEDS / 2; pos_target_filtered = NUM_LEDS / 2; active = 15; rounds = 0; n_samples = 0; pos_filter.reset(); for (int i = 0; i sampling_period_bp) { n_samples = 0; last_us_bp = micros(); // energy_fil += (energy - energy_fil) * 0.01; for (int i = 0; i < n_BP; i++) { y[i] = bp_filters[i].update(energy); yy6[i] = yy5[i]; yy5[i] = yy4[i]; yy4[i] = yy3[i]; yy3[i] = yy2[i]; yy2[i] = yy1[i]; yy1[i] = y[i]; y_fil[i] = y_filter[i].update(std::abs(y[i]), 0.005f); // linie der scheitelpunkte // y_fil[i] += (abs(y[i]) - y_fil[i]) * 0.005; //linie der // scheitelpunkte } float delays = constrain(SAMPLING_FREQUENCY_BP * 0.25 / (1.75 + active * (2.5 - 1.75) / n_BP), 4., 6.); float delayed = 0; if (delays > 5) { delayed = yy5[active] * (1 - delays + 5) + yy6[active] * (delays - 5); } else { delayed = yy4[active] * (1 - delays + 4) + yy5[active] * (delays - 4); } angle = atan2(delayed, y[active]); if (PI < abs(angle - angle2) && abs(angle - angle2) < 3 * PI) { angle2 = angle + 2 * PI; } else { angle2 = angle; } pos_target = map(angle2, -PI, 3 * PI, -0.3 * NUM_LEDS, NUM_LEDS * 1.5); //pos_target = NUM_LEDS * (sin(angle2)+1)/2; if (pos_target > pos_target_filtered) { pos_target_filtered = pos_filter.update(pos_target, 0.35f); } else { pos_filter.y_n1 = pos_target; pos_target_filtered = pos_target; } energy = 0; for (int i = 0; i < NUM_LEDS; i++) { //leds[i].g = get_value(i, pos_target_filtered); //leds[i].r = get_value(i, pos_target_filtered + 2); //leds[i].b = get_value(i, pos_target_filtered - 2); leds[i].g = get_value(i, pos_target_filtered); leds[i].r = 0; //get_value(i, pos_target_filtered + 2); leds[i].b = get_value(i, pos_target_filtered - 2); // leds[i].setRGB(brightness_red, brightness_green, brightness_blue); // leds[i].setHSV(160, (rounds == 6) ? 0xFF : 0, brightness); } FastLED.show(); } if (micros() - last_us_control > sampling_period_control) { last_us_control = micros(); int argmax = -1; float valuemax = 0; for (int i = 0; i < n_BP; i++) { if (y_fil[i] > valuemax) { valuemax = y_fil[i]; argmax = i; } } if (argmax != active) { rounds++; } if (rounds > 5) { rounds = 0; active = argmax; } } }